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Abstract. We have compiled petrological and geochemical data from 71 ophiolite suites and 
greenstone belts, which range in age from 15 to 3760 Ma. We have selected those rocks whose 
compositions indicate that they are either normal mid-ocean ridge basalts (MORBs) or hotspot-type 
MORBs. Then we used the data base to calculate the most primitive liquidus temperature for each 
rock suite. The results show that the liquidus temperature of the Phanerozoic ophiolites ranges 
from a low of 1212øC to a high of 1417øC. Using these data and two exponential curves 
bracketing the maximum and minimum temperatures versus time, we infer that the Phanerozoic 
suites had a mean liquidus temperature of 1272+7øC and a mean temperature range of 1218 ø to 
1425øC. The liquidus temperatures of Archean MORBlike greenstones range from 1305 ø to 
1576øC. Using these data and two exponential curves bracketing the maximum and minimum 
temperatures versus time, we infer that Archean melts at 2.8 Ga had a mean liquidus temperature of 
1399+13øC and a temperature range from 1301 ø to 1533øC. Using two different methods, we 
show that the change in the mean liquidus temperature since the late Archean is from 96+13øC 
(from temperature ranges) to 127+20øC (from temperature means). When we convert these 
liquidus temperatures to potential temperature of the mantle, we find that the change in the mean 
upper mantle potential temperature since the late Archean is from 137+8øC (from temperature 
ranges) to 187+42øC (from temperature means). This change is less than that which was 
previously thought to have occurred. We compared the liquidus temperatures calculated from our 
data set with an independent data set from the modem day Pacific plate. The resulting histograms 
have the same shape and the same temperature range, showing that our method for calculating 
mantle temperatures from MORBlike rocks in ophiolite suites is valid. When our calculated 
liquidus temperatures for all time intervals are plotted in histograms, the resulting distributions are 
not bimodal, but skewed unimodal. That is, the distributions show a high-T tail which results 
from the presence of hotspot magmas in the data set. The Archean temperature distribution is also 
skewed unimodal, and the high-temperature Archean rocks, such as komatiites, plot in the hotspot 
area of the distribution. This strongly supports the contention that komatiites do not represent 
"normal" Archean mantle but rather were probably erupted by hotspots. Our data suggest that the 
relative proportion of hotspot magmas in oceanic lithosphere has remained nearly constant over 
geologic time. 

Introduction 

The thermal history of the Earth has been a subject of interest 

and speculation since the mid-19th century. It is now 

generally accepted that the Earth has cooled slowly since its 

formation and that the heat generated in the interior of the 

Earth is the result of the radioactive decay of isotopes of K, U, 

and Th [Wasserburg et al., 1964]. However, the rate of cooling 

and the secular changes in the Earth related to that cooling are 
still debated. 

Five processes control the flow of heat from the interior of 

the Earth: (1) radioactive heat production, (2) transport of heat 

across the core-mantle boundary, (3) heat transport by 
convection in the mantle, (4) crustal formation, and (5) the 

Copyright 1994 by the American Geophysical Union. 

Paper number 94JB00112. 
0148-0227/94/94JB-00112505.00 

conductive cooling of the lithosphere. The first two processes 

add heat to the mantle, while the last two remove it. Any 

attempt to model the secular change of upper mantle 

temperature over the history of the Earth must incorporate the 

effects of all these processes. 

Our understanding of the net effect of these processes varies 

considerably. Estimates of radioactive isotope concentrations 

in the mantle give relatively precise predictions of internal 

heating [Wasserburg et al., 1964], but estimates of the net 

cooling rate have a considerable range. Even with 

supercomputers, heat transport by convection is difficult to 
model, hence most models of mantle convection must 

incorporate simplifications and assumptions whose aggregate 

effects are difficult to fully understand. As a result, different 

authors have obtained widely different estimates of the 

potential temperature of the upper mantle in the Archean. 

