
I.J. Information Technology and Computer Science, 2015, 01, 54-66
Published Online December 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.01.07

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

An Empirical Study on Testing of SOA based

Services

Abhishek Kumar
Trinity institute of technology & research, Bhopal (M.P), India

Email: abhikumar695@gmail.com

Manindra Singh
Samsung Research Institute, Delhi, India

manindrakvfw@gmail.com

Abstract— Service-Oriented Architecture (SOA) removed the

gap between software and business. Today, there is a business

transformation among enterprises and they adopt a service

based information technology (IT) model. So, testing is

necessary for SOA based applications. This paper investigates

different type of approaches and techniques that address the

testing problems of SOA based services. Here we also

investigate the differences between SOA and web services and

traditional testing and SOA testing. Various testing levels are

also discussed in detail. This paper also expresses various

testing perspectives, challenges of SOA testing and review the

many testing approaches and identify the problems that improve

the testability of SOA based services.

Index Terms— SOA, SOA Testing, Testing Perspectives,

Testing Challenges, Web Services

I. INTRODUCTION

The service-oriented architecture supports service-

orientation. Service-Orientation represents a way of

thinking about business and IT. SOA removed the gap

between software and business. Today, there is a business

transformation among enterprises and they adopt a

service based IT model. SOA provides solutions for

integrating diverse systems that support interoperability,

loose coupling and reuse. To full-fill clients need one

service invoke another service/services. It is possible that

there is some evolution among these external services.

This dynamic and adaptive nature of SOA makes major

concerns about its reliability and fault-free

implementation. So, testing is necessary for SOA based

application. However, the SOA testing approach is

completely different from traditional testing approach. In

traditional testing approach test location is centralized

and testing is mostly done by software provider. There is

offline regression testing and static test case profiling.

But, SOA testing approach supports collaborative testing.

Here, verification is done among the service providers,

service brokers and clients in a collaborative way. In

SOA testing, testing location should be remote,

distributed, multi-phase and multi-agent. SOA testing

supports online regression testing where data collected

dynamically. Reliability is ensured by dynamic profiling

and group testing. Service-oriented architecture is

composed of loosely coupled, discoverable, reusable and

interoperable services.

SOA is an approach for designing managing and

deploying systems that represent reusable business

functionality. Web services are used to implement the

SOA in which service interface describes using the web

service description language (WSDL) and extensible

markup language (XML). The message is transmitted

using simple object access protocols (SOAP) over

hypertext transfer protocol (HTTP) [33]. The web service

is based on open standards such as HTTP and XML-

based protocols including SOAP and WSDL, Web

services are hardware, programming language, and

operating system independent [34]. Web services are

formally and fully described by an XML-based WSDL

document. The best way to approach a WSDL document

is to understand that different XML elements take

responsibility for describing different levels of detail. For

example, the <message> element is a detailed listing of

the types that factor into a given message. On the other

hand, the <operation> element simply lists the messages

that factor into a given operation without going into any

detail as to what these messages look like [7].

Fig. 1. Primitive SOA

WSDL documents fully describe a Web service,

including the operations that it supports, the messages

that it exchanges, and the data types that these messages

use. An XML based protocol SOAP is used to exchange

data over HTTP. SOAP is used by web services for

sending messages between service provider and service

consumer. Since all browsers and web servers support

 An Empirical Study on Testing of SOA based Services 55

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

HTTP so applications exchange their SOAP message

regardless of their language and platform. This quality

ensures the interoperability in web services. The service

requester sends a query to universal description,

discovery and integration (UDDI) registry for searching

services and a WSDL file is obtained for the service the

requester wants to utilize [34]. UDDI is a standard

sponsored by Organization for the Advancement of

Structured Information Standards (OASIS). UDDI is a

specification for creating an XML-based registry that lists

information about businesses and the Web services they

offer. UDDI provides businesses a uniform way of listing

their services and discovering services offered by other

organizations [5]. When we use an e-commerce website

to place our order, we can easily understand the concept

of services. During purchasing through online shopping

we have to supply our credit card information. This credit

card information is validated by the outside service

vendor. Once the order has been finalized, the e-

commerce company deliver our order and for this they

have to co-ordinate with the shipping service vendor.

Service-Oriented Architecture (SOA) is an

architectural style that uses services as a building block

and to facilitate enterprise integration and reuse

components through loose coupling. In SOA service is

defined by an interface and it makes service as a platform

independent. Services can be of three types: entity service,

business service and process service. Interfaces should be

cohesive in nature so that they relate to each-other in the

module context. Modular compos ability, modular

decomposability, modular continuity, modular

understandability and modular protection are the

principle of modularity. The interface contains operation

name, input-output parameter. Operation defined in

interface carries out business functions by operating on

business objects. The decomposition of systems into

services also have been provided by already established

concepts like Common Object Request Broker

Architecture (CORBA) and Distributed Component

Object Model (DCOM). SOA adaptation allows the

developer to overcome many distributed challenges such

as:- transaction management, security policies,

application integration etc.

SOA support service-orientation principles and hence

interaction between services much easier. We use SOA

paradigm for organizing and utilizing distributed

capabilities of different domains and the technology that

they use. SOA supports the service discovery concept.

Service consumers send a request to a registry for a

service that they needs. SOA support interoperability that

is achieved by protocol and data format of potential

clients and service's current clients. A system that uses

SOA are self-healing meaning that such type of systems

having the ability to recover from errors without human

intervention during execution. The system that builds

upon SOA is completely different from the systems that

builds upon object-oriented model. We can understand

the difference between this two in the following way:-

Table 1. Difference Between Object-Oriented Development and SOA Development.

S. No. Object-Oriented Technology SOA Development

1.
There is a tight coupling in object-oriented model. If we want to

change in a single point we need to implement in a large portion.

In SOA based development services are independent of each-other.

Services can also be reused many times with different set of processes.

2.
In object - oriented development there is a complicated

structure with various dependencies and hierarchical models.
System that use SOA policies having simple architectural style and

the modeling is also performed at run time.

3.
In object-oriented development static model is

developed at the design time.

In SOA based development there is

an independent dynamic application architecture.

A. Characteristics of Contemporary SOA

Following are the characteristics of contemporary SOA

[41]:

a) SOA increase quality of service.

b) SOA is fundamentally autonomous.

c) SOA supports vendor diversity.

d) SOA fosters intrinsic interoperability.

e) SOA promotes discovery.

f) SOA promotes federation.

g) SOA supports a service-oriented business modeling

paradigm.

h) SOA implements layers of abstraction.

i) SOA promotes loose coupling throughout the

enterprise.

j) SOA promotes organizational agility.

k) SOA emphasizes extensibility.

l) SOA is an evolution.

B. Difference between Primitive SOA and Contemporary

SOA

Table 2. Difference between Primitive SOA and Contemporary SOA

S. No. Primitive SOA Contemporary SOA

1. Primitive SOA is a baseline SOA Represent the extension of the primitive SOA

2. Primitive SOA provides guideline realize by all vendors.
Contemporary SOA focus on securing content of messages,

enhancing XML/SOAP processing etc.

C. SOA and Web Services

Implementation of SOA is done by the web services.

