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Abstract 

This paper presents an empirical study on the visual 
method for cluster validation based on the Fastmap pro- 
jection. The visual cluster validation method attempts to 
tackle two clustering problems in data mining: ( I )  to ver- 
i f y  partitions of data created by a clustering algorithm and 
( 2 )  to identify genuine clusters from data partitions. They 
are achieved through projecting objects and clusters by 
Fastmap to the 2 0  space and visually examining the re- 
sults by humans. A Monte Carlo evaluation of the visual 
method was conducted. The validation results of the visual 
method were compared with the results of two internal sta- 
tistical cluster validation indices, which shows that the vi- 
sual method is in consistence with the statistical validation 
methods. This indicates that the visual cluster validation 
method is indeed effective and applicable to data mining 
applications. 

1 Introduction 

Clustering data in real world databases is an important 
task in data mining applications. A typical example is cus- 
tomer segmentation. In database marketing, for example, 
a good segmentation scheme is a necessary condition for 
conducting effective marketing campaigns. In telecommu- 
nication service, customer segmentation is critical in identi- 
fying potential churners and deciding proper offers to retain 
them. However, clustering a large real world database is by 
no means a trivial task due to the size and complexity of 
data. 

A notorious problem of clustering is that different clus- 
tering algorithms often impose different clustering struc- 
tures on data [ 14][ 171, even the data may contain no cluster 
at all. A number of cluster validation methods have been de- 
veloped in the past to tackle this problem [4][14][171[19]. 
Most methods are based on the statistical framework that 
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one first adopts a null hypothesis of randomness (i.e., no 
structure in data) and then decides either rejecting or ac- 
cepting it according to the distribution of a chosen statisti- 
cal model for a clustering structure. A few employ graph- 
ical displays to visually verify the validity of a clustering 
[21]. Recent surveys on cluster validation methods can be 
found in [ 10][16]. The problem of using these cluster vali- 
dation methods in data mining is that the computational cost 
is very high when the data sets are large and complex. 

Recent work on clustering in data mining has been fo- 
cused on the development of fast clustering algorithms 
to deal with large data sets. Interesting results include 
CLIQUE [ 11, CLARANS [20], BIRCH [24], DBSCAN [5] 
and the k-means extension algorithms [12]. These pro- 
gresses are extremely important because without fast clus- 
tering algorithms one cannot conduct any thorough cluster 
analysis on large data sets. However, without effective clus- 
ter validation tools the problem of cluster analysis on large 
data sets is only partially solved. Unfortunately, this prob- 
lem has not been well-developed in the data mining com- 
munity. 

In [ 131, we proposed a visual method for cluster valida- 
tion in data mining. The visual method uses the Fastmap al- 
gorithm [7] to project objects and candidate clusters onto a 
two-dimensional (2D) space and allows the user to visually 
examine the clusters created with a clustering algorithm and 
determine the genuine clusters found. The visual method is 
based on the principle that a cluster separate from others 
in the 2 0  space is also separate from others in the original 
high dimensional space (the opposite is not true). We have 
used this method in a real case study to interactively clus- 
ter a mobile service marketing data set and discover a few 
interesting clusters of customers [ 131. In that case study, 
we used the visual method to solve two common clustering 
problems, ( I )  to verify the separations of clusters created 
by a clustering algorithm and (2) to determine the number 
of clusters to be produced. Because the Fastmap algorithm 
is efficient in processing large data sets, the visual method 
in combination with a fast clustering algorithm provides a 
complete solution to the clustering problem in data mining. 
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Projection of high dimensional data onto low dimen- 
sional spaces for clustering is a common approach in cluster 
analysis. Fastmap was primarily designed for this purpose 
[71. Other widely used methods include principal compo- 
nent analysis (PCA), multidimensional scaling (MDS) [23] 
and dimensionality reduction techniques such as K - L  trans- 
form [8]. Ganti et al. [9] has recently integrated Fastmap 
with the BIRCH clustering algorithm [24] to cluster data 
in arbitrary spaces. In their approach, Fastmap is used to 
project data in an arbitrary space onto a projected space in 
which clustering is performed. However, performing clus- 
tering in the projected space cannot guarantee the discov- 
ery of clusters in the original space. We advocate creating 
clusters from the original high dimensional space and using 
Fastmap to validate these clusters in the projected low di- 
mensional space. When a cluster is validated, we are able to 
conclude that it is a cluster in the original high-dimensional 
space. 

