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Abstract

Explicitly considering fail-safety within design optimization is computationally very expensive, since every possible failure

has to be considered. This requires solving one finite element model per failure and iteration. In topology optimization, one

cannot identify potentially failing structural members at the beginning of the optimization. Hence, a generic failure shape

is applied to every possible location inside the design domain. In the current paper, the maximum stress is considered as

optimization objective to be minimized, since failure is typically driven by the occurring stresses and thus of more practical

relevance than the compliance. Due to the local nature of stresses, it is presumed that the optimization is more sensitive to

the choice of the failure shape than compliance-based optimization. Therefore, various failure shapes, sizes and different

numbers of failure cases are investigated and compared on the basis of a general load-path-based evaluation scheme. Instead

of explicitly considering fail-safety, redundant structures are obtained at much less computational cost by controlling the

maximum length scale. A common and easy to implement maximum length scale approach is employed and fail-safe

properties are determined and compared against the explicit fail-safe approach.

Keywords Stress-based topology optimization · Fail-safe design · Multiple load path · Local volume constraint

1 Introduction

During the design process of an aircraft, components with

multiple and redundant load path are often required due to

safety reasons. If for example one load path fails, e.g. caused

by a fatigue crack or an accident, the component should still

be able to carry a certain amount of the design load. This

ensures a safe operation of the aircraft and a safe landing can

be performed. A structure that fulfills these requirements is

also called fail-safe.

For shape optimization and sizing optimization, fail-safe

requirements can directly be incorporated as a constraint

in the design optimization as originally proposed by Sun

et al. (1976) for truss structures. The optimization requires

one finite element simulation for each failed load path
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(for instance, for each member of a truss structure), which

results in extremely large computational cost. For topology

optimization, the question arises what to consider as a

load path or structural member, as these evolve only

during optimization. First work incorporating fail-safety

into topology optimization was carried out by Jansen et al.

(2014). Their approach is characterized by a local damage

model, also referred to as failure patch approach. A simple

square failure is applied to each possible location in the

design domain resulting in nearly as many failure cases as

finite elements, what makes this approach computationally

very expensive. The objective is to minimize the worst-case

compliance of all failure cases with respect to a volume

constraint. Since the computationally cost is so high, Zhou

and Fleury (2016) proposed to only use as much failure

patches as needed to cover the design domain with no

gap and no overlap. To further decrease the computational

cost, Wang et al. (2020) selected the active failure patches

based on a von Mises stress criterion and used a stabilized

optimality criterion update scheme. Ambrozkiewicz and

Kriegesmann (2018) chose to use actual load paths as failure

patches instead of a regular grid, which significantly reduces

computational costs. Still, the change of the structure and,

consequently, of the failure scenarios considered penalizes
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the convergence of the optimization. Therefore, they

proposed to embed the approach into a shape optimization

(Ambrozkiewicz and Kriegesmann 2020).

All mentioned approaches for incorporating fail-safe

requirements into topology optimization consider the

compliance as objective function. However, when failure

of a structure is considered, the maximum stress is of

more practical relevance as already mentioned by Zhou

and Fleury (2016). Stress-based topology optimization can

be traced back around 30 years, where the singularity

phenomenon1 was first encountered by Kirsch (1990) in

truss optimization. Since then, many contributions have

been published dealing with different aspects of stress-

based optimizations. Just to name a few, Yang and Chen

(1996) first proposed to use a global stress measure, such

as the maximum stress, which can be approximated for

differentiation. Later, Le et al. (2009) described a practical

and computational efficient method to perform stress

minimization and stress constraint optimization. Recently,

da Silva et al. (2019) addressed the problem of stress

evaluation at jagged boundaries by introducing a method to

limit the stresses oscillation and to ensure stress accuracy.

A comprehensive overview of papers dealing with stresses

in topology optimization can, for instance, be found in Le

et al. (2009) and Holmberg et al. (2013).

Since explicitly considering fail-safety as optimization

constraint results in a high computational effort, it seems

natural to look for alternatives. And there are alternative

and computationally less expensive approaches to obtain

redundant structures, e.g. the approach recently published

by Wu et al. (2018). They defined little subsets of the

design space, mostly similar to the density filter (Bourdin

2001; Bruns and Tortorelli 2001), and then applied a

volume constraint to these subsets. This approach is also

known as local volume constraint approach. It forces

material to be evenly distributed inside the design domain

and was originally designed to create bone like infill

structure, but could also be used to generate multiple load

path and fail-safe designs. Another approach is to limit

maximum member size, which enforces bigger material

agglomeration to split up and thus, creating redundant

load path. Contributions to maximum length scale methods

were first given by Guest (2009), later by Lazarov and

Wang (2017) or Carstensen and Guest (2018) and recently

by Fernandez et al. (2019) and Fernández et al. (2020).

Common to all is, they can be classified as indirect

1The singularity phenomenon is only one of the three often mentioned

challenges related to stress-based topology optimization. The two

other challenges are namely the local nature of stresses and the highly

nonlinear design response (see Le et al. 2009, da Silva et al. 2019 and

Holmberg et al. 2013 among others).

approaches in terms of generating fail-safe and multiple

load path designs.

To the best of our knowledge, fail-safe design has

not been optimized for stresses in a continuum topology

optimization setting. Thus, and since stresses are crucial

for failure to occur, the novel contribution of this paper

is to consider the maximum stress as objective function

following the failure patch approach of (Jansen et al.

2014). In difference to compliance-base optimization, the

shape of the failure patches becomes highly relevant,

as it may introduce singularities. Therefore, as a novel

contribution, the influence of the patch shape is studied.

The significance and arbitrariness of choosing a patch

shape motivates the development of a general evaluation

scheme. Inspired by Ambrozkiewicz and Kriegesmann

(2018, 2020) and Gamache et al. (2018), a procedure

based on image processing techniques is developed to

identify structural members, i.e. struts and nodes. These

structural struts and nodes are interpreted as load paths

and can thus be considered as general failure cases.

By cutting away each strut and node separately and

evaluating the worst failure case, general and comparable

fail-safe properties are obtained, independent of the

actual optimization setup. Additionally, the existing local

volume constraint approach by Wu et al. (2018) is

implemented for a stress objective and compared against

the proposed stress-based fail-safe approach. The empirical

comparison is carried out to evaluate, if implicit optimized

multiple load path designs can compete with explicit

optimized fail-safe designs, which has not been done

before.

This paper is organized as follows: first the optimization

problem will be set up in Section 2. All relevant

techniques applied, such as the variable filter methods,

stiffness and stress interpolation schemes are recapitulated

in Appendices A to C. The sensitivity analysis will be

conducted in the Appendix D. Section 3 recapitulates the

local volume constraint approach by Wu et al. (2018).