But, there is a huge difference in the concept of web

services and SOA. Following are the differences between

SOA and web services [38] [39] [40]:-

56 An Empirical Study on Testing of SOA based Services

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

Table 3. Difference between SOA and Web service

S. No. SOA Web Services

1.
SOA is the set of architectural concept used for

developing and integrating the services.

Web services can be used as reusable components that

support interoperable machine-to-machine interaction over the network.

2.
SOA separates the service interface (the what)

from its implementation (the how).

Web service promises the tools for the automation of

business-to-business relationship over the internet.

3.
SOA is an architectural style that

has been around for years.
Web services are the preferred way to realize SOA.

4. SOA is a methodology not a standard. The web service is a standard.

5. SOA is a governance plan.
The web service is a conversation i.e.,

Communication between the services.

The rest of the paper is structured as follow. Section II

explain various SOA testing concept in details. Section

III gives overview of some SOA testing existing

approaches. Year wise various SOA testing approaches

are summarized in section IV. Section V gives conclusion

of this paper.

II. SOA TESTING

This section explain various SOA Testing concept like-

SOA testing perspectives, SOA testing levels and SOA

testing challenges. These concepts are described as

follow-

A. SOA Testing Perspectives

SOA imposes different need and challenges to different

stakeholder involves in the testing activities. Stakeholder

interested to make sure the originality of service behavior

during its lifetime. Different testing perspectives are

detailed below:

a) Provider/Developer perspective: Services are built by

service developer and he deliver both the interface and

implementation of services. In order to release a highly

reliable service, service developer need to test the

services. Developer derived the test cases but it may

not reflect real usage scenarios. Service provider tests

the services that meet the service level agreement

(SLA) agreed upon with the customer. Black box

testing technique is used by the service provider

[11,14,17].

b) Service Integrator's Perspective: Here service testing

is done during the design phase in order to explore the

functional and non-functional assumptions. Existing

services are used by the service Integrator to create an

end-user application. The focus of Integrator

perspective is on business need rather than

implementation details which demand several services

invocation [11,14,17].

c) Third-Party/ Certifier Perspective: Service

Integrator employed third parties for the assessment of

fault-proneness of a service. The trusted third-party

helps to reduce the number of stakeholders and

resources involved in the testing activities. The third-

party/ certifier testing perspective is different from the

Service Integrator's perspective [11,14].

d) End-user Perspective: Service-oriented system is

used by end-users. End-users do not know the

technology of service testing. The end-users do not

have any scope for service testing, the only concern is

that the system they use work correctly [14, 17].

B. SOA Testing Levels

We can explain different types of testing in SOA based

application are as follows:-

a) Unit Testing: Unit testing is also known as service-

component-level testing. Developer performed the unit

testing to ensure that component functionality within

the services work correctly. In unit testing a smallest

piece of software is tested. This smaller piece is

isolated from the remainder of the code. Now, the

developer checks the behavior of this piece and to

ensure it behaves exactly as we expected or not. Before

service integration each component must be tested [35].

b) Integration Testing: In this testing phase our focus is

on service interfaces. Integration testing ensures the

interface behavior and sharing information between the

services as specified. This test phase may include

testing external services to organizations [35, 36].

c) System Testing: System testing test the SOA technical

solution and to ensure business requirement and

defined business acceptance criteria that have to be met.

In this testing phase there is a need to understand the

quality and test coverage of the previous test phases

and this ensure the testing of key business scenario

[35].

d) Regression Testing: Regression testing of an SOA

system ensures that no previously working services fail

as a result of modification or repairs. This testing phase

determines the service up to point of repair has not

been affected by the fixes. So, Regression testing is

also known as validation testing [36].

Regression testing is important for web services due to

its rapid developing speed and continuously changing in

user demand. Normally Rapid Application Development

Model (RAD) is used in the development of web

applications that can adjust frequent changes of user

demand and fulfillment of this change make the

regression testing more important. When changes happen

in the web services we have need to retest all the existing

functionality to ensure that the changes are correct any

new bug are not there and all the previous functionality is

working correctly and at the same time we have to

generate new test cases that are needed to test modified

functions.

 An Empirical Study on Testing of SOA based Services 57

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

e) SLA Testing: SLA tests help us to identify the

condition due to which service functionality can't be

performed with a desired level of SLA. Before offering

the service, the service provider would limit the service

violation possibilities that can be violated during

service usage. Service violations occur due to the

combination of different factors, named: inputs,

binding between abstract and concrete services,

network configuration and server load [1].

SLA is a part of contracts between the provider and the

consumer to spell out who is responsible for what. SLA

contains information about each party and explain what

they should do and what they should not to do. There is a

commitment in SLA that ensure quality levels required

by users and service providers so that they can interact

effectively. Web service level agreement (WSLA) and

web service agreement specification are the specifications

that relate to SLA for SOA environment [33].

C. SOA Testing Tools:

Various tools used to test SOA based applications are-

ANTS, J-Blitz, E-Test, SOAP Scope, SOAPUI, SOA

Test, Web Service Tester, Service Integration Testing

Tool (SITT), TAXI.

D. SOA Testing Challenges:

Various challenges to test SOA based services are as

follows [4,11,12,15,17,18,19]:-

a) SOA is distributed in nature and cover different

deployment configurations that makes SOA testing

challenging.

b) SOA is dynamic in nature. It means service that use

SOA is having adaptive in nature such as: services can

add new service, integrate new services and remove

old one services. Thus, this dynamic nature in SOA

makes SOA regression testing more difficult.

c) Testers must have a knowledge of a combination of

white box, black box and gray box testing. So, it is

very difficult for traditional testers to test SOA based

application.

d) There is unavailability of service structure and source

code for services. It makes difficult to test SOA based

application.

e) It is very difficult to determine a service workload

parameter at service level agreement (SLA). This

makes non-functional testing difficult.

f) Web-services may involve outside service providers

who charge their service and make testing costly.

g) In SOA testing, testing environment is similar to the

deployment environment that makes SOA testing

costly.

h) SOA is heterogeneous in nature. In SOA, there are

incompatible interfaces, incompatible technologies,

platform and programming language. So, it requires

various types of test engine.

E. Traditional Testing and SOA Testing

The testing of SOA based applications is completely

different from the testing of traditional approaches. There

are some difference between the traditional testing and

SOA testing which is shown in Table 4. :-

Table. 4 Difference between traditional testing and SOA testing.

S. No. Traditional Testing SOA Testing

1. A Major portion of the test is UI based testing. There is no user interface (UI).

2. Single agent testing, having unified group. Multi agent testing, having different groups.

3. There are static unit testing and integration testing.
Support dynamic testing. Testing may be done

at run time when the service is going to evaluate.

4. Centralized testing Distributed testing.

5.
Testing activities mainly focus on

functional testing and performance testing.

The scope of this testing is much more beyond

the functional testing and performance testing. e.g.- SLA testing.

III. OVERVIEW OF SOA BASED SERVICE TESTING

Ofutt et al. [6] present new approach to test web

services based on data perturbation. Data perturbation is a

process to modify request message, resending the

modified request message and analyze the response

message for correct behavior. Here, data perturbation is

used to test peer-to-peer interaction between service. Two

methods are introduced related to data perturbation: data

value perturbation and interaction perturbation. This

approach is applicable only between two components at a

time. Tsai et al. [30] compare traditional software testing

and web service testing and propose web service group

testing (WSGT) technique to test composite services.