In this paper, we present a Monte Carlo evaluation on the 
visual method of cluster validation with Fastmap, proposed 
in [ 131. We constructed a series of artificial data sets with 
controlled cluster structures and dimensionality and applied 
a clustering algorithm to cluster these data sets. For each 
clustering, we used both the visual method and two internal 
statistical indices to validate the clustering results. Then, we 
compared these validation results from the visual method 
and the statistical indices and found there exist a high de- 
gree of agreement between the visual method and the statis- 
tical methods. This indirectly proved that the visual method 
can produce validation results equivalent to those of statis- 
tical methods. Because the visual method is efficient in val- 
idating clusters from large data sets, it is suitable for data 
mining applications. 

This paper is organized as follows: In Section 2, we 
briefly review the visual method of cluster validation with 
Fastmap. In Section 3, we present the two statistics used to 
define the internal indices for cluster validation. The syn- 
thetic data generation and validation results of the visual 
method and statistical methods on the synthetic data sets 
are discussed in Section 4. Some concluding remarks are 
given in Section 5. 

. 2 Visual Cluster Validation 

2.1 Cluster Validation 

Cluster validation refers to the procedures that are used 
to evaluate clusters generated from a data set by a cluster- 
ing algorithm [ 141. Cluster validation is required due to the 
facts that no clustering algorithm can guarantee the discov- 
ery of genuine clusters from real data sets and that different 
clustering algorithms often impose different cluster struc- 
tures on a data set even if there is no cluster structure present 

in it [IO] [16]. 

following problems: 
Cluster validation is needed in data mining to solve the 

1. To measure a partition of a real data set generated by a 
clustering algorithm. 

2. To identify the genuine clusters from the partition. 

3. To interpret the clusters. 

The last problem can be solved by computing the sum- 
mary statistics of each cluster and using the application do- 
main knowledge to interpret the statistics. In this paper, we 
are interested in the first two problems. 

In statistics, cluster validation is treated as a hypothesis 
test problem [IO] [ 141 [ 161. A null hypothesis of “no clus- 
ter structure in the data set” is first given on the data set 
in question. Then, the data set is clustered with a cluster- 
ing algorithm. After that, a statistic T is calculated from 
the clustering result and tested against the distribution of T .  
The null hypothesis is rejected if the probability of the value 
of T calculated from the clustering result is low at certain 
significance level. That implies the data set indeed contains 
clusters. Details of the hypothesis test procedures are given 
in [ 141. 

A large number of statistical indices for cluster valida- 
tion were proposed [ 171. Two indices will be discussed in 
Section 3 .  To use an index to validate clusters, a baseline 
distribution of it has to be computed from a sufficient num- 
ber of randomly generated data sets in the same problem do- 
main. Since the computational cost is extremely very high 
on large data sets, these statistical validation methods can 
hardly be used in data mining. 

2.2 Fastmap Algorithm 

Let 0 be a set of N objects in an n-dimensional space 
and d, a dissimilarly measure between objects in 0 in the 
n-dimensional space. Assume d, is a metric, having the 
following properties: 

1 .  d , ( O Z , O i )  = 0, 

2. d , ( O i ,  O j )  = d ( O j ,  Oi), 

where oh& and oj are objects of 0. 
The Fastmap projection of the N objects onto a lc- 

dimensional space (k < n) uses the following formula to 
calculate the coordinate z k , i  of object oi on the lcth axis of 
the k-dimensional space. 
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where objects 0, and ob are two pivot objects from c? and 
dn-k+l  (ot ,  0 3 ) 2  is calculated as 

dn-k(0z,oj)2 = d n ( o ~ , o j ) ~  -dk(O~,oj)~ (2) 

where dn-k(o,,03) is the distance in the (n - k)- 
dimensional space, dn(o,, o j )  the distance in the n- 
dimensional space and 

(3) 2 dk (02 , 03 I2 = ( Z k , z  - Z k , j )  
k 

is the square distance in the k-dimensional space. Proofs of 
these formulas are given in [7]. 