Based upon simple convection models and geological 

observations, Jarvis and Campbell [1983] argued that the 

average Archean mantle was no more than 100øC hotter than at 
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present. More recently, based upon a model of mantle plumes 

and plume conduits, Campbell and Griffiths [1992] argue that 

the average Archean mantle was probably less than 50øC 

hotter than the present mantle. On the other hand, using 

simple convection models and geological observations, Sleep 

and Windley [1982] and McKenzie [1984] obtained much 

higher values for the average temperature of the Archean 

mantle, 200 ø to 300øC hotter than at present. Nisbet and 

Fowler [1983] cite the abundant production of komatiites in 

the Archean as requiring a much hotter mantle, at least 300øC 

hotter than the present mantle. 

Komatiites are extrusive ultramafic rocks which were erupted 

at temperatures in excess of 1400ø-1500øC [Arndt and Nisbet, 
1982]. There is a secular decrease in the abundance of 

komatiites over time, and they have occurred only rarely in the 

Phanerozoic. An implicit assumption in many discussions of 

the origin of komatiitic melts has been that they represent the 

"average" mantle regime in the Archean, in other words, that 

they represent the dominant primitive magmatic composition 

in the Archean. However, prior to this work, no one has 

quantitatively evaluated the abundance of komatiitic primitive 

melts. As we discuss further on, there is the possibility that 

volcanic suites containing komatiites may have been 

preferentially preserved. Furthermore, because petrologists 

are very eager to study komatiitic suites, there may be a 

sampling bias in the petrologic studies. 

In fact, komatiites in both the Archean and the Phanerozoic 

probably represent the upper end of a range of temperatures at 

which mantle melts are erupted. In the Phanerozoic, the most 

abundant mantle-derived melts erupt at spreading ridges. These 

"normal mid-ocean ridge basalts," e.g., MORB, represent the 

median temperature of the Phanerozoic mantle. The high- 

temperature part of the Phanerozoic distribution corresponds 

to hotspots. Although the terms "normal ridge" and "hotspot" 

may tempt one to think that the upper mantle temperature 
distribution is bimodal, we doubt that this is true. Instead, the 

rapid entraining of cooler upper mantle material into a hot, 

rising plume probably smears out the temperature distribution, 

so that hotspots correspond to the high-temperature tail of a 
skewed unimodal distribution. 

It is possible that there has been a secular change in the 

relative amounts of ordinary and plume-type (i.e., hotspot) 
convection. Sleep et al. [1988] argued that the Archean had no 

hotspots because there were few identifiable hotspot tracks 

crossing Archean cratons. However, their analysis failed to 

consider the difficulty with which present day hotspots 
penetrate the thicker Archean age cratonic lithosphere. 

Because we know that some Archean cratons were already over 

220 km thick in the Archean [Richardson et al., 1984], the 

Archean continental lithosphere provided a greater barrier to 

hotspots than more recently formed 100 to 150-km-thick 

continental lithosphere. Thus the absence of identifiable age- 
progressive hotspot tracks on Archean cratons is not 

particularly surprising. 

On the other hand, Campbell et al. [1989] argue that Archean 

komatiites must have been produced by hotspots based on the 
work of Karo et al. [1988a, 1988b], who have shown that 

certain trace element ratios would be nonchondritic if melting 

extended to the lower mantle. An average Archean mantle 

temperature of roughly 1500ø-1600øC would preclude the near- 

chondritic values of certain trace element ratios in the upper 
mantle [Campbell et al., 1989]. 

The overall range of mantle temperatures in the Archean 

would indicate whether hotspots existed more than 3.0 Ga ago. 

The absence of hotspots would be consistent with a narrow 

(<100øC) temperature range in the Archean. In the present day, 

if one looks at the temperature distribution of the mantle 

beneath mid-ocean ridges [Klein and Langmuir, 1987], a 

qualitative analysis shows that most of the data fall within a 

very narrow range of temperature (N-type MORB) while the 

remaining data (hotspots) skew the distribution towards higher 

temperatures. In this paper, we derive a more quantitative 

estimate of the temperature distribution in the Phanerozoic and 
the Archean mantle. 