Web service group testing (WSGT) can be used to rank

the web service. The web services may be either unit or

composite web services. We can use WSGT at each level

of web service testing. In WSGT, there is an oracle for

each input generated by a voting service mechanism. This

oracle can generate automatically based on the majority

principle. Bai et al. [22] generate test cases of individual

service automatically based on the WSDL. WSDL carries

the data transmission information and interface operation

information about a service. Here, test data generation

and test operation generation are two perspectives to

generate test cases. Generation of test data is done by

analyzing the message data types. We can analyze

operation dependency and generate test operation. Tsai et

al. [20] propose several testability evolution criteria to

test SOA based software. To evaluate the support to test

SOA software these evaluation criteria serve as a

reference for both service providers and application

builders.

58 An Empirical Study on Testing of SOA based Services

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

Zhang et al. [25] extends UML 2.0 activity diagram to

describe the syntax and behaviors of BPEL. This paper

map BPEL primitive activity to UML 2.0 activity

diagram. Next, mapping done from business process

execution language (BPEL) structure activity to UML 2.0

activity diagram. This paper discusses the feasibility of

testing using web service business process testing. To

generate XML instances from the XML schema XML

based partition testing (XPT) approach [3] has been

discussed and Testing by Automatically Generated XML

Instances (TAXI) tool has been implemented. With the

help of an XML partitioning testing approach we can

divide the input domain into a sub - domain such that,

within each of them there is no change in the program

behavior. Instances can be invalid because it is used to

verify the robustness of the tested applications. XPT

analyzes given XML schema file to simplify its

partitioning. This process in XPT is called preprocessor.

Preprocessor changes the syntax by making some

transformation but preserve the meaning of XML schema

elements. Yuan et al. [16] proposed the model driven

approach for generating the executable test cases from the

given business process. This approach has three stages:

1. Defining a process under test (PUT) based on the

business process model.

2. Transforming the process under test to abstract test

cases and

3. Transforming abstract test case to executable test

cases.

The business process model is composite of activity,

control node, client and web service. Process under test

(PUT) is visualized in activity diagram and abstract test

case (ATC) is visualized in sequence diagram. Khan et al.

[8] proposed a model-based approach that support

regression testing to isolate the changes. It helps to retest

the affected parts. The model describes the interface of

services before and after changes and able to identify the

changes and their impact. Jiang et al. [24] present a

method for test data generation of web services.

Generation of initial test data is done from the WSDL

description information and contract then selection of test

data is done through contract mutation testing. WSDL

defines a semantic information including pre-condition

and post-condition for the interface of a web service.

Precondition expresses the condition under which

interface of a web service functions properly. Post-

condition express execution result when a web service

interface has been executed correctly. Naslavsky et al. [9]

give an approach that creates a traceability relationship

between model elements and test cases during test case

generation which are used to support model based

regression test selection. Test cases are derived from a

models describe expected result and expected behavior.

Here, test cases are introduced as an obsolete test case,

retest able test case and reusable test case. The obsolete

test case is no longer valid. Test cases are deleted. Test

cases that cover modified code come into the category of

retestable test cases and those that has not been modified

come into the category of reusable test cases. Reusable

test cases are not used for regression testing [37].

Test case prioritization strategies using XML message

sequencing is introduced in [2] to reorder regression test

cases for composite web services against the tag based

techniques. If the test case includes an XML message that

contains an XML element we say that XML element is

covered by the test case. To cover various services test

cases having a particular sequence. Chen et al. [27] used

an activity diagram and proposed an approach to generate

executable test cases automatically. Here, they use simple

path coverage adequacy criteria. There are initial node

and final node that represents the start and end of the

activity respectively. This simple path represents a

feasible execution in an activity diagram. Before, the

execution of randomly generated test cases, there is a

need to calculate decision nodes of a data classifier for

predicting the execution path of activity diagram. Inputs

that are unable to identify the path coverage will be

dropped. To generate the test cases from activity diagram,

Boghdady et al. [13] proposed an enhanced XML- based

automated approach. To cover the functionality of the

activity diagram an activity dependency table (ADT) is

created for each XML file. There is a precondition and

postcondition in the activity dependency for carrying the

input, output and guard conditions of the removed nodes

in the form of expression. Activity dependency graph is

generated from activity dependency table (ADT) to show

all the possible test paths. Test cases derived from

behavior instructional models are functional test case and

they have the same level of abstraction as the model

creating them. Full condition coverage criteria used with

state chart or communication diagram. All basic path

coverage criteria used with activity diagram.

Tsai et al. [26] introduced a verification mechanism to

the UDDI server including check-in and checkout of web

service. Check-in means web service pass through

various test before they can be registered in the UDDI.

Checkout process allows a client to test drive web service

before it releases to the client. The test script should be

attached to WS and used by both web service providers

and clients. Test monitor, test master and test agent make

the test infrastructure for the UDDI server to test web

services remotely. Mei et al. [10] proposed a novel testing

approach named preemptive regression testing (PRT).

PRT preempts the execution whenever a late change in

the service under regression test is detected. PRT now

selects test cases from a regression test suite as fixes, run

the fixes and then resumes the suspended execution of the

regression test suite. This process is repeated until there is

no test execution preemption between any two test cases

of the whole test suite occurs. Tsai et al. [31] introduced

an XML based object-oriented testing framework

'Coyeto' to test web services. Here, Coyeto focus on

integration testing. Coyeto having two parts named: test

master and test engine. Test script is generated by test

master and configuring, testing, validating and logging of

this test script is done by the test engine to generate test

result. Method name and input-output parameter is

described in the WSDL document. Test master generates

test scenario by extracting interface information of

WSDL. Test cases are generated in the XML format from

this test scenario which is interpreted by test engine.

 An Empirical Study on Testing of SOA based Services 59

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

LI et al. [32] proposed BPEL4WS unit testing

framework and introduced the challenges of BPEL

process testing. In business process unit testing test cases

are design from internal logic. Here, BPEL interact with

the partner process. Partner process participates two way

interaction with the process by providing services to the

process and require service from the process. BPEL

process composition model. Test architecture, Lifecycle

management and test behavior design are the four parts of

BPEL framework. Kuppuraju et al. [23] propose a

methodology to verify the interoperability of the various

products in an SOA stack. This paper also discussed the

interoperability problems and their solutions. The

interoperability problem arises due to many reasons such

as: - differences in the version of web service standard

and specification, differences in the protocol support and

differences in the error handling mechanism.

Interoperability problem is solvable by many ways such

as: - by identifying service and interface, identifying

integrated part of the SOA stack and by identifying use

case and non-functional requirement. Athira et al.[29]

proposed test case prioritization technique using activity

diagram and identifies the differences between the

original model and modify the model. Based on the

model information activity path is plotted. The test case

that covers these activity path are the most beneficial test

cases. In these activity path affected path is the path that

is affected by the addition or deletion of transition during

the execution of the modified model.