In Section 4, a general evaluation scheme for fail-safe

topologies will be proposed. In Sections 5 and 6, numerical

results optimized with the proposed stress-based fail-

safe optimization (FSO) will be shown and discussed

on two different problems. Section 7 contains numerical

results of an alternative way of obtaining fail-safe or

multiple load path design, which are compared to the fail-

safe optimized ones. In the end, a conclusion is drawn

in Section 8.

2 Stress-based fail-safe optimization

To achieve a fail-safe design, our optimization algorithm

is based on the failure patch approach proposed by Jansen
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et al. (2014). A finite element model discretized by a regular

mesh with quadrilateral continuum elements and linear

isotropic material is considered.

In contrast to the failure patch approach by Jansen et al.

(2014), our objective is to minimize the worst-case von

Mises stress qKS . The optimization problem reads:

min
ρ

qKS(ρ) =
1

γ
log

⎛

⎝

m
∑

i=1

n
∑

j=1

exp
γ q

(i)
j (ρ)

⎞

⎠

s.t .
V (ρ)

V0
− α ≤ 0

0 ≤ ρ ≤ 1

K
(i)(ρ)u(i)(ρ) = f

(1)

where n is the number of elements, m is the number of

failure cases, γ is the KS-factor or aggregation parameter

and q
(i)
j is the j th relaxed elemental stresses of failure case

i (for details see Appendix C). The maximum volume of

all elements in the design domain is V0, the actual volume

is V and α defines the volume fraction. For each element,

one relative density is stored in ρ. Note, even though

there are m × n elemental stresses to be aggregated, only

n design variables (also referred to as relative densities)

are needed. Failure cases are modeled by manipulating

the corresponding entries in the stiffness matrix K (for

details see Appendix B). The force vector is denoted as

f, K
(i) and u

(i) are the stiffness matrix and displacement

vector of failure case i respectively. Together, they represent

the state equation for each failure case. Within this

contribution, a volume fraction of α = 0.4 is chosen for all

examples.

To avoid numerical difficulties in calculating the

exponential function of large numbers, the alternative form

(Wrenn 1989; Poon and Martins 2007) of the KS-function

is used:

qKS(ρ) = q0 +
1

γ
log

⎛

⎝

m
∑

i=1

n
∑

j=1

exp
γ

(

q
(i)
j (ρ)−q0

)

⎞

⎠ ,

with q0 = max
i=1,...,m

(

max
j=1,...,n

(

q
(i)
j

)

)

(2)

where, q0 is treated as constant for differentiation. The

alternative form (2) is equal to the common one (1) and

gives the same results, subjected to round off errors (Wrenn

1989). This can also be shown by simple mathematical

reformulation:

qKS(ρ) = q0 +
1

γ
log

⎛

⎝

m
∑

i=1

n
∑

j=1

exp
γ

(

q
(i)
j (ρ)−q0

)

⎞

⎠

= q0 +
1

γ
log

⎛

⎝

m
∑

i=1

n
∑

j=1

exp
γ q

(i)
j (ρ)

exp−γ q0

⎞

⎠

= q0 +
1

γ
log

⎛

⎝

m
∑

i=1

n
∑

j=1

exp
γ q

(i)
j (ρ)

⎞

⎠ +
1

γ
log

(

exp−γ q0
)

= q0 +
1

γ
log

⎛

⎝

m
∑

i=1

n
∑

j=1

exp
γ q

(i)
j (ρ)

⎞

⎠ − q0

=
1

γ
log

⎛

⎝

m
∑

i=1

n
∑

j=1

exp
γ q

(i)
j (ρ)

⎞

⎠ .

(3)

As in the original failure patch approach (Jansen et al.

2014), the aggregation parameter γ is updated every 10

iterations. Based on numerical studies, a proper setting is

found to be γ = 10/q0 (see Section 6.1). The initial

aggregation parameter is determined in the same manner.

Choosing a proper factor for the aggregation parameter’s

update is essential for a stable and accurate stress-based

FSO. Similar to the p-norm, an increasing aggregation

parameter leads to a better approximation of q0 , but it also

increases gradient oscillations and, in worst case, this can

result in a diverging optimization (Yang and Chen 1996;

Verbart et al. 2017). With a too low aggregation parameter

on the other hand, the worst failure case is not captured and

is thus ignored by the optimizer, resulting in a less fail-safe

topology. This trade-off is also described by Verbart et al.

(2017).

Jansen et al. (2014) already pointed out that “the designs

changes strongly during the optimization” and requires an

aggregation parameter update every 10 iterations. Following

this recommendation and to provide mesh independency2

the aggregation parameter is updated with respect to a

constant factor for the exponential argument including the

overall maximum stress q0. Note, it is not the aggregation

parameter itself which is updated to a predefined value,

but the exponentials argument, i.e. the product of the

aggregation parameter γ and the relaxed von Mises stress

q
(i)
j . An alternative way of achieving mesh independency

is described by Verbart et al. (2017) using the lower bound

form of the KS-function.

2A mesh independency study has been performed. For more details,

see Appendix F.
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Design variables are filtered and projected (see Appendix

A). Element stiffnesses are penalized following the SIMP

approach using projected variables (see Appendix B) where

stresses are interpolated using the RAMP interpolation (see

Appendix C). The gradient of the objective function (1),

(2) is given in Appendix D. The optimization process is

summarized in Fig. 1.

As a gradient-based iterative optimization algorithm, the

method of moving asymptotes (MMA) is applied (Svanberg

1987). We use standard settings with external move

limits, allowing an absolute change per design variable

of ±0.1. The internal move limit parameters are set to

Fig. 1 Flow chart of the optimization process

asyinit = 0.01, asyincr = 1.2, and asydecr = 0.7.

The iterations are limited to a maximum of 500 for the FSO.

The local volume constraint optimization required 1000

to 1500 iterations. If not stated otherwise, the projection

parameter β is increased every 100 iterations and the

aggregation parameter γ in (1), (2) is updated every 10

iterations. All other parameters are kept constant during the

entire optimization, the objective and constraint value are

both normalized at the beginning and scaled by a factor of

100.

3Multiple-load-path design bymaximum
member size constraint

A simple and easy to implement method to create redundant

designs with multiple load path is the local volume

constraint approach by Wu et al. (2018). The stress-based

optimization problem is formulated as follows:

min
ρ

qKS(ρ)

s.t . v(ρ) − ϕ ≤ 0

V (ρ)

V0
− α ≤ 0

0 ≤ ρ ≤ 1

K(ρ)u(ρ) = f

(4)

where qKS is the aggregated von Mises stress considering

only the elemental stresses qj in (2), ϕ is the local volume

fraction and v is the aggregated local volume. The local

volume is calculated per element and aggregated by the

p-mean as follows:

v(ρ) =

(

1

n

n
∑

e=1

(ϑe(ρ))p

)
1
p

, with ϑe(ρ) =

∑Le

k=1ρ̄k

vmax

(5)

with Le representing all elements inside the test region

of element e. The test region is similar to the element

neighborhood (see, e.g. the density filter in (9)) and can

be of any shape, e.g. circular, annular or elliptic. If not

noted otherwise, a circular test region as in (9) is chosen

but with a different radius. To ensure equal maximum

length scale over the whole design domain, each local

volume is divided by the maximum of all test region

volumes vmax = max
(

∑Le

k=1vk(ρ)
)

∀ Le. The aggregation

parameter is set to p = 16 and kept constant during

optimization. Also here, a trade-off between a stable

optimization and an accurate constraint approximation has

to be made. If a higher aggregation parameter is chosen,

the local volume constraint is enforced more strictly, but

the problem might become unstable. For the designs in

2116



An empirical study on stress-based fail-safe topology optimization and multiple load path design

Section 7, an aggregation parameter of p = 16 turned out

to give good convergence and acceptable results and is thus

not further increased.