Which Rocks Preserve A Record of Mantle 

Temperatures? 

MORBlike suites are generated by decompressive partial 

melting of the mantle in the absence of large quantities of 

water. These suites may include primitive lavas that record 

mantle temperatures. MORBlike rocks can be generated in four 
environments: mid-ocean ridges, back arc basins, primitive 

island arcs, and hotspots [Hawkins, 1980; Gill, 1984; Klein 

and Langmuir, 1987; Leemah et al., 1990]. Basalts that have 

been preserved on the continents, and which are associated 

with marine sediments, such as ophiolites and greenstones, 

might possibly be MORBlike and are candidates for this study. 
However, not all ophiolites and greenstones are MORBlike, 

and not all MORBlike suites preserve an accurate record of 

mantle temperatures. 

The MORBlike suites we sought for our study have several 

characteristics. They are either alkaline (e.g., hotspot suites) 

or tholeiitic. MORBlike rocks have relatively high TiO 2 
contents, all greater than 0.4%. The A120 3 and CaO contents 
are above the values in a pyrolitic mantle, in contrast to non- 

MORB like rocks such as cumulates, boninites, and severely 

altered rocks. MORB-like rocks also have SiO 2 contents that 
are less than those of boninites with the same Mg number 

[Rogers and Saunders, 1989]. We have only used samples with 

a tholeiitic or alkaline composition. No calc-alkaline or 
boninitic rocks are used. 

We gathered information from the literature, compiling 

chemical analyses of rocks believed to originate as partial 

melts of the mantle, and for which accurate geochronologic 

data exists. We carefully reviewed each rock description, 

discarding any data where the rock composition may have been 

severely contaminated or altered. In our suites, which do 

exhibit modest degrees of alteration, multiple analyses of the 

same rock produce temperature estimates which vary by 5 to 

10øC. These variations in the temperature estimate are 

indicative that modest alteration of the rock does not produce 

large errors in our estimate of the primitive liquidus 

temperature. 

We identified MORBlike rock suites in our data base by 

examining the rare earth element (REE) patterns and trace 

element compositions. Normal MORBs generally have values 

of REErock/ REEchondrit e in the range of 8 to 15 and the 
resulting patterns are usually light-REE depleted to flat 
[Coleman, 1977]. The chondrite-normalized [Anders and 

Grevesse, 1989] REE patterns of hotspot rocks have steep, 

nearly log-linear slopes and show considerable enrichment in 

light REE. Both of these REE patterns were considered 

acceptable. Unacceptable patterns include those with severe 

depletions in any element (less than 3-5 times chondritic) and 

those with patterns that were significantly different from those 
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of normal MORB or hotspot rocks. We preferred suites where 

the trace element distribution patterns were either completely 

within the MORB field or distributed among both the within- 

plate basalt (hotspot) and MORB fields [Pearce and Cann, 

1973; Pearce and Norry, 1979; Pearce et al., 1984]. 

Our goal was to obtain analyses of the most primitive rocks 

in each suite, those which represent the earliest partial melt of 

the mantle. The most primitive rock has undergone a 

minimum amount of crystal accumulation and fractionation 

prior to its eruption at the surface. We avoided rocks which 

have undergone crystal accumulation or fractionation. 

Cumulate rocks yield overestimates of the temperatures in the 

magma source region, whereas fractionated rocks yield 
underestimates. 

In order to reduce the possibility of compositions affected by 

crystal accumulation, we looked for fine-grained rocks. We 

used analyses of flow tops, pillows, and diabases and did not 

use massive rocks, gabbros, and flow interiors. In komatiitic 

suites, we prefer rocks with microspinifex texture over those 

with macro-spinifex texture, since recent studies have 

suggested that macrospinifex textures form slowly enough to 

allow some crystal accumulation [Walker et al., 1988]. 