Atkinson et al. [21] introduced semantics of test sheets

and propose a new approach to test service which

combine the expressive power of framework integration

test (FIT) and testing and test control notation. Input test

sheet and result test sheet are the two basic forms of the

test sheet. Input value and result of the system under test

are defined in the input test sheet. The result of the test

execution is described by the test result sheet. Result

sheet contains all the information of input test sheet and

additional information about the system under test. Each

row of the test sheet represents a call to the system

functionality. Operation invocation with different number

of parameters is represented by different raw of the test

sheet. Actual value or return value is displayed by result

test sheet. Loini et al. [28] proposed a framework for

service Integrator to collaborate during service testing by

making a test suite open to the public and share testing

result. When we call a web service we delegate part of

our business to an external service provider doing it for

us. There is no control on the execution part of the

business logic. The role of service Integrator has

identified the potential service, verify that service does

what they are suppose to do, formulate SLA with a

service provider and compare the business need with the

offered service. Service integrators are able to write their

test suite based on providing service specification. These

test suites are open to the community.

IV. SUMMARIZED

Following is the year wise descriptions of various SOA

testing proposed work:

SOA Testing Proposed Works

A. The contributions of year 2002 [31]

Web Service is tested using XML based object-

oriented testing framework Coyeto. Coyeto having two

parts a. Test Master and b. Test Engine. Test master

generates test scripts to test the engine and test engine

configuring, testing, validating and logging test script and

generate test result. WSDL contains a method name and

input-output parameter. Test master generates test

scenario by extracting interface information of WSDL.

The test case is generated from the test scenario in the

XML format which is interpreted by test engine. Test

Engine reads the test script provided by test master and

executes the test at the target web service and send the

test result back to the test master. Here instead of module

testing Coyeto focus on Integration testing [31]. But, as

the importance of regression testing in web services

increases there is more need to focus on it.

B. The contributions of year 2003 [42]

Introduced the slicing approach for web application

regression testing. Slicing method divides a problem into

blocks and we can solve a relevant block with the

concentrated strength. This paper introduces a concept of

in-degree and out-degree. The number of hyperlinks in

one page is called its out-degree. In-degree of a page is

defined as the number of all the hyperlinks which point to

one page. If the in-degree of a page is zero then that page

is considered as isolated page. The pages which is

pointed by hyperlink add 1 to that page. In this paper they

divided the relationship between the related pages in two

ways : direct and indirect dependent. For direct dependent

relationship testing we only need to validate whether

these pages are reachable and effective. For indirect

relationship we need to validate data transfer and share

variable [42]. Here, optimization and prioritization of test

cases for identifying the dependency remains.

C. The contributions of year 2004 [30]

The component can be dynamically replaced during

execution if the component fails in the composite service.

This paper focus on collaborative verification and

validation instead of traditional independent verification

and validation. Comparison between traditional

independent verification and validation and service-

oriented collaborative verification and validation is also

introduced. This paper proposes a WS group testing

technique for testing a composite service and also explain

how blood group testing is different from web service

group testing [30]. There is a need to address the aspect

to identify the faulty participating web services into a

composite web service and verifying group testing by

voting at regression levels also need to address.

D. The contributions of year 2005 [22] [32]

Web service testing is automatically based on WSDL

web service specification language. WSDL contains

information about the service interface, Service operation,

and the data that is to be transmitted. There is multiple

60 An Empirical Study on Testing of SOA based Services

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

operation in a service. We generate a test case for testing

individual operation as well as a sequence of operation.

The generated test cases are encoded in XML called

service test specification. This paper introduces the web

service automation testing technique based on WSDL

specification. This paper mainly focuses on the atomic

service automation testing and for this operation

dependency analysis are used. Here three types of

dependency are identified: - Input dependency, Output

dependency and input/output dependency and these

dependencies are used in test generation. This paper

presents the algorithm of automatic test case generation

for distributed service testing [22].

The authors of this paper himself describe the problem

which is needed to be solved are:

a. Service flow specification analysis and automatic

test case generation for composite services.

b. Semantic service specification analysis to explore

more semantic information for intelligent test case

generations.

BPEL interaction with the partner process. Partner

process may provide service to the process, require

service from the process and thus participate two way

interaction with the process. This paper also introduces

challenges for BPEL process testing. In business process

unit testing internal logic are known and based on the

internal logic test case are designed and these test case

help to test the logic thoroughly. In this paper BPEL4WS

unit test framework is introduced. BPEL framework

having four parts [32] -

a. BPEL process composition model

b. Test Architecture

c. Lifecycle management

d. Test behavior design.

Here, author itself indicates the need to automate test

generation from BPEL source code that aligns with the

proposed test framework.

E. The contributions of year 2006 [12] [20]

A regression testing approach introduces that can be

performed on a UML model. A new test case is generated

when the when the selective retest suit does not cover all

the changes. This paper focus on selective retest

strategies. Selective test case are those that cover code

that has been modified and thus these test cases are used

for regression testing. Selective retest strategies are

efficient if its runtime is less than a retest -all strategies.

If the runtime is equal to the retest-all strategies than it is

said to be safe. This paper also introduces the issue rise in

UML based regression testing. These issues are :-

a) Classifying and identifying changes made for

different version of UML design.

b) Select test case for regression testing to ensure

safety and efficient use of the changes.

c) Determine whether new test can be added.

Instead covering the behavior of the code this paper

cover only UML and interested to identify the changes

that affect UML test cases. In this paper OMDAG (object

method directed acyclic graph) concept is to also

introduce. OMDAG map the dynamic information in a

sequence diagram to a direct acyclic graph. Mapping

associate method in the sequence diagram with their

originating objects. Edge of OMDAG represents

traversing successive method execution. Combining

OMDAG with the class tuples information. Here class

tuples consist of the class name, attribute and methods.

Now OMDAG represent the integrated model that

combines class diagram and sequence diagram. Execution

of test case traverses the path in the OMDAG [12].

There is more need to describe the way to reduce the

test suite complexity. Because if the integrated module

increases than the number of UML view also increases

and it increases the complexity of test suites. This makes

regression testing more important.

This paper proposes service testability evaluation

criteria. Service evaluation criteria serve as a reference

for both service provider and an application builder to

evaluate the test support of SOA software. This paper

introduces the concept of DCP and compare it with

traditional independent verification and validation and

service-oriented collaborative verification and validation.

We need to re-specify the workflow when the

collaboration is done at run time. It makes DCP more

challenging. At DCP actual collaborations are unknown

until the services dynamically established the protocol.

The typical DCP process is divided into four stages-

a) Preparation / Profiling stage- At this stage CPP

which contains a list of protocols can be updated as

a service terms from actual collaboration.

b) Establishing Stage- Participating Service exchange

their CPP (Collaboration protocol profile) and agree

on common protocol CPA (Common protocol

agreement) that all participating services share.

c) Execution Stage- In this phase earlier CPA

participating service will collaborate. Data may be

collected so that CPP can be updated for future

collaboration.

d) Termination Stage- Participant service terminate the

collaboration and update their own CPP based on

data collected.

In DCP dynamic configuration and collaboration are

established at runtime , verification needed to be

performed at run time. Test coverage can be completed

when the actual collaboration is established [20].