Considering a circular test region, the maximum length

scale can be controlled by either changing the radius in

(9) or by varying the local volume fraction ϕ. For a local

volume fraction ϕ ≈ 1, the test region’s size is equal to

the maximum length scale (2R = smax). This correlation

is, e.g. utilized in the maximum length scale approach by

Fernandez et al. (2019). Contrary to that, with a given R and

a user defined maximum length scale smax , it is also possible

to calculate the required volume fraction analytically by

simple geometric evaluation. For that the integral form of a

circle’s area can be used:

A◦ = 2

b
∫

a

√

R2 + x2dx (6)

Evaluating (6) on the interval [−s/2, s/2] and dividing

it by the circle’s area gives the local volume fraction ϕ.

Figure 2 shows the local volume fraction for different

maximum length scale and radii.

The maximum member size of an elliptic test region is

determined straightforwardly using the analytical expres-

sion for an ellipse. Assuming that the minor axis w of the

ellipse is controlling the maximum length scale and oriented

along the x-axis. The following equation can be used to

determine the local volume fraction for a chosen maximum

length scale.

AE = 4

b
∫

0

√

h2 −
h2

w2
x2dx (7)

where, h is the major axis. Evaluating (7) on the interval

[0, w] and dividing it by ellipse’s area gives the local volume

fraction ϕ. Figure 3 shows the local volume fraction for

different maximum length scale and radii.

Design variables are filtered and projected (see Appendix

A). Element stiffnesses are penalized following the SIMP

approach using projected variables (see Appendix B) where

Fig. 2 Local volume fraction for different maximum length scale and

radii of a circle

Fig. 3 Local volume fraction for different maximum length scale and

radii of an ellipse

stresses are interpolated using the RAMP interpolation

(see Appendix C). The gradient of the objective function

(4) is given in Appendix D. The optimization algorithm

and its settings are equal to the once of the stress-based

optimization described in Section 2. The optimization

process is similar to the one depicted in Fig. 1 but without

the parallelized block.

4 Evaluation of fail-safe properties based on
actual load paths

The results of a fail-safe topology optimization depends on

the size and shape of the failure patch and of the failure

patch density, i.e. the number of all possible failure locations

considered (Zhou and Fleury 2016; Ambrozkiewicz and

Kriegesmann 2018). When comparing two designs that are

obtained with, for instance, a rectangular and circular failure

patch, the question arises: how can we decide which design

is better? Generally speaking, a design is considered as

better if the maximum stress is lower for all possible failure

scenarios. But which failure shape, size and density should

be taken into account for the comparison? Each design is

optimal for the failures defined during its optimization and

hence, less or far from optimal for any other failure shape,

size and density.

To circumvent this problem and to be able to compare

designs of different optimizations with different failure

patch settings, an evaluation based on actual load path is

proposed in this section. Treating actual load, i.e. structural

struts and nodes, as possible failing load paths is close to

the intention of requiring a redundant design in regulation

guidelines.

4.1 Load path identification based on image
processing

The load paths are identified based on image processing

techniques slightly similar to Gamache et al. (2018)
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and inspired by Ambrozkiewicz and Kriegesmann (2020).

While the above mentioned approaches require clustering

all elements to nodes and struts, here, we only need to define

failure patches cutting through an entire strut or node.

For that, the continuous density field is first transferred to

a binary field and then skeletonized, with which the location

of structural nodes can easily be identified as the branch

points (see Fig. 4). By subtracting the branch points from the

skeleton, structural struts are left over as pixel lines. These

pixel lines can then be clustered and the corresponding mid-

point and major/minor axis are calculated. By that, the loca-

tion of all nodes and struts and the orientation of all struts

are defined. The size of the cut is determined incrementally

until a certain amount of void elements is reached.

As shown in Fig. 5, all struts are cut and all nodes are

taken away completely. Struts and nodes right of the dashed

line are not taken into account, since they are outside of the

damaged area, where no damage has been considered during

optimization. Furthermore, to avoid removing too big areas,

the maximum node size is limited to 10% of the maximum

model dimension.

4.2 Extended cut procedure to avoid singularities

In some cases, a load path cut causes very high stress

in medium density elements or in very thin struts, which

do not contribute to the structural integrity. Removing

such elements actually decreases the maximum stress, and

they should therefore not be considered for a fail-safe

evaluation. To bypass these numerical artefacts, an extended

cut procedure is developed, testing for potential stress

reducing further cuts. Figure 6 shows how this extended

cut procedure works. The maximum stressed element is

removed iteratively by setting its density to 0 as long as it

reduces the maximum stress. To assure that only very small

Fig. 5 Identified failure patches cutting through struts (top) and nodes

(bottom)

dispensable struts or elements are cut, the process is stopped

after a predefined maximum number of element deletions,

or if three element deletions in a row lead to a stress

increase. In both cases, the configuration with the lowest

stress is chosen as final worst-case stress. Note, to avoid

that unloaded struts vanish in stress plots, transparency has

been applied to each element according to its density. Due to

the very low density of elements E19211 and E23891, they

appear very opaque, but still they exhibit the highest stress

and are thus removed during the extended cut procedure.

4.3 Fail-safe measure and stress scale

Fail-safe properties are expressed in terms of a fail-safe

factor FSF =
qmax

qFOD
, which is simply the ratio of the

maximum worst-case von Mises stress based on a load path

failure and the maximum von Mises stress of the undamaged

or free of damage (FOD) design qFOD . Note, the maximum

Fig. 4 Continuous density field (left), skeleton, strut and branch point pixels (center) and corresponding major/minor axis (right)
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Fig. 6 Extended cut procedure of an incomplete failure case cut: Dispensable low density elements are removed, resulting in a lower worst case

stress

von Mises stress is approximated by the KS function during

the optimization, but when discussing the numerical results

the true maximum von Mises stress is considered. Beside

the fail-safe factor FSF , the stress of the undamaged design

qFOD and the worst-case stress qmax is provided for each

design. Also, the elements removed by the extended cut

procedure (see above) are highlighted with a red ×.