Objects 0, and Ob are referred to as pivot objects. The 
line passing the pivot objects determines a projection axis. 
Essentially, there are k pairs of pivot objects required. The 
selection of the pivot objects can be arbitrary provided that 
the projection lines are not parallel in the original space. 

For a given k, the Fastmap projection is not 
optimal because there is no attempt to minimizing zo,,o,EO dn-k (oz ,  o ~ ) ~ ,  as in multidimensional scaling. 
However, the Fastmap algorithm is fast (O(lcN)) so it  is 
suitable for data mining applications [7]. 

2.3 Cluster Validation with Fastmap 

Faloutsos and Lin [7] has shown that the Fastmap pro- 
jection has a property to reveal clusters of data existing in 
the original (sometimes unknown) high dimensional space. 
This property can be used for data clustering [7] [9] and 
cluster validation [13]. For clustering, we use Fastmap to 
project objects into a k-dimensional space and then apply a 
clustering algorithm to cluster data in the low dimensional 
space [9]. This method is useful wken the dimensions of the 
original space are unknown. However, the clusters found 
in the projected space cannot be guaranteed clusters in the 
original space. 

For cluster validation, we apply a clustering algorithm 
to cluster data in the original space and use the Fastmap 
algorithm to project clusters into a 2D space and visualize 
them. If a cluster is observed to be separated from other 
objects on the 2D plots, it is also separated from other ob- 
jects in the original space. This claim is justified in (2). Let 
T be the minimal distance between an object o in the clus- 
ter and an object o’ outside the cluster. Assume o and o’ 
are identifiable on the 2D plot if d;(o, 0’) 2 T .  The two 
objects are also identifiable in the original space because 
d;(o, 0’) 2 CT where C 2 1. 

Based on the above principle, we can use the Fastmap 
display to visually validate clusters generated from high di- 
mensional data using a fast clustering algorithm. In data 
mining, clustering and cluster validation can be conducted 
interactively. Given a real large data set, we first apply a 

clustering algorithm to partition it into k clusters. Then, 
we use the Fastmap algorithm to project the clusters into a 
2D space and visualize objects in different clusters in dif- 
ferent colors and/or symbols. In this way, we can visually 
identify some clusters which are separate from other ob- 
jects. According to the above principle, these clusters are 
also separate from other objects in the original high dimen- 
sional space. In analysis, we can extract these clusters from 
the data set. 

Figure 1 shows a real example of the Fastmap projection 
of two clusters generated from a telecommunication data 
set. The symbols “plus” and “triangle” represent two clus- 
ters respectively. We see that the objects shown in the sym- 
bol “plus” form a compact cluster, which represents a group 
of customers who churned from the service provider shortly 
after joining it  [ 131. 

I x -  .. .: ”1. . . . * f  : . + * . a -  - . I: . 1 . . +.* *I .. . . .  f f  

I I 
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Figure 1. Fastmap projection of two clusters 
in a real data set. 

In [ 131, we described an interactive approach to cluster- 
ing and cluster validation with Fastmap for data mining. We 
use a top-down approach to interactively building cluster 
trees from data. Starting with the whole data set that is con- 
sidered as a cluster on its own right, we stepwise decompose 
the data and grow a tree of clusters. In the tree, a node con- 
taining children is a composite cluster while all leaves are 
atomic clusters. 

In this interactive approach, we have to make two deci- 
sions at each node to proceed the process. That is, to decide 
whether a node being considered is a composite or atomic 
cluster and to determine the number of clusters to be created 
from it if the node is a composite cluster. With synthetic 
data, since we know the details of clusters, we will have 
no difficulty to make these decisions. However, when we 
deal with real data, we usually have no knowledge about the 
structure of clusters. The Fastmap algorithm and visualiza- 
tion help us to obtain such knowledge and make decisions. 
Through Fastmap and visualization, we can make decisions 
based on what we see. In clustering real world data, this 
kind of human involvement has a great advantage because 
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we can use our domain knowledge to accept or reject the 
clusters generated by the clustering algorithm. 