Here, authors need to identify fault participating web

service during dynamic composition, dynamic re-

composition and dynamic service collaboration.

F. The contributions of year 2007 [23]

This paper built a methodology to verify the

interoperability of the various products in an SOA stack.

In SOA stack various products are consisted such as: -

Business process management (BPM), Enterprise service

bus (ESB), Service Registry etc. This paper also focus on

interoperability problem and their solution. The

interoperability problem arises due to the various

reasons:-

a) Differences in the version of web service standard

and specification.

b) Differences in the error handling mechanism.

c) Differences in the protocol support.

 An Empirical Study on Testing of SOA based Services 61

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

These interoperability problems are solvable by the

following way:-

a) Identifying integration part of the SOA stack.

b) Identifying use case and non-functional requirement.

c) Identify the service and interface.

This paper little introduce some testing for ensuring

interoperability. For example- Standard compilation test

is executed against the service using the WS-my

compilation tool. The SOA integration test covers all the

positive and negative scenario of identifying business

processes. Integration testing test business exception and

system generated exceptions. In SOA performance test

load and longevity test covered. The message size test has

also executed to check the stability of SOAP message on

SOA stack [23].

There is more explanation needed to cover

interoperability testing. A tool is needed to generate a

report of the interoperability issue.

G. The contributions of year 2008 [43] [44] [45]

Model based regression test selection technique is

based on the design model. This paper proposed a

concept called behavioural slicing to structure the activity

diagram. Use case activity diagram (UCAD) represents

the functional behaviour of the given use case. UCAD is

a requirement specification model that is developed

during the requirement analysis phase. This approach also

generates new test case including modified test case to

validate changed software. This paper proposes a novel

concept called behavioral slicing to provide structure to

the activity diagram. When we consider behavior slicing

each use case is considered into a set of unit of behavior.

Unit of behavior is a tuple consisting of system

processing, system output, optional candidates and user

action. Here each unit of behavior represents a user action

followed by system processing and system output. This

approach identifies the impact on software when there are

changes made to the specification. Based on this impact a

test case to be re-executed to validate the software being

modified. System behavior is modelled through the

UCAD. Each use case / user scenario contains the system

behavior. In activity diagram each node is identified

using a unique node version and with this unique node

version we can easily identify the changes made to the

activity diagram, due to the changes made to the software

requirement. These changes are classified as:-

 Modification to the existing node

 Addition of a new node

 Deletion of a new node

 Shifting(Deletion followed by addition) of an

existing node.

Regression test suit to be selected and re-executed [43].

When we see this approach we found that in this

approach person need to keep track of node version when

creating an activity diagram because each node version

has to be manually typed with the description at the time

the node is created.

This paper presents a new regression testing approach

for web applications that covers changed element and

other potentially affected one. This paper proposes a safe

regression testing technique based on event dependency

graph and introduced slicing based regression testing

technique for web application. Slicing give tester more

focus on simplified contents and improve the working

efficiency. This paper used to event dependency graph

(EDG). First EDG is used to model the original system

and another EDG is used to represent the modified

system. Event based dependence is classified into three

types:-

 Link Dependence: - It is usually the hyperlink. It

holds between two pages if the first request the

second.

 Visible Effect Dependence: - It also exists between

two pages where the requesting page modified the

another page and that another page open with the

modified data.

 Invisible Effect Dependence: - When one page

modified the other without displaying the effect.

If G represents the original web application and G'

represent update web application then we have to identify

the change node and the potentially affected node. Here

potentially affected node are the nodes that are connected

directly or indirectly to the affected nodes. All the

dependence in the graph is taken into consideration to

identify the affected nodes. For each affected node goes

to the test suit T and check if the node is present in the

test cases. It the node is present in the test cases add the

test case to the new test suit T' [44].

There is a need to generate test sequences of modified

and potentially modified components.

Services are designed to function as independent

entities may work perfectly well in isolation but when we

integrate the service into the application might not

function as expected. Services need to be tested for data

translation and information delivery for different

consumers. This paper discusses overall SOA testing

methodology and additional test area specific to SOA.

There is reusability, agility, interoperability and security

based testing before they are consumed by composite

application. In this paper testing is done as a test engineer

basis. This paper introduces some of the test area for

SOA testing:-

a) Service Agility Testing: - This testing is related to

the configuration, Business rules and policies.

b) BPEL Level 1 Testing: - This type of testing ensures

compensating transaction and service unavailability

impact.

c) BPEL Level 2 Testing: - This type of testing area

covered workflow testing and testing event.

d) Security Testing: - Here denial-of-service,

vulnerability, context propagation/ federation are

tested

e) Service Design Testing: - Here interoperability

testing, service-app integration testing, reuse testing

and service data testing has become [45]. Reuse and

required agility at the enterprise level need to be

tested.

H. The contributions of year 2009 [8] [9] [24]

This paper proposes a model based regression testing

approach. A model describing service interfaces before

62 An Empirical Study on Testing of SOA based Services

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

and after the changes are compared in order to analyze

the system evolution and identify which test need to be

rerun and where new one are required. This paper

describes the model which specifies the external behavior

and external data flow of the service. A trace can be

presented by sequence diagram. Sequence diagram

describing the message flow between different actor in

the system. If M is the trace before and M' Is the trace

after the evolution of the system than we derive three

subsets A, B and C such that:-

A= M∩M' are the trace that are preserved.

B= M'/M are completely new trace.

C= M/M' are the changed traces containing the

invocation of old as well as new methods.

Data dependence can be visualized by bipartite

dependence graph over nodes where oval representing

methods and square representing classes.

For selection of test cases from A three subset A1, A2

and A3 are derived, two subsets are derived from C

named C1 and C2 and B contains new functionality so

there is no any subset of B. A1 having no external or

internal dependencies with changed part of the system ,

A2 having an internal data modification model and A3

having changed with the implementation of the method.

C1 has addition/deletion/ modification operation with the

internal data model as well as external modification as in

C1.

For dependencies analysis author used a graph

transformation system. There is a number of

transformation rule in the graph transformation system

where the system state before operation is represented by

left- hand -side and system state after operation is

represented by the right-hand-side [8].

When we take a model based approach to our testing

process be in a higher abstraction level. In model based

testing there is a relationship between test case and model

element. Model based testing test what the code is

supposed to do and thus complementing code based

testing which test what the code does. In model based

testing we can continue with certain testing activity when

the code is unavailable. This paper proposes a fine-

grained traceability relationship between the model

element and test cases that traverse those elements and

locate test cases for retest and used to support model

based regression test selection. This paper use UML class

and sequence diagram and its modelling perspective [9].

This paper present automated test-data generation

method for web services based on a contract based

mutation testing techniques. Test suite generates by this

method which indicate the quality and efficiency of

testing. This paper introduces three sources of test data:-

a) Function Based: - Which are gained from software

requirement.

b) Structure Based: - Which are gained from the

implement.

c) Error Based- This is based on typical and useful

errors during the development process.

In web service contract design-by-contract is a method

to improve software testability. It establishes the contract

between the provider and the user of software entity

during testing. If execution brakes one or more contracts

than it can be viewed as a fault revealing execution and

broken contract can be used to trace the fault.