When comparing designs of different optimization set-

ups, big differences in maximum stresses occur. To avoid

featureless stress plots, the stress scale is truncated at the

lowest maximum stress for each example, i.e. cantilever

beam and L-shaped beam.

5 Numerical results for stress-based fail-safe
optimization of the cantilever beam

The proposed stress-based FSO is investigated on the well-

known cantilever example (see Fig. 7). For all shown results,

following parameters are chosen if not stated otherwise. The

design domain is discretized with 360 by 120 square unit

sized elements. Nodes on the left hand side are clamped

and in the middle of the right hand side a unit load is

distributed among 13 nodes to avoid stress concentrations.

Material properties are set to a Young’s modulus of E0 = 1

and a Poisson’s ratio of ν = 0.3. The overall volume

is constraint to α = 40% and a filter radius of R =

6 is applied. In the following, the cantilever example is

optimized for different failure patch numbers, sizes and

shapes. The optimized designs are evaluated based on their

actual load paths. Note, the blue area in Fig. 7 is free of any

damage. During optimization and postprocessing, no failure

is considered in the marked area. As reference, an optimized

Failure
increment

Failure

size

Virtual extended design space

L/6

L
/3

R

L

Area with no failure

Fig. 7 Cantilever beam example
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Fig. 8 Cantilever design obtained without failure and worst-case failure w.r.t. identified load paths, density distribution (left) and von Mises stress

(right)

cantilever beam without considering failure cases during the

optimization is depicted in Fig. 8. It can be observed, if

the marked node is removed, the maximum stress increases

dramatically and will probably lead to catastrophic failure

of the beam. As expected and anticipating the following

investigations, the fail-safe properties can be improved

significantly by explicitly considering failure during the

optimization no matter which parameters are chosen. For

the sake of completeness, a mesh independency study is

performed in Appendix F. Here, the fail-safe optimized

results are discussed.

5.1 Influence of the failure patch density

Following the approach of Jansen et al. (2014) and moving

the failure patch element by element through the design

space results in a very high number of failure cases to be

evaluated in each iteration. Here, our main motivation is

to reduce the computational cost by reducing the number

of failure patches. Zhou and Fleury (2016) already pointed

out that using as many failure patches as needed to cover

the design domain without gap and overlap “is sufficient

for achieving an applicable solution”. Of course, if fewer

failure patches are considered, there will always be a failure

patch that results in a higher worst-case stress. But since

we are evaluating the fail-safe performance based on actual

load paths, an “applicable solution” is sufficient. Thus, in

this section, different failure patch densities are investigated

with respect to their load path failure.

In order to keep the computing time manageable, the

following investigation on failure patch density is performed

on a lower resolution (180 by 60 square elements), similar

to the original approach (Jansen et al. 2014). Also, the

filter radius is halved R = 3. The optimization for a high

failure patch density and an aggregation parameter update of

γ = 10/q0 turned out to be unstable, supposedly due to very

localized and switching stress peaks (as will be explained

in the following). Thus, to further stabilize the optimization,

the aggregation parameter is updated every 10 iterations to

γ = 8/q0.

Different numbers of square failure patches are investi-

gated by varying the failure increment. The failure incre-

ment is the step size, by which the failure is moved through

the entire design domain (see Fig. 7). The failure size of 12

defines a 12 by 12 element wide square failure patch. Start-

ing with a failure size of 12 and a failure increment of 12,

leading to a total number of 60 failure patches. The failure

patch density is then doubled by letting the failure patches

overlap by half (failure increment = 6), resulting in 216 fail-

ure patches. Finally, all possible failure positions (failure

increment = 1), giving 6860 failure patches, are investigated.

The results given in Fig. 9 show that the worst-case

stress qmax , evaluated based on load paths, increases with

increasing failure patch density. Additionally, the secondary

load path is getting thinner and is even disappearing in some

places for the highest number of failure patches. Both obser-

vations can be traced back to the local nature of stresses.

Failure cases leaving over just few elements, e.g. on a main

load path, result in high maximum stresses. Decreasing the

failure increment will worsen this situation. Bearing in mind

that the KS-approximation can be interpreted as a weigh-

ted average, it comes clear, the more failure patches leave

over just a few elements between failure patch and boun-

dary, the less other failure patches will influence the outco-

me. In the end, this results in a design more similar to the

optimization without failure, rather than in a fail-safe de-

sign. Only in the clamped corners the optimization always

provides redundant load paths.

With increasing failure patch density, unresolved spots

or medium density struts emerge. Also, a slight asymmetry

can be observed. Again, this is the result of very localized

high stresses which magnify small numerical inaccuracies.

In turn, this leads to an alternating stress peak location and

by that to gradient switching. In the end, this results in an

unstable or even diverging optimization. Furthermore, this

effect is amplified by an increasing aggregation parameter,

which is the reason for a reduction to γ = 8/q0 for this

investigation.

Evaluating fail-safe properties, the FSF appears to be

lowest for a failure patch number of 216 (Fig. 9 middle),

even though the worst-case stress qmax is higher compared
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Fig. 9 Worst-case failure w.r.t. identified load paths of the cantilever example, optimized with 60 (top), 216 (middle) and 6860 (bottom) square

failure patches, density distribution (left) and von Mises stress (right)

to the lowest number of failure patches. This is due to

the higher stress of the undamaged structure qFOD . Beside

the FSF, which is defined as a ratio between undamaged

and worst-case stress, the actual worst-case stress qmax is

considered to be more important. Even though the worst-

case stress evaluated with square failure patches at every

possible location is naturally worst for the lowest number

of failure patches (Jansen et al. 2014; Zhou and Fleury

2016; Ambrozkiewicz and Kriegesmann 2018), the worst-

case stress based on the proposed load path evaluation is

lowest. Thus, from a practical point of view, it is sufficient

to use as many failure patches as needed to cover the design

domain without gap and overlap. Also Zhou and Fleury

(2016) recommended a low number of failure cases for

practical applications. Thus, in the following only failure

patches without gap and overlap are considered.

5.2 Influence of the failure size

Figure 10 depicts final topologies and worst-case failure

for different failure patch sizes. The failure size consi-

dered during optimization is indicated with orange squares.

The actual worst-case load path failure is marked in red.

As already observed by Jansen et al. (2014), the

failure patch size can influence the final topology strongly.

A too small failure patch size can lead to a non-fail-

safe design without redundant load path (see Fig. 10

top). It can generally be said that the distance between

primary and secondary load path is equal to the failure

size.

The lowest worst-case stress qmax and best FSF are

both achieved by a medium failure size of 30. Interestingly,

there is no big difference between failure size 24 and 30.