3 Statistical Cluster Validation 

3.1 Poisson Model 

A null model specifies the type of random data sets that 
are generated to calculate the baseline distribution of the 
statistic T used in cluster validation. The Poisson model is 
one of null models widely used [lo]. The Poisson model 
assumes that the objects are random points which are uni- 
formly distributed in some region A of the n-dimensional 
space. The Poisson model is used to validate the clustering 
results of the data sets which can be represented in an N-by- 
n matrix. A uniform distribution random number generator 
can be used to generate the random data sets. 

3.2 Hypothesis Test 

Let T be a statistic and HO a null hypothesis stating that 
no cluster structure exists in data set X. Let Prob(BIH0) 
be the baseline distribution B under Ho. B could be either 
T 2 t ,  or T 5 t,, where t ,  is a fixed number called a 
threshold at significance level a and 

P rob(T  2 t,) = a. 

Suppose that t ,  is the value of T calculated from a clus- 
tering result of data set X. If t ,  2 t,, then we reject the 
hypothesis that states X contains no cluster structure. This 
is because the probability that HO is true is low (a).  

There are many criterion measures to reflect the 
goodness-of-fit between a data set and its clustering. Sev- 
eral reviews of these criterion measures can be found in 
[2][17]. In our study, we are interested in determining good 
partitions of data sets produced by a clustering algorithm 
and identifying genuine clusters from the partitions. There- 
fore, we focus on two criterion measures for validating the 
partition of a data set and a cluster. 

3.3 C-index for Validating Partitions 

In [ 171, it has been shown that C-index is an effective cri- 
terion measure for validating the partition of a data set. Let 
D be the sum of all within-cluster dissimilarities, D m i n  and 
D,,, be the minimum and maximum sums of the within- 
cluster dissimilarities in the baseline distribution. The C- 
index is defined by 

(4) 

The smaller C, the better the clustering. Therefore we can 
use the C-index to validate the partition of a data set. 

D - D m i n  

Dmax - D m i n .  
c =  

3.4 U-statistic for Validating Clusters 

The statistic U was used to identify genuine clusters. The 
idea is to compare the dissimilarities between the objects in 
a cluster W and the objects outside the cluster K-W.  More 
precisely, the statistic U is defined as follows: 

U =  c U i j k l  (5) 
( i , j ) € W  ( k , l ) € X - W  

where 

If a cluster is well-separated from other objects or clus- 
ters, the value of the statistic U should be small. Therefore, 
we can use the U-statistic to validate a cluster. 

4 A Monte Carlo Evaluation 

It is a common approach to using synthetic data sets with 
known cluster structures to evaluate clustering algorithms 
and cluster validation methods [ 171 [ 1 81 [ 191. We adopted 
this approach to analytically evaluate the visual cluster val- 
idation method. Our purpose was to investigate whether the 
visual method can produce a result which would be in con- 
sistence with the result of a statistical validation method. If 
the two methods are consistent, then we can conformably 
use the visual method to validate clusters in data mining 
without the need to calculate the statistic baseline. This sec- 
tion presents our evaluation results. 

4.1 Data Generation 

Two types of synthetic data sets were generated. The 
data sets of the first type contained well-formed clusters dis- 
tributed in the specified region in an n-dimensional space. 
The clusters were generated by a multidimensional normal 
distribution random number generator. 

Table 1 lists the control parameters used to generate 
these data sets. The first three parameters were randomly 
generated for each data set. However, we restricted the 
number of objects in each cluster between 0.8 x N / K  5 
Nk 5 1.2 x N / K .  We specified N = 100 for all data 
sets. We tested the number of dimensions n on the range 
between 3 and 5, and the number of clusters K on the range 
between 3 and 5. We generated 5 different configurations 
of data sets. For each configuration, 20 data sets were gen- 
erated. Totally, we generated 100 synthetic data sets con- 
taining randomly distributed clusters within a region of unit 
hyper-boxes. 
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Table 1. Control parameters 

1 1  U k  I Mean vector of a cluster 
No. I Parameter I Definition 

4 
5 
6 

2 1  C k  I Covariance of a cluster 
3 I Nk I Number of obiects in the kth cluster 

N 
n Number of dimensions 
K 

Number of objects in a data set 

Number of clusters in a data set 

In each data set, we randomly generated K cluster cen- 
ters. The distances between cluster centers were set be- 
tween l .5 and 3. Then we computed the minimum distances 
among cluster centers. Using these minimum distances, we 
generated the covariance CI ,  for the kth cluster. Nk ob- 
jects were generated by using the multi-normal distribution 
generator with the cluster center as the mean and CI ,  as the 
covariance. Finally, we re-scaled all the data points to the 
range between [ - I ,  1 J in each dimension. 