Microspinifex rocks are also less susceptible to alteration and 

are more homogeneous than macrospinifex rocks. 

In order to identify cumulates, it has been traditional to use 

the Cr: Ni ratios. We found the Cr: Ni ratio helpful but not 

definitive. In suites with measured olivine compositions, 
komatiitic rocks with Cr/Ni ratios in excess of 5 to 10 are 

usually cumulates. However, there are significant differences 

in the Cr/Ni ratios derived from the same rock using different 

analytical techniques and Cr and Ni are mobile during 

hydrothermal alteration [Hoffman, 1984]. Thus the Cr/Ni ratio 

must be used in concert with all other available data. Although 

changes in the shape of REE patterns can identify cumulates 

within basaltic suites, the REE element patterns of basaltic 

komatites and komatiites do not change shape during olivine 

accumulation. Thus cumulates in komatiitic suites can only be 

identified using REE if there are massive amounts of olivine 
accumulation. 

A partial cumulate in a komatiitic suite can be identified 

using two criteria, total TiO 2 content and the maximum 
forsterire (Fo) content of the olivine. Recent work on Archean 

komatiites suggests that all rocks with boninitic TiO 2 
contents (<0.4%) are cumulates [Nisbet and Cheadle, 1992]. 

We also calculated the Fo content of the olivine in equilibrium 
with each rock of a suite, on the basis of that rock's bulk 

composition. The rock is assumed to be a cumulate if the 
calculated Fo value exceeds the maximum Fo value measured in 

that rock or in associated rocks. 

Because a relatively small percentage of our suites have direct 

measurements of olivine composition, we sought to expand 

the number of suites with estimates of olivine composition. 

We found that in well-preserved suites with analyses of 

cumulates and of individual olivine grains, the composition of 

the most forsteritic olivine agreed well with an inferred 

forsterite content from the Fe/Mg ratio of the cumulate rock 

with the lowest A120 3. For example, in the Bay of Islands 
ophiolite, the maximum Fo content measured on olivine is 

0.91[Casey et al., 1985], and the Fo content of olivine 

inferred from the Fe/Mg ratio of the most Al-poor cumulate is 

also 0.91. In suites with analyses of both FeO and Fe20 3, we 
obtained an upper limit for the Fo content of the olivine from 

the relation Fe2+?ZFe =0.93 [Christie et al., 1986]. The 

Fe2+/Mg ratio is a reasonable tool to estimate the Fo content 

of olivine in less altered suites but may overestimate the Fo 

content of more altered rocks. We found that less altered, low 

A120 3 samples had more than 90% of their iron as Fe2+, thus 
samples with an Fe203/(Fe203+FeO ) ratios of more than 0.1 
were considered likely to have undergone oxidative alteration 
and were used with caution. 

In using the composition of Al-poor, Mg-rich cumulates to 

infer the composition of the associated olivine, we had to 

avoid rocks which were residual peridotites. Residual 

perioditites usually have more forsteritic olivine than direct 

cumulates. Although it is possible to identify residual rocks 

using textural criteria in well-preserved suites, metamorphism 

obliterates most of the primary textural features. Fortunately, 

residual peridotites have very low TiO 2 contents compared to 
primary cumulates. Furthermore, we looked at a number of 

suites with REE element analyses of residual and cumulate 

peridotites and found that residual rocks were readily 

identifiable because their REE contents were all or largely 

below chondritic abundances [Beccaluva et al., 1980; Dymek 

et al., 1988]. None of the residual peridotes had more than 

0.1% TiO 2 and most had much less. Therefore any peridotite 
rock with a TiO 2 content of less than 0.1% was considered 
residual and was not used to estimate the Fo content of olivine. 