Considering the biggest failure size 40, the straight struts

between primary and secondary load path are somewhat

intuitive. Considering a low stress or lightweight design,

it becomes more and more favorable to approach a truss

like structure. In truss structures the struts are only loaded

along their longitudinal axis and can thus be better utilized

compared to thick bars transferring bending loads. It is

also observed that the structural nodes are preferably placed

at the corner of failure patches, since these areas are

never completely removed during optimization. By that, the

design is obviously controlled by the size and placement of

the failure patches. Considering nodes as possible failure

might be regarded as very conservative and can lead to

bad worst-case stress, as can be observed for big failure

size (40). However, considering a medium failure size (24

and 30) structural nodes are not always the worst-case

failure.
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Fig. 10 Worst-case failure for different failure path size of the cantilever example, optimized with not overlapping square failure patches of size

20, 24, 30 and 40 (from top to bottom), density distribution (left) and von Mises stress (right)

5.3 Influence of the failure shape

Figure 11 depicts the results for different failure shapes.

Since stress singularities introduced by square failure

patches create high stresses, circular and blurred failure

patches are examined. Not overlapping square and circle

failure shapes of failure size 24 are considered together with

overlapping circles without gap or unremoved elements.

Additional to these three configurations the failure patches

got through a filter step (9) to blur the edges.3 The

3To generate blurred failure patches, a full density field (ρ = 1) is

generated and the elemental densities of the considered sharp-edge

failure patch are set to zero. This density field is then filtered with

the variable filter applying a filter radius of 33% of the failure size.

Intermediate densities (considering a threshold of 0.98) are stored

and multiplied with the projected density field to scale the elemental

stiffness matrix (see Appendix B).

failure considered in the optimization is indicated in orange.

Actual worst-case load path failures, taken into account

for post processing only, are marked in red. Elements

removed by the extended cut procedure are marked with

a red ×.

As can be observed, there is no big difference in all

undamaged stresses qFOD . However, both the worst-case

stress qmax and the FSF differ quit a lot, ranging from

0.687 to 1.101 and 1.87 to 3.02 respectively. Examining the

worst-case failure in the blurred-square optimized design,

reveals the location of the failure node. It is placed right

between four failure patches and never removed completely

during optimization. Such nodes also occur for square or

circle failure patches, but are usually not the worst-case

failure. For overlapping circle failure patches, diagonal

struts are preferable placed between failure patches and

never removed completely during optimization, whereas
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Fig. 11 Results for different failure shapes of the cantilever example

nodes can be placed more freely and are preferably placed

in regions where no overlap occurs.

To our surprise, there is no advantage in using different

failure shapes. A simple square failure shape gives the

best fail-safe properties by using a low number of failure

patches. Reducing the number of stress singularities by

using circular blurred failure shapes did not have any

advantageous effect on the optimization convergence or

results for the failure patch density considered.

6 Numerical results for stress-based fail-safe
optimization of the L-beam

In this section, the proposed stress-based FSO is applied to

the well-known L-beam example (see Fig. 12) often used

as benchmark for stress-based topology optimization. The

design domain is discretized with 300 by 300 square unit

sized elements. Nodes on the top edge are clamped and at

the right tip a unit load is distributed among 16 nodes to

avoid stress concentrations. Material properties are set to

Young’s modulus of E0 = 1 and Poisson’s ratio of ν = 0.3.

The overall volume is constraint to α = 40% and a filter

radius of R = 6 is applied.

Virtual extended design space

R

L

2
/5

 L 1
/5

 L

Area with no failure

Fig. 12 L-beam example
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6.1 Stress-based optimization without failures

Stress optimized designs are usually expected to avoid stress

singularities. The optimization algorithm’s ability to capture

these stress singularities can be controlled by increasing the

aggregation parameter. A too high aggregation parameter

on the other hand causes numerical instabilities and thus

one has to make a trade-off, as discussed in Section 2.

Figure 13 depicts the results for different aggregation

parameter updates. The aggregation parameter γ is updated

to 5/q0, 10/q0, 15/q0 and 20/q0. For this example,

i.e. without considering failure cases, higher aggregation

parameter can be used without running into numerical

instabilities. A stress-based FSO is less robust in terms of

numerical stability and thus a lower update factor has to

be chosen. As can be observed, an aggregation parameter

updated to γ = 10/q0 is sufficient to circumvent the re-

entrant corner and avoids numerical instabilities during the

FSO.

Table 1 lists the actually achieved maximum aggregation

parameters γmax and the corresponding KS approximation

qKS for all designs depicted in Fig. 13. Considering an

aggregation parameter update of γ = 10/q0, the KS

approximation is roughly 50% above the true maximum

stress. For an aggregation parameter update of γ = 20/q0,

the difference is still 20%. Again, since we are aiming

at minimizing the stress, this difference and the actual

approximated value are of minor importance. The focus is

set on a good compromise between a stable optimization

and stress singularity recognition.

Table 1 Stress aggregation parameters obtained during optimization

of the designs in Fig. 13

Update factor

(Fig. 13 from

left to right)

Max. aggreg.

parameter

γmax

KS stress

qKS
Undamaged

true max. stress

qFOD

5 10.6 1.078 0.470

10 46.2 0.316 0.216

15 89.9 0.216 0.167

20 125.6 0.192 0.160

6.2 Influence of the failure size

Figure 14 shows results for different failure sizes. Similar to

the cantilever example (see Fig. 10), small failure sizes are

not able to create redundant load path. On the other hand,

a too big failure size causes one big node in the middle,

being the secondary load path for both the inner (at the

re-entrant corner) and outer (left bottom corner) load path.

Also, the maximum stress of the undamaged structure is

mostly similar for all failure sizes.

All depicted designs exhibit a stress singularity at the

re-entrant corner even though the undamaged structure is

considered in the optimization by empty failure patches.

The reason can be found by investigating the optimization

setup: The worst-case stress qmax , with respect to the

optimized square failure patch, is in the best case

Fig. 13 L-beam designs optimized without failure and with an of aggregation parameter parameter γ is updated to 5/q0, 10/q0, 15/q0 and 20/q0

(from left to right), corresponding von Mises stress plots (bottom)

2124



An empirical study on stress-based fail-safe topology optimization and multiple load path design

(failure size 40) 1.64 times higher than the undamaged

stress qFOD . Additionally, there are other failure patches

creating higher stresses in other locations than at the re-

entrant corner. Remember, the KS-aggregation in (1) is

a weighted average, which is dominated by the worst-

case failure. With that in mind, the re-entrant corner can

obviously not be detected or circumvented as long as there

are other failure cases creating higher stresses than the

one at the re-entrant corner. The authors conducted a multi

objective optimization additionally taking into account the

undamaged stress field (see Appendix E). Applying a high

weighing factor to the undamaged stress field yields a design

in which the re-entrant corner is avoided, while the design

is less redundant and shows worse fail-safe performance.