The data sets of the second type contained randomly gen- 
erated objects which were uniformly distributed in the same 
region of unit hyper-boxes. For each specific n, we gener- 
ated 100 data sets to calculate the baseline distribution. To- 
tally, 500 random data sets were generated using a uniform 
distribution random generator. Each data set contained 100 
objects. 

4.2 Experiment 

The visual cluster validation method was designed to val- 
idate partitions generated from a data set by a clustering al- 
gorithm and to identify genuine clusters from a partition. In 
this experiment, we used the k-means algorithm to gener- 
ate a partition from a synthetic data set because all the data 
sets were numeric. In dealing with real data sets, we use the 
k-prototypes algorithm that can process both numeric and 
categorical data [ 121. 

To visually validate a partition, we used the Fastmap al- 
gorithm to project the clusters into a 2D space and displayed 
the clusters in different colors and symbols. If we saw well- 
separated clusters on the display, we considered the parti- 
tion was valid. If we saw any overlapping between clusters, 
we considered the partition was not valid. Figure 2 shows 
two partitions with five clusters. We considered Figure (a) 
was valid but (b) was not. There were two problems in (b). 
The clusters shown in boxes and crosses were overlapping 
and the k-means algorithm failed to separate two clusters 
shown in stars. 

For each partition, we calculated its C-index value us- 
ing (4). Since we randomly generated 20  synthetic data sets 
for each configuration, we conducted this validation pro- 
cess twenty times on the data sets in the same configuration. 

2 -  

I 5  - 
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Figure 2. (a) Valid partition. (b) Invalid parti- 
tion. 

We counted the numbers of valid and invalid partitions gen- 
erated from the 20 data sets and calcuiated the minimum, 
mean and maximum C-index values for the valid and in- 
valid partitions. The result is summarized in Table 2 ,  which 
presents the analytical results of five different configura- 
tions of data sets. One observation from the table was that 
the visual validity of a partition is in correspondence to a 
smaller C-index value, which implies the partition was sig- 
nificant. This result indicated that the two validation meth- 
ods were in consistence to each other. 

Another observation from Table 2 was that the high per- 
centage of valid partitions indicated that it was easier to 
generate and validate the valid partitions by the k-means 
algorithm and the visual validation method from the data 
sets in low dimensions with less clusters than from those in 
high dimensions with more clusters. The reason could be 
that given a fixed number of objects in data sets, the higher 
the dimensions and the more the clusters, the sparser the 
distribution of the objects in space. 

We noticed that most C-index values are negative, which 
means the cluster structures of the partitions are significant, 
in comparison with the baseline distribution because the 
synthetic data sets were generated with some well formed 
clusters. This implies that all these invalid partitions con- 
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Figure 3. Relations between the number of 
identifiable genuine clusters and the average 
of C-index values. (a) 3D, (b) 4D, (c) 5D. 

o s  5 2 2 5  
- 0 s  

-a 5 

Figure 4. The partition of the data set in Fig- 
ure 2(b) after removing two identified genuine 
clusters and re-clustering. 

tain some genuine clusters. From the displays, We could 
identify the genuine clusters from the invalid partitions. For 
example, from Figure 2(b) we could identify two genuine 
clusters, one in solid boxes and one in pluses. To sum- 
marize the validation results of the invalid partitions, we 
could reveal the relations, as shown in Figure 3, between 
the number of genuine clusters identifiable from invalid par- 
titions and the average C-index values calculated from the 
partitions. One can observe that the average C-index value 
decreases as the number of identifiable genuine clusters in- 
creases. This indicates that the more genuine clusters are 
recognized in a partition, the more significant the partition 
is. 