Methods 

We use chemical analyses of rocks derived from the upper 

mantle, such as primitive magmas in ophiolites and 

greenstone belts, to calculate eruption temperatures. We then 

convert the calculated eruption temperatures to potential 

temperatures to construct an empirical curve for the cooling of 

the mantle over time. Rocks that originate as magmas formed 

by partial melting of upper mantle material can be used as 

paleo-thermometers because the melt compositions depend 

upon the upper mantle temperature at the time of their 

formation. If the magma is quickly extracted and solidified into 

rock (and if that rock is not subsequently too altered), then it 

preserves information about upper mantle temperature. Klein 

and Langmuir [1987] confirmed this temperature-composition 

dependence, by showing that the sodium content of fresh 

ridge-crest basaltic glass correlates with ridge crest elevation 

(which is assumed to be controlled by the combination of 

mantle temperature and lithospheric density structure). 

Measuring the Liquidus Temperature of Primitive 
Mantle Melts 

It is well-known that the ratio of iron to magnesium in a 

primitive basaltic magma is directly related to its liquidus 

temperature [Roeder and Emslie, 1970; Longhi et al., 1978]. 

Furthermore, the liquidus temperature of the basalt is equal to 

the temperature at the top of the convecting mantle, where that 

magma was last segregated. Although the mantle is not 

perfectly adiabatic, the mantle is thought to be close to 

adiabatic [Langmuir et al., 1992] which implies that the basalt 

liquidus temperature is directly related to the potential 

temperature of the upper mantle. 

Our computer program to estimate low-pressure liquidus 

temperatures from rock composition uses a constant value of 

the Fe-Mg exchange coefficient (KD=0.31) between olivine 
and liquid based on published and unpublished experimental 

data [e.g., Ulmer, 1989]. This allows FeO(ol)/MgO(ol) to be 

calculated from the liquid composition. Next, an estimate of 
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the mol % Cr20 3, MnO, and CaO in olivine is made from the 
partition coefficients given by Longhi et al., [1978]. Then, 

absolute concentrations of FeO and MgO in olivine are 

obtained from a mass balance based on olivine stoichiometry, 

(Mg,Fe,Mn,Cr,Ca)2SiO4, i.e., 66.67 = FeO + MgO + MnO + 
CrO1.5 + CaO. Finally, temperature is calculated from 

equation B2 of Langmuir et al., [1992] ( lnKdMg= 6921/T + 
0.034Na + 0.063K + 0.01154P - 3.27), which relates 

temperature to MgO in olivine and MgO and alkalies in the 

liquid. This equation recovers data from mid-ocean ridge 

basalts with an average error of 5.3% [Langmuir et al., 1992]. 
Our program uses the chemical distribution coefficients of 

Roeder and Eroslie [1970], and so gives liquidus temperatures 

at atmospheric pressure. We should, more properly, correct for 

pressures corresponding to depths just below the bottom of the 

lithosphere, but these depths are unknown in most cases and 

are shallow in the case of spreading centers, where the 
correction is within the error of the calculations, so no 

correction is made. 

Error estimates for liquidus temperatures are derived from the 

temperature difference between the highest temperature rock in 
a suite and the next closest rock. The rock used to define the 

error bars can either be a cumulate, which is generally higher 

in liquidus temperature, or a noncumulate, which is always 

lower in liquidus temperature. Because multiple chemical 

analyses of the same rock produce temperature estimates that 

vary by 5 ø to 10øC, we defined a minimum error of + 5 øC. We 

did not include any suite in our final analysis with an error 

greater than + 31 øC. 

Results 

Using the program we developed, we calculated the 

equilibrium liquidus temperature for each greenstone belt and 

ophiolite suite listed in Tables 1 and 2 (Figure 1). The highest 

liquidus temperature we obtained is 1576øC for a periodititic 
komatiite from the 3.5-Ga Barberton Greenstone Belt. The 

lowest liquidus temperature we obtained is 1212øC, for a basalt 

from the Shionomisaki Ophiolite, 15.5 Ma old. Thus the 

range of our calculated liquidus temperatures over the past 3.5 

Ga is 364øC. When the rocks are divided into age categories 
for the Middle Archean, the Late Archean, and the Phanerozoic, 

the individual ranges are smaller. Table 3 shows the time 

intervals for each age category, and the mean age within each 

category of the rock samples used for this study, as well as the 

temperature range and the calculated mean temperature in each 

age category. 