Typical contract includes precondition, post condition,

class invariants, loop invariants. Precondition expresses

the condition under which interface of web services

functions properly. Post condition expresses the condition

under which web service interface executed correctly.

Contract fault model listed as contract negation,

condition exchange, precondition weakening, post

condition strengthening [24].

I. The contributions of year 2010 [29] [2] [21]

This paper proposes a model based test prioritization

using activity diagram and identifies the difference

between the original model and modified model and

based on this information plot an activity path for each

test case and identifies the most promising path. The test

case that cover this path are the most beneficial test cases.

In activity diagram node represents activity node and link

represent transitions between two activities. Affected path

is the path that is affected by the addition or deletion of

transition during the execution of the modified model on

test T' [29].

Next, we have to perform an experimental study on

larger models and systems for better understanding of

model-based testing prioritization.

This paper proposes new test case prioritization

strategies using XML message sequencing to reorder

regression test cases for composite web service against

the tag based techniques and disclose how the test case

uses the composite service interface specification. The

XML file is parsed to check whether the input is valid or

not. If there is a valid input then write result in the output

file and proceed as par the activity diagram else exist

from the sequence of invocation. Member services are

constantly involved in service composition. Other

services that relate to this member service need to

conduct regression testing to verify the function of the

latter services and also conform interoperability [2].

 There is a need to enhance the propose technique by

integrating other prioritization index such as: - cost,

resource based etc.

This paper proposes a new approach of service testing

which combine the expressive power of framework

integration test (FIT) and testing and test control notation.

This paper introduces a semantics of test sheets and show

some high level feature offered by the test sheet

framework.

Test sheet having two basic forms input test sheet and

result test sheet. Input test sheet defines the input value

and the result that the system under test is expected to

return. Result test sheet on the other hand describe the

result of a test execution . Result test sheet contains all

the information of an input test sheet and the additional

information about the reaction of a system under test to

the stimulus. Each row of a test sheet represent call to the

system's function. In the test sheet input parameter and

output parameter is always separated by two distinct

areas separated by double line called as invocation line.

Different raw in a test sheet represent the invocation of

 An Empirical Study on Testing of SOA based Services 63

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

operation with different number of parameters. The

number of columns in input area is determined by highest

number of parameters of the operation to be tested. In the

output column the given value is not the actual value but

represent the expected result defined by a tester. The

actual value or return value is displayed by the result test

sheet [21].

We need to extend the test sheet to measure timing ,

deviation and other key characteristics of web services.

This measure can be combined with a service registry in

order to create a QoS (Quality of Service) aware service

repository.

J. The contributions of year 2011 [28] [46]

When we call a web service we delegate part of our

business logic to an external provider doing it for us and

we have no control what could happen during the

execution of that part of the business logic. Many testing

approaches have been proposed to address various

aspects related to web service testing.. This paper

proposes a framework for service Integrator to

collaborate during web service testing by making a test

suite open to the public and share testing result. The role

of service Integrator is:-

a) Identifies the potential services

b) Compare the business needs of their system with the

offered service.

c) Verify that the service does what they are suppose to

do.

d) Formulate the service level agreement with the

service provider before starting using the services

function.

This paper assumes that the web service is meant to be

used by service Integrator and they have a minimum

knowledge about the testing. They are able to write their

test suites based on providing specification and these test

suites are open to the community and can be shared

among them. The community member rate the test suites

to identify most useful scenarios used by the each web

service. Test suite management, feedback management

and user interface are the three blocks that make the test

suite server. Test case management performed following

six consecutive steps [28]:-

a) Storing test suites

b) Data extraction

c) Test data generation

d) Test case generation

e) Test case execution

f) Result validation

Further, we need to use this proposed framework on

public services and dataset releases for traces.

This paper do the implementation of the work

presented in its earlier paper [28]. To implement a test

suite server we have used some existing components to

perform different tasks. TestGen4J is a collection of open

source tools that automatically generates unit test cases.

WSDL4J allows manipulation of WSDL documents.

SOAPUI used for service invocation and capturing the

response messages. SOAPUI provide much more

functionality including WS-mocking and load testing. A

simple JSP page handles the user ratings and store the

received rates into a related database and this rating rank

the test suite [46].

K. The contributions of year 2012 [48] [17] [47] [4]

Service -oriented architecture remove the gap between

software and business. This paper reviews SOA testing

challenges and existing solutions for those challenges.

This paper introduces functional testing challenges and a

non-functional testing challenges. On unit testing service

do not have the service interface so the testing team must

have enough skill to produce good test, test object and

required test data. Service unit testing differences in

input-output type with component testing and this makes

more complex to generate test data. Availability,

Performance, Applicability, Maintenance capability and

portability are the non-functional properties of the system.

It is very difficult to determine a service workload

parameter at a service level agreement for non-functional

testing. To overcome the challenges of functional testing

a tool is used for performing a complex action. Use ESB

capabilities for the functional testing system, Other

technologies such as JMS middleware was used. TASSA

framework is used for automatic testing in functional and

non-functional specification of service based application.

Another tool WSOTF presented for the automated testing

[48].

Regression Testing of SOA based applications

conducted during the maintenance phase may present

several challenges. This paper explores a roadmap to

regression testing of SOA based applications. The SOA

based application is a combination of web components,

middle-tier components, server and legacy system. A

modular application software can be classified into three

categories:-

a) Component based software

b) Reuse oriented software

c) SOA-based software

In a component based software development separation

of concerns on wide-ranging functionality available

throughout a given software system. Software engineers

regard components as part of the starting platform for

service-orientation. In web service or in SOA component

is converted by the web service into service.

 In reuse-oriented software reuse of software is

incorporated. This is usually happens when people

working on the project know of design or code which is

similar to that required, modified them as required and

incorporate them into a system. SOA represents an

architectural style that incorporates service orientation.

This paper introduces a testing perspective as service

developer, service provider, service Integrator, third-party

certifier and end user. Different testing level such as unit

testing, integration testing, system testing, regression

testing is introduced shortly. Regression testing in SOA

based application represents selective retesting of

components so that modification does not affect other

components as well as the system as a whole. Unlike unit

testing, Integration testing or system testing which is

performed software Lifecycle, regression testing is

performed during the maintenance phase of SOA based

application [17].

64 An Empirical Study on Testing of SOA based Services

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

This paper done a survey work for regression testing

method for SOA. The changed scenario of

implementation of SOA enable application has been

considered. This paper introduced a comparison between

various regression testing approach named selective

regression testing, code based regression testing, risk

based regression testing, state based regression testing

and model based regression testing [47].

This paper proposes a new automated, distributed,

cross-platform and regression testing architecture for

testing SOA application and their web service

components. The propose frame work is made out of test

engine units capable of conducting regression testing.

Test engine unit co-ordinate, control and manages various

testing units and their processes. Test code generator unit

generating test script and client code necessary for test

execution. Test case generator unit generating test

condition, variables and data sequence and all test

scenarios. A test executor unit applying test case to the

web service. Test monitor unit evaluating the testing

result, database that store valuable testing parameter

throughout the testing process [4].