Both the worst-case stress qmax and the FSF are lowest

for the biggest failure size and mainly driven by the shape

of the notch revealed by removing the structural node at

the re-entrant corner (compare failure size 30 and 40 in

Fig. 14). For the cantilever beam example treating nodes

as possible failure seemed to be too conservative in some

cases. Contrary to that, for the L-beam example, considering

only nodes and struts as possible failure seems to be too

optimistic. The cuts shown in Fig. 15 starting at the re-

entrant corner and running into an adjacent hole are not

identified as possible failure, even though they appear to be

more realistic than a failure of the whole node. Still, the

proposed approach considers more realistic failures that the

patch-based approach.

6.3 Influence of the failure shape

Numerical results for different failure shapes are given in

Fig. 16. The failure size and increment is 30, except for the

overlapping circles. For overlapping circles, a bigger failure

size is chosen such that diagonal failures barely touch each

other. Blurred square and circle failure shapes as well as

the simple circle failure shape show deficiencies in splitting

up the primary load path especially in diagonally oriented

members and at the re-entrant corner. The optimized design

obtained with overlapping blurred circular failures avoids

the stress singularity at the re-entrant corner. However, the

FSF and the worst-case stress qmax = 1.29 are higher

compared to a simple square optimized design (qmax =

1.11 see also Fig. 14). Both, the lowest worst-case stress

qmax and the lowest FSF are obtained for a square shaped

failure patch optimized design. The lowest undamaged

stress qFOD = 0.366 is naturally obtained for the design

circumventing the re-entrant corner.

7 Fail-safe evaluation of alternative multiple
load path designs

In the following section, multiple load path designs are

obtained by using maximum length scale techniques. This

approach requires a fraction of the computational cost

of the previously discussed FSO. Therefore, the fail-safe

Fig. 14 Worst-case failure for different failure path sizes of the L-beam example, optimized with not overlapping square failure patches of size

20, 24, 30 and 40 (from left to right), density distribution (top) and von Mises stress (bottom)
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Fig. 15 Examples of not identified failure cuts of the L-beam example optimized with square failure shape and a failure size of 40, density

distribution (top) and von Mises stress (bottom)

Fig. 16 Results for different failure shapes of the L-beam example
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performance of designs obtained with a maximum length

scale approach are investigated. Parameters are chosen such

that at least two redundant load path are obtained. Different

configurations are tested and the most representative

results are compared against the best performing fail-safe

optimized design.

For all examples depicted below (cantilever and L-beam)

the filter radius R = 6, the global volume fraction α =

0.4 and the stress aggregation is chosen identically to the

above investigated FSO. The projection parameter β is

updated in every iteration, starting at the first iteration with

β0 = 1, which is then multiplied by a constant factor of

approximately 1.007 in order to reach a value of βmax =

16 after 400 iterations. From there on β is kept constant.

Hence, in the first 400 iterations there is a small error in

the gradient. However, this small error is deemed acceptable

and does not penalize the convergence.

Two different test regions, also referred to as element

neighborhood, are applied. First, the classical circular test

region and second, the so called anisotropic filter, which

increases the cross connections in areas of high anisotropic

stresses. The anisotropic filter consists of two elliptic test

region per element, one rotated by 90◦. Both test regions

are described in the original approach by Wu et al. (2018)

and are indicated with a green circle or ellipses in Fig. 17.

Note that the local volume constraint implicitly imposes an

upper bound on the global volume resulting in a not fully

utilized global volume fraction, which was already observed

by Wu et al. (2018). Table 2 summarizes the local volume

parameter and lists the actual global volume fractions α∗

achieved at the end of the optimization.

7.1 Numerical results for the cantilever example

Stress optimized and length scale–controlled designs for

the cantilever example are depicted in Fig. 17. The first

design (a) is obtained with a circular test region and the

remaining designs (b–d) are obtained with the anisotropic

Fig. 17 Multiple load path designs for different maximum length scale and test regions of the cantilever example, density distribution (left) and

von Mises stress (right)
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Table 2 Local and global volume parameter for the length scale

optimization

Filter

radius R

Local

volume

frac. ϕ

Length

scale

smax

Global

volume

frac. α

Achieved

gl. vol. frac.

α∗

Fig. 17

a. 9 0.50 7.3

0.400

0.381

b. 18/6 0.60 5.9 0.367

c. 24/8 0.50 6.5 0.400

d. 18/6 0.50 4.8 0.400

Fig. 18

a. 10 0.45 7.2

0.400

0.370

b. 24/8 0.50 6.3 0.371

c. 27/9 0.50 7.3 0.385

d. 30/10 0.40 6.4 0.335

filter of different local volume fractions and ellipse radii

(see Table 2). The stress scale is truncated at the best worst-

case stress of the fail-safe optimized designs (compare to

Fig. 10).

Comparing the obtained multiple load path designs

(see Fig. 17) to a cantilever design optimized without

failure (see Fig. 8), it is observed that the worst-case

stress and FSF can be improved by the maximum length

scale approach. Despite comparing all multiple load path

designs to the best fail-safe design in Figs. 10 and 11,

the best alternative multiple load path design (d) is still

showing a 3.9 times higher worst-case stress. The maximum

undamaged stress is superior to the ones obtained for the

fail-safe optimized designs, which widens the gap between

qmax and qFOD and results in a very high FSF . The FSF

is approximately factor 10 higher compared to the fail-safe

optimized designs.

The computational cost for deriving the designs in Fig. 17

is approximately 2 h on a single CPU and the best design

in Figs. 10 and 11 need approximately 12 h on 16 CPUs.

It is obvious that stress-based FSO is very computationally

expensive, but there is a big difference in the worst-case

stresses and fail-safe performance.

7.2 Numerical results for the L-beam example

Stress optimized and length scale–controlled designs for the

L-beam example are depicted in Fig. 18. The first design

(a) is obtained with a circular test region and all others

(b–d) are obtained with the anisotropic filter of different

local volume fractions and ellipse radii (see Table 2). The

stress scale is truncated at the best worst-case stress of the

fail-safe optimized designs (compare to Fig. 14).

For the following comparison, designs with redundant

load path from Figs. 14 and 16 are considered only.

Comparing multiple load path designs in Fig. 18 to the ones

from Figs. 14 and 16, it is observed that the worst-case stress

qmax is much lower for the fail-safe optimized designs. On

the other hand, the undamaged stress qFOD is slightly lower

for the length scale optimized designs, which is a results

Fig. 18 Multiple load path designs for different maximum length scale and test regions of the L-beam example, density distribution (top) and von

Mises stress (bottom)

2128



An empirical study on stress-based fail-safe topology optimization and multiple load path design

of avoiding the re-entrant corner. In conclusion, the fail-

safe performance is quite detrimental for the length scale

optimized designs due to the very high worst-case stress and

FSF .

7.3 General remarks

Although the undamaged stress of the length scale optimi-

zed designs is lower, the high worst-case stress based on

the load path evaluation is quite detrimental for a fail-safe

application. This might be due to the following reasons.