To statistically validate an individual cluster shown in a 
partition, we calculated the U-statistic value of the cluster 
using (5) and compared the value with the baseline distri- 
bution. We found that the more identifiable a cluster is on 
the display, the more significant the U-statistic is. For ex- 
ample, the five clusters in Figure 2(a) are very identifiable. 
Table 3 shows their U-statistic values compared with the 
baseline distribution. These values are very low. However, 
the clusters in Figure 2(b) are not well-separated, some of 
their U-statistic values (clusters in crosses, boxes and stars) 
are quite large compared with the baseline distribution (cf. 
Table 4). Therefore we could not statistically accept these 
clusters as genuine clusters. On the other hand, we see 
from Figure 2(b) that clusters in pluses and solid boxes are 
quite well-separated from the other clusters. Correspond- 
ingly, their U-statistic values (33 and 9) are also small, SO 

we could accept them as genuine clusters. This indicates 
that genuine clusters can be identified from the 2D display. 

After genuine clusters were identified from a data set, we 
removed them from the data set and used the k-means algo- 
rithm to further cluster the rest of the data set. For example, 
after removing clusters “1” (pluses) and “5” (solid boxes) 
from the data set in Figure 2(b), we used k-means algorithm 
to cluster data set (the remaining objects in clusters “2” 
(crosses), “3” (stars) and “4” (boxes)) and projected them 
into a 2D space again by Fastmap. The display is shown in 
Figure 4. From the figure we can see that this partition is vi- 
sually valid. The C-index value for this partition is -2.5078 
and also significant. The U-statistic values for these clusters 
are given in Table 5, which are also very small and signifi- 
cant. This shows that, by combining the k-means algorithm 
and visual cluster validation method, genuine clusters can 
be identified from multiple levels of clustering started from 
the same data set. 

5 Concluding Remarks 

In this paper, we have presented a preliminary evaluation 
on the visual method of cluster validation using Fastmap 
which we proposed in 1131. We have already shown in 1133 
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that the visual method was effective in identifying interest- 
ing clusters of customers from a telecommunication market- 
ing data set. The contribution of the Monte Carlo evaluation 
in this paper was to show that the results of visual validation 
were in consistence with the results of statistic validation. 

The visual cluster validation method has a few advan- 
tages over statistical methods. First of all, i t  is fast in pro- 
cessing large data sets, thus suitable for data mining ap- 
plications. The requirement for baseline construction pro- 
hibits the statistical methods from being used in data min- 
ing. Secondly, it is easy to comprehend and to be used by 
non-experts. Thirdly, it tackles three validation problems in 
one method, namely, (1) the number of clusters in a data set, 
(2) evaluation of good data partitions and (3) identification 
of individual clusters. This method is especially useful in 
solving the first and third problems. Finally, in combination 
with a fast clustering algorithm, it offers a flexible way to 
identify genuine clusters in multiple clustering steps. In this 
approach, the user is involved in making decisions, which 
is critical in data mining tasks. A real case study on using 
this multiple step clustering method and visual validation of 
clusters to identify interesting groups of telecommunication 
customers was described in [ 131. 

Fastmap algorithm [7] is efficient in projecting high di- 
mensional data into low dimensional spaces. However, un- 
like the multidimensional scaling methods [23], the projec- 
tion is not optimized. An interesting problem remains on 
how to select the projection lines (the pairs of pivot objects) 
which can best reveal the cluster structures in data. Our next 
objective is to investigate this problem. We believe the solu- 
tion will significantly improve the visual cluster validation 
method for data mining. We will also evaluate the visual 
method on some benchmark data sets available on the Inter- 
net such as http://www.ncc.up.pt/liacc/ML/statlog/. 
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Table 3. U-statistic values ( U )  for a valid par- 
tition shown as Figure 2(a), where M is the 
number of objects. 

Baseline Distribution 
minimum maximum mean 

173890 252540 21 1150 
25273 42379 54265 

725700 889710 807870 
74819 118600 95471 
144430 2 10920 17 1 740 

- 
M 

23 
19 
17 
19 
22 

- 

Table 4. U-statistic values ( U )  for a valid par- 
tition shown as Figure 2(b), where M is the 
number of objects. 

Table 5. U-statistic values ( U )  for the three 
remaining clusters shown in Figure 4, where 
M is the number of objects. 
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