Non-functional aspects of SOA applications and bring

it in a complete testing solution that can not only test

SOA functional operation but also non-functional

qualities such as- Performance, Security, availability and

scalability are missing.

L. The contributions of year 2013 [49] [50]

Jokhio et al. [49] proposed a goal oriented generation

and mutation based evaluation approach towards service

testing. The goal specification of a web service contains

crucial information in terms of the pre-conditions and

effects of the behaviors of the expected functionalities,

which could be used for testing purpose. The mutation

score is a ratio of faults discovered versus the total

number of the faults injected into the program. Number

of faults injected is returned by calculating the total

number of mutants generated. Each generated mutant

represents a single atomic fault that is injected in the web

service implementation. Number of faults discovered is

determined based on the mutant execution and the

comparison results of the two dimensional array. This is

done by counting the number of rows that have at least

one occurrence of 1 in a particular row, which indicates

that the particular mutant is detected by some test case.

Number of faults undiscovered are calculated by counting

the number of rows in the results array returned by

mutant execution which do not have any occurrence of 1.

This indicates that the particular mutant is not detected by

any test case. It is important to perform further analysis of

why such mutants were not killed by any test case.

Bhuyan et al. [50] proposed regression testing process

and SOA testing perspective models. Regression testing

process is defined with the help of UML use case

diagram and activity diagram. UML use case diagram

helps us to break our requirements into short stories that

makes easy to understand. Use Cases focus on the user of

the system and describe the way the system can be used

by the user. In activity diagram nodes represent various

user actions, conditions and system outputs. The edges

represent transitions from node to node.

Authors also proposed SOA testing perspective models

(STPM). There are three different perspectives of this

model. STPM represents a complex model consisting of

Service Developer Model (SDM), Service Tester Model

(STM) and Service Provider Model (SPM). In the sub-

model SDM Service Developers know the internal

structure of the service. They have a knowledge of

service specification. Service Developers test the services

in terms of service functionality, ensure quality of

services and the interaction with other services. Service

Developers deliver both interface and implementation of

the services and are responsible for detecting bugs in

order to release reliable services. In the sub-model STM

Service Testers execute and manage the test cases.

Service testers first identify the changes in the services.

After identification of changes, the tester needs to

identify the missed coverage items. The tester needs to

select and execute test cases that cover missed coverage

items in the service. The execution order of the test cases

should be in such a way that the test cases that cover

more number of items should be executed first. In the

SPM Service Provider publishes services in UDDI. But

before publishing, it is necessary to test a service so that

the service provider can be able to give guarantees about

the quality of the registered services. The service provider

generates test cases from a model provided by the service

developer. The service provider submits test cases to the

UDDI to confirm service standards. During registration

of a service, the server will use the

provided test cases to test the services. The service

provider also sets various criteria and matching rules for

service consumers and ensure that the authorized service

consumers are able to use this service. There is also a

need to develop test cases for notification mechanism.

This ensures that, when there is any evolution in the

service or any new version of the service is registered in

the infrastructure, an automatic notification is sent to the

service consumers. The changes happening in the UDDI

registry is done by the authenticated users.

unauthenticated users can also access the UDDI registry

for read only purposes.

V. CONCLUSION

This paper presented various testing perspectives and

various testing challenges of SOA based services. This

paper also discussed many existing approaches that

addressed the problems of SOA testing and improve the

testability of SOA based application. Further, we also

discussed SOA and web service differences, traditional

testing and SOA testing differences. This paper also

identified the need to generate automatic test cases with

semantic service specification analysis. Another aspect of

this paper is to identify various testing problems

presented in different testing approaches.

 An Empirical Study on Testing of SOA based Services 65

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

ACKNOWLEDGMENT

We express our greatest gratitude and appreciation to

school of computer engineering, KIIT University,

Bhubaneswar, Orissa, India.

REFERENCES

[1] Gerardo Canfora. "Service-Oriented Architectures Testing:

A Survey", Lecture Notes in Computer Science, 2009.

[2] Askarunisa, A., A. M. Abirami, K. Arockia Jackulin

Punitha, B. Karthik Selvakumar, and R. Arun kumar.

"Sequence-based techniques for black-box test case

prioritization for composite service testing", 2010 IEEE

International Conference on Computational Intelligence

and Computing Research, 2010.

[3] Andrea Polini. "Automatic Test Data Generation for XML

Schema-based Partition Testing", Second International

Workshop on Automation of Software Test (AST 07),

05/2007.

[4] Youssef Bassil. Distributed, cross-platform and regression

testing architecture for service-oriented architecture. In

proceedings ofAdvance in computer science and its

applications(ACSA) (2012), vol. 1.

[5] http://www.sysed.com/tech_assessments/leader/web_serve

rsasp?source=http://www.databasetrainingbysysed.us.

[6] Jeff Offutt and WuzhiXu. Generating Test Cases for Web

Services Using Data Perturbation. In IEEE (2003).

[7] Jeffrey Hasan and Mauricio Duran. Expert Service-

Oriented Architecture in C# 2005. Apress, 2006.

[8] Khan, T. A., and Heckel, R. A Methodology for Model-

Based Regression Testing of Web Service. In proceedings

of Testing: Academic and Industrial Conference-Practice

and Research Techniques, IEEE (2009).

[9] Leila Naslavsky. " A model-based regression test selection

technique", 2009 IEEE International Conference on

Software Maintenance, 09/2009.

[10] Mei, Lijun, KeZhai, Bo Jiang, W. K. Chan, and T. H. Tse.

"Preemptive Regression Test Scheduling Strategies: A

New Testing Approach to Thriving on the Volatile Service

Environments", 2012 IEEE 36th Annual Computer

Software and Applications Conference, 2012.

[11] Massimiliano Di Penta, Marcello Bruno and Gerardo

Canfora. Web service Regression Testing. In RCOST-

Research centre on software technology (2007).

[12] OrestPilskalns, GunayUyan and Anneliese Andrews.

Regression Testing UML Design. In Proceedings of the

22nd IEEE international conference on software

maintenance (2006).

[13] Pakinam N. Boghdady. "An enhanced test case generation

technique based on activity diagrams", The 2011

International Conference on Computer Engineering &

Systems, 11/2011.

[14] Kalamegam, Poonkavithai and Godandapani, Zayaraz. "A

Survey on Testing SOA Built using Web Services",

International Journal of Software Engineering & Its

Applications, 2012.

[15] PrachetBhuyan and Abhishek Kumar. Model Based

Regression Testing Approach of Service-Oriented

Architecture (SOA) Based Application: A Case Study. In

International Journal of Computer Science and Informatics

(2013), vol. 3.

[16] Qiulu Yuan. "A model driven approach toward business

process test case generation", 2008 10th International

Symposium on Web Site Evolution, 10/2008.

[17] Rajanikanta Mohanty, Binod Kumar Pattanayak, Bhagabat

Puthal and Durgaprasad Mohapatra. A Road Map to

Regression Testing of Service-Oriented Architecture(SOA)

Based Applications. In Journal of theoretical and applied

information technology (2012), vol. 36.

[18] http://arxiv.org/ftp/arxiv/papers/1203/1203.5403.pdf.