Firstly, fail-safeness is obviously not explicitly considered

in the optimization. Secondly, since a stress-based opti-

mization thickens structural members to decrease stresses,

local volume constraints restrict forming big members.

Thus, even if a stress objective is chosen, the optimizer

cannot place material where it might be needed. Thirdly,

in stress-based FSO the secondary load path is usually

thicker than the primary one, since the available height or

width is smaller and thus the moment of inertia is increase

by increasing the thickness to lower the stress (compare

Figs. 11 and 16). This freedom is not given for a length scale

optimization.

Summarized, the computational benefits of using maxi-

mum length scale control causes a significant loss in per-

formance compared to the explicit stress-based FSO. More-

over, the maximum length scale optimization requires much

heuristic parameter tuning which in practice might results

in running countless optimizations until a good parame-

ter setting is found without guaranteeing a good fail-safe

performance.

8 Conclusion

A major drawback of the original failure patch approach

is that it requires an excessive amount of failure cases

to be calculated per iteration. To overcome this burden,

it is proposed to only use as many failure patches as

needed to cover the design domain without gap and

overlap. Conceding that the most critical failure case of

all regularly shaped failure patches may be missed, this is

irrelevant for practical applications. In practice, it is more

meaningful to consider the failure of actual load path. Thus,

a novel evaluation scheme, based on actual load path is

proposed to characterize fail-safe designs. By applying the

proposed evaluation scheme, it could be shown, that it is

sufficient to use only few failure patches in the stress-based

FSO to generate well performing fail-safe designs. At the

same time, considering fewer failure patches reduced the

computational cost significantly.

The proposed load-path-based evaluation scheme is a

general and universal procedure, which can be applied to

all kinds of lattice-like topologies to achieve comparable

results. This is especially important for stress-based opti-

mization, where the underlying failure shape supposedly

influences the outcome of the optimization. Surprisingly,

the investigation of different failure shapes did not show

any significant influence compared to the simple square fail-

ure patch. Different failure patch sizes and shapes of course

lead to slightly different designs, but avoiding stress sin-

gularities by using round or even blurred failure patches

did not improve the convergence behavior nor the fail-safe

properties.

Controlling the maximum length scale also allows

deriving designs with redundant load paths. Although the

undamaged stress is lower, the very high worst-case stress

is quite detrimental for a fail-safe application. Still, the

worst-case stress is lower compared to a simple stress

optimized design. The computational cost of the maximum

length scale approach seems much lower than the explicit

approach. Nevertheless, it involves much more heuristic

parameter tuning than the explicit approach, which in

practice requires to run many optimizations to find a good

parameter setting. In difference to that, the assumptions

required for the explicit approach (failure shape and size)

are more reasonable and easier to justify.

Appendix A: Recapitulation of two-step
variable filter

We implement the classical density filter together with

a projection filter (Xu et al. 2010; Wang et al. 2011).

The density filter, first proposed by Bourdin (2001) and

Bruns and Tortorelli (2001), averages the density of

element e according to the weighted distance in a circular

neighborhood Ne. The neighborhood elements are defined

as:

Ne =
{

j |R ≥
∥

∥xj − xe

∥

∥

}

(8)

where R = 0 is the filter radius, xj are the centroid

coordinates of element j and xe are the centroid coordinates

of element e. The filtered density for each element ρ̃e is then

calculated as follows:

ρ̃e =

∑Ne

j=1w
(

xj

)

vjρj

∑Ne

j=1w
(

xj

)

vj

(9)

where w
(

xj

)

= R −
∥

∥xj − xe

∥

∥ is a conic weighting

function, vj is the volume and ρj is the density of element

j .

To avoid boundary effects, Clausen and Andreassen

(2017) suggested to extend the design space with zero

density elements. To save memory, the denominator in

(9) can simply be set to the maximum of all element
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neighborhoods max
(

∑Ne

j=1w
(

xj

)

vj

)

∀ Ne. By that, the

design space is virtual extended for elements close to the

boundary. This modification is however not applied to

elements near boundary conditions or load introduction.

Due to the averaging effect of the density filter, a second

filter, a so-called projection filter, is applied to obtain black

and white designs. A common approach to project the

filtered densities was first proposed by Xu et al. (2010) and

can be simplified to (Wang et al. 2011):

ρ̄e =
tanh (βη) + tanh (β (ρ̃e − η))

tanh (βη) + tanh (β (1 − η))
(10)

with β the projection parameter, controlling the nonlinear-

ity. With η ∈ [0, 1] the inflection point can be shifted and

is also referred to as threshold. A close to linear projec-

tion is achieved for β = 1 and η = 0.5. For β → ∞

the projection functions becomes the step function. Usually,

the projection parameter is increased through a continuation

scheme to avoid numerical instabilities. Especially in stress-

based topology optimization, choosing a proper projection

parameter and continuation is crucial and can influence the

final outcome strongly. If not noted otherwise, the initial

β0 = 1 and it is increase every 100 iterations by a factor of

2 until βmax = 16 is reached.

Appendix B: Stiffness interpolation and fast
model assembly

The stiffness is interpolated by utilizing the solid isotropic

material with penalization (SIMP) scheme. It interpolates

the Young’s modulus of each element E0 acc. to the

element’s relative projected density as follows:

Ee(ρ) = Emin + (E0 − Emin)ρ̄
p
e (11)

where Ee is the interpolated Young’s modulus of element e.

The penalization factor is p and Emin is a small number to

avoid a singular stiffness matrix. For all later shown results,

we have chosen E0 = 1, Emin = 10−9 and p = 3.

The interpolated Young’s modulus is then used to scale

the elemental stiffness matrix k
0
e :

ke(ρ) = Ee(ρ)k0
e (12)

where k
0
e is the elemental stiffness matrix for unit Young’s

modulus. The scaled elemental stiffness matrix ke is then

used to assemble the global stiffness matrix K. This is done

once per iteration.

Note, K represents the global stiffness matrix of the

undamaged density field. To avoid an entire assembly of

K
(i) for each failure case, only affected entries are modified.

If N is the complete set of all element indices, then all

elements belonging to failure i are represented by P (i) ⊂ N .

The stiffness matrix of failure i becomes

K
(i)(ρ) = K(ρ) − ke

(

E(i)
e (ρ) − Emin

)

if E(i)
e ∈ P (i).

(13)

Still, a fail-safe optimization requires solving of one

state (1) per failure case, which makes this approach

computational expensive. But since these state equations are

independent of each other, assembling and solving can be

parallelized straightforwardly (compare to Fig. 1).