[19] Yongbo Wang. "Business Semantics Centric Reliability

Testing for Web Services in BPEL", 2010 6th World

Congress on Services, 07/2010.

[20] W.T. Tsai, Jerry Gao, Xiao Wei and Yinong

Chen.Testability of Software in Service-Oriented

Architecture. In Proceedings of the 30th Annual

International Computer Software and Applications

Conference, IEEE (2006).

[21] Atkinson, Colin, Florian Barth, Daniel Brenner, and

Marcus Schumacher. "Testing Web-Services Using Test

Sheets", 2010 Fifth International Conference on Software

Engineering Advances, 2010.

[22] XiaoyingBai and Wenli Dong. WSDL-Based Automatic

Test Case Generation for Web Services Testing. In

Proceedings of the 2005 IEEE International Workshop on

Service-Oriented System Engineering, IEEE (2005).

[23] SujathaKuppuraju,Aravind Kumar, GeethaPresennaKumari,

"Case Study to Verify the Interoperability of a Service

Oriented Architecture Stack", IEEE International

Conference on Services Computing (SCC 2007), IEEE,

2007.

[24] Ying Jiang, Ying-Na Li, Shan-Shan Hou and Lu Zhang.

Test Data Generation for Web Services Based on Contract

Mutation. In Proceedings of Third IEEE International

Conference on Secure Software Integration and Reliability

Improvement, IEEE (2009).

[25] ZhangGuangquan, Rong Mei and Zhang Jun. A Business

Process of Web Services Testing Method Based on UML

2.0 Activity Diagram. InProceedings of Workshop on

Intelligent Information Technology Application, IEEE

(2007).

[26] W.T.Tsai, R.Paul, Z.Cao, L.yu, A.Saimi, B.Xiao,

"Verification of web services using an enhanced UDDI

server", In the Proceedings of The Eighth IEEE

International Workshop on Object-Oriented Real-Time

Dependable System, IEEE,2003.

[27] Chen, Xin, Nan Ye, Peng Jiang, Lei Bu, and Xuandong Li.

"Feedback-Directed Test Case Generation Based on UML

Activity Diagrams", 2011 Fifth International Conference

on Secure Software Integration and Reliability

Improvement - Companion, 2011.

[28] El Ioini, Nabil. "Web Services Open Test Suites", 2011

IEEE World Congress on Services, 2011.

[29] Athira B, Philip Samuel, "Web Services Regression Test

Case Prioritization", In proceedings of International

Conference on Computer Information Systems and

Industrial Management Applications (CISIM), IEEE, 2010.

[30] W. T. Tsai, Y. Chen, R. Paul, N. Liao and H. Huang. Co-

operative and Group Testing in Verification of Dynamic

Composite Web Services. In Proceedings of the 28th

Annual International Computer Software and Applications

Conference IEEE (2004).

[31] W. T. Tsai, Ray Pau, Weiwei Song, Zhibin Cao, Coyote:"

An XML-Based Framework for Web Services Testing", In

the Proceedings of 7th IEEE International Symposium on

High Assurance Systems Engineering (HASE’02), IEEE

2002.

[32] ZHANG, Zhongjie LI, Wei SUN, Zhong Bo JIANG, Xin

ZHANG, "BPEL4WS Unit Testing: Framework and

Implementation", International Conference on Web

Services (ICWS’05), IEEE, 2005.

66 An Empirical Study on Testing of SOA based Services

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 54-66

[33] http://www.scribd.com/doc/ 12863121/Service-Level

Agreements-in –ServiceOriented –Architecture –Environ-

ments.

[34] http://www.altova.com/whitepapers/webservices.pdf.

[35] http://www.soatutorial.net/soa-test-approach-the-purpose-

and-how-to-do-it/.

[36] http://www.thbs.com/pdfs/SOA_Test_Methodology.pdf.

[37] Vincent, Pierre-Luc; Badri, Linda and Badri, Mourad.

"Regression Testing of Object-Oriented Software: Towards

a Hybrid Technique", International Journal of Software

Engineering & Its Applications,2013.

[38] SOA and Web Services, http://www.oracle.com/

technetwork /articles/javase/soa-142870.html.

[39] Difference Between SOA and Web Services,

http://www.differencebetween.com/difference-between-

soa-and-vs-web-services/.

[40] What's the difference between SOA and Web

services,http://searchdatamanagement.techtarget.com/answ

er/Whats-the-difference-between-SOA-and-Web-services.

[41] Thomas Erl. Service-Oriented Architecture Concept

technology and Design. Pearson Education, 2005.

[42] Lei Xu, Baowen Xu, Zhenqiang Chen, Jixiang Jiang,

Huowang Chen," Regression Testing for Web Applications

Based on Slicing", 27th Annual International Computer

Software and Applications Conference (COMPSAC’03)

0730-3157/03, 2003 IEEE.

[43] Ravi Prakash Gorthi, Anjaneyulu Pasala, Kailash KP

Chanduka and Benny Leong, " Specification-based

Approach to Select Regression Test Suite to Validate

Changed Software", 2008 15th Asia-Pacific Software

Engineering Conference, IEEE, 2008.

[44] Abbas Tarhini, Zahi Ismail, Nashat Mansour, "Regression

Testing Web Applications", International Conference on

Advanced Computer Theory and Engineering, IEEE, 2008.

[45] Srikanth Inaganti and Sriram Aravamudan, " Testing a

SOA Application" BP Trends , April 2008.

[46] Nabil El Ioini, Alberto Sillitti, "Open Web Services

Testing",2011 IEEE World Congress on Services.

[47] Prachet Bhuyan, Chandra Prakash Kashyap, Durga Prasad

Mohapatra," A Survey of Regression Testing in SOA,

"International Journal of Computer Applications (0975 –

8887) Volume 44– No19, April 2012".

[48] Ebrahim Shamsoddin-Motlagh," A Survey of Service-

Oriented Architecture Systems Testing", International

Journal of Software Engineering & Applications (IJSEA),

Vol.3, No.6, November 2012.

[49] M. Shaban Jokhio, Gillian Dobbie, J. S., and Hu, T. Web

services testing via goal and mutation. In Proceedings of

IEEE International Conference on Engineering of Complex

Computer Systems (2013), pp. 159-162.

[50] Prachet Bhuyan, Abhishek Kumar and D.P. Mohapatra,

"SOA testing perspective model for regression testing". In

Proceedings of 2013 Nirma University International

Conference on Engineering (NUiCONE).

Authors’ Profiles
Abhishek Kumar passed his M.Tech

from school of computer engineering,

KIIT University, Bhubaneswar, Orissa,

India. He joined Trinity institute of

technology & research, Bhopal (M.P) as

an assistant professor in computer science

department. His area of interest is

software testing, web services and

software designing.

Manindra Singh passed his B.Tech in

CSE. He is RHCE certified Engineer and

also Associate Member of Institute of

Engineers(Kolkata). His research area

include linux system, Apacha server and

Hardoop.

How to cite this paper: Abhishek Kumar, Manindra Singh,"An

Empirical Study on Testing of SOA based Services",

International Journal of Information Technology and Computer

Science(IJITCS), vol.7, no.1, pp.54-66, 2015. DOI:

10.5815/ijitcs.2015.01.07