Appendix C: Stress interpolation

Elemental stresses are calculated at the element’s centroid

assuming a linear elastic material model and a plane stress

state as follows:

σ e(ρ) = Ce(ρ)Beue(ρ) (14)

where Ce is the constitutive matrix for isotropic material,

Be is the strain-displacement matrix and ue is the elemental

displacement vector. The von Mises stresses in (1) are then

calculated according to the simple formula:

q̄e =

√

σ 2
e,11 + σ 2

e,22 − σe,11σe,22 + 3σ 2
e,12 (15)

where σe,11, σe,22 and σe,12 are the components of the

stress tensor for a plane stress state. Similar to stiffness

interpolation, elemental stresses are penalized with respect

to elemental densities to avoid the singularity phenomenon

(Le et al. 2009). Herein, we use the RAMP interpolation

scheme (Stolpe and Svanberg 2001) with a penalization

factor of p = −0.5.

qe =
ρ̄e

1 + p (1 − ρ̄e)
q̄e (16)

Appendix D: Sensitivity analysis

Gradient-based optimization algorithms require the deriva-

tives of the objective and constraint function. According to

common practice, the partial derivatives of the KS aggre-

gated von Mises stress (2) with respect to the elemen-

tal densities are determined using the chain rule and the

adjoint method (Bendsoe and Sigmund 2004). Starting by

subtracting the equilibrium constraint (Ku − f = 0) mul-

tiplied by Lagrangian multiplier λ(i) from the objective
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function, namely the KS aggregated von Mises stress,

yields:

qKS(ρ) = q0 +
1

γ
log

⎛

⎝

m
∑

i=1

n
∑

j=1

exp
γ

(

q
(i)
j (ρ)−q0

)

−λT (i)
(

K
(i)(ρ)u(i)(ρ) − f

)

)

(17)

Differentiating this expression with respect to the

projected design variables ρ̄e yields:

∂qKS(ρ)

∂ρ̄e

=

m
∑

i=1

∂qKS

∂qKS (i)

⎛

⎝

n
∑

j=1

∂qKS (i)

∂q
(i)
j

∂q
(i)
j

∂σ
(i)
j

(

∂C
(i)
j (ρ)

∂ρ̄
(i)
j

B
(i)
j u

(i)(ρ)

+C
(i)
j (ρ)B

(i)
j

∂u
(i)(ρ)

∂ρ̄
(i)
j

)

−λT (i)

(

∂K
(i)(ρ)

∂ρ̄
(i)
j

u
(i)(ρ) + K

(i)(ρ)
∂u

(i)(ρ)

∂ρ̄
(i)
j

))

(18)

Following derivatives result from the KS aggregation:

∂qKS (i)(ρ)

∂q
(i)
j (ρ)

=
exp

γ
(

q
(i)
j (ρ)−q0

)

∑n
j=1 exp

γ
(

q
(i)
j (ρ)−q0

) (19)

∂qKS(ρ)

∂qKS (i)(ρ)
=

expγ
(

q(i)(ρ)−qKS
0

)

∑m
i=1 expγ

(

q(i)(ρ)−qKS
0

) ,

with qKS
0 = max

i=1...e

(

qKS(i)
)

(20)

Equation (18) can be rearranged, isolating δu
(i) (ρ))/

δρ̄
(i)
j :

∂qKS(ρ)

∂ρ̄e

=

m
∑

i=1

∂qKS

∂qKS (i)

⎛

⎝

n
∑

j=1

∂qKS (i)

∂q
(i)
j

∂q
(i)
j

∂σ
(i)
j

∂C
(i)
j (ρ)

∂ρ̄
(i)
j

B
(i)
j u

(i)(ρ)

−λT (i) ∂K
(i)(ρ)

∂ρ̄
(i)
j

u
(i)(ρ)

+

⎧

⎨

⎩

n
∑

j=1

∂qKS (i)

∂q
(i)
j

∂q
(i)
j

∂σ
(i)
j

C
(i)
j (ρ)B

(i)
j

−λT (i)
K

(i)(ρ)

⎫

⎬

⎭

∂u
(i)(ρ)

∂ρ̄
(i)
j

⎞

⎠ (21)

Requesting the term inside curly brackets to vanish yields

the adjoint system:

K
(i)(ρ)λ(i) =

n
∑

j=1

∂qKS (i)

∂q
(i)
j

∂q
(i)
j

∂σ
(i)
j

C
(i)
j (ρ)B

(i)
j (22)

Since the above given derivatives are derived with respect

to the projected density ρ̄e the derivative with respect to the

design variables ρe needs to be determined as well.

∂qKS

∂ρk

=
∂qKS

∂ρ̄e

∂ρ̄e

∂ρ̃e

∂ρ̃e

∂ρk

(23)

Appendix E: Multi-objective fail-safe
analysis

Since the L-beam designs obtained by explicitly considering

fail-safeness during optimization do not avoid the stress

singularity at the re-entrant corner, a multi-objective

optimization is carried out. The objective function in (1) is

replaced by:

qMO(ρ) =
1

κ∗
qKS(ρ, γ ) + qFOD

(

ρ, γ FOD
)

(24)

where stresses of the undamaged stress field qFOD
j are

aggregated independent of the fail-safe stresses q
(i)
j i.e. with

a different aggregation parameter γ FOD .

qFOD
(

ρ, γ FOD
)

= qFOD
0 +

1

γ FOD
log

⎛

⎝

n
∑

j=1

exp
γ FOD

(

qFOD
j (ρ)−qFOD

0

)

⎞

⎠ ,

with qFOD
0 = max

j=1,...,n

(

qFOD
j

)

(25)

The aggregation parameter of the undamaged stress field

γ FOD is updated to γ FOD = 10/qFOD
0 . The update is

performed simultaneously to γ . The weighting factor κ∗ =

κqKS/qFOD takes into account a constant factor κ and the

ratio of the fail-safe aggregated stress and the undamaged

stress. This results in a normalization with respect to the

undamaged stress field. The weighting factor is updated in

every iteration to assure a constant ratio.

Results for differentκ are depicted in Fig. 19. It is observed

that the undamaged stress field is dominating the optimiza-

tion for increasing κ , showing a convergence towards an

optimization without failure patches (compare to Fig. 13).

Appendix F: Mesh independency

Figure 20 depicts designs for different mesh resolutions

obtained with and without considering failure patches

during optimization. The model dimensions are set to

180 by 60 and elements sizes are set to 1, 2/3 and 1/2

respectively (from top to bottom). As in Section 5.1 the

aggregation parameter is updated to γ = 8/q0 every 10

iterations. All remaining settings are equal to the ones

chosen in Section 5.1.

The designs obtained without failure do not differ. The

fail-safe optimized designs are almost equal except the

inner structure, i.e. supporting struts and redundant load
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Fig. 19 L-beam designs obtained with a multi-objective optimization for different factors κ of 1, 10, 100, 1000 (from left to right), corresponding

von Mises stress plots (bottom)

Fig. 20 Designs obtained without failure (left) and designs obtained with failure (right) for different mesh resolutions
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path. These differences are considered to be minor and it

is concluded that mesh independency is assured for the

proposed approach.
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