We calculated the temperature range of the liquidus in each 

age group usi. ng two methods. The first temperature range is a 

simple mean of all the temperatures from the suites in that age 
group. The second temperature range is more quantitative, 

because it takes into consideration the following facts: our 
data are from suites with different ages, the age groups have 
differing amounts of data, and the temperatures from the oldest 

suites change faster with time. To combat these sources of 

bias in our estimates of the mantle temperature range, we fit 

bounding curves to the upper and lower limits of the liquidus 

temperature versus time (Figure 1). These bounding curves 

approximate the radiogenic heat production curve of 

Wasserburg et al., [1964]. We used this curve because we 

believe that mantle temperatures are closely tied to radiogenic 

heat production throughout geologic time. The lower bounds 

for each time •nterva! correspond to the lowest liquidus 

temperatures we found from our data set, while the upper 

bounds correspond to the highest liquidus temperatures. 

The Phanerozoic part of our data set has a mean age of 302 

Ma. As shown in Table 3, the lowest Phanerozoic ophiolite 

liquidus is 1212øC and the highest is 1417øC, with a range of 

205 øC. From the curves fit to the data, the lowest liquidus 

temperature at 0.3 Ga is 1218øC and the highest temperature is 

1425øC, with a range of 207øC. The lowest liquidus 

temperature we found for late Archean greenstones is 1305øC, 

and the highest is 1514øC, for a range of 209øC. From the 

curves bounding the data, the lowest liquidus temperature at 2.8 

Ga is 1301 øC and the highest is 1533øC, for a range of 232øC. 

The lowest liquidus temperature we found for the middle 

Archean greenstones is 1309øC, and the highest is 1576øC, for 

a range of 267øC. From the bounding curves, the lowest 

liquidus temperature at 3.3 Ga is 1327øC and the highest is 

1567øC, for a range of 240øC. For any given time in Earth's 
history, our data suggest that the average range of liquidus 

temperatures has been equal to 236+31øC. This suggests that 

the nature of the distribution of liquidus temperatures has 

changed little over the past 3500 Ma. 

The data in Table 3 also show that the average liquidus 

temperature has decreased over time, from 1437øC in the 
middle Archean, to 1399øC in the late Archean, to 1272øC in 

the Phanerozoic, for a mean change in liquidus temperature of 
127+20øC from the late Archean to the Phanerozoic and 

165+42 øC from the middle Archean to the Phanerozoic. An 

alternative way of estimating the decline in average liquidus 

temperature is to look at the mean change in the upper and 

lower temperatures calculated from the bounding curves. The 

changes in liquidus temperatures from the bounding curves are 
96+ 13øC from the late Archean to the Phanerozoic and 

126+17øC from the middle Archean to the Phanerozoic. 

We also plotted temperature versus time for subsets of our 

data base, taking only those samples with analyses of REE 

compositions (listed in Table 1), and using only suites with 

olivine compositions, either directly measured or inferred from 

related rocks (see Table 1). Figure 2 shows a plot of liquidus 

temperature versus age, but only includes those data which had 
rare earth analyses. The shapes of the two distributions in 

Figures 1 and 2 are alike, indicating that the data are internally 

consistent. Figure 3 shows a similar plot, but the samples are 

those with olivine compositions or inferred olivine 

compositions. Once again, the distribution is clearly similar, 

suggesting that the temperatures from suites which lack 
olivine compositions are not significantly biased. 

Figure 4 shows two histograms of liquidus temperature 

plotted against frequency of occurrence. Figure 4a shows the 

liquidus temperatures in the Phanerozoic, and Figure 4b shows 

the liquidus temperatures in the Archean (combined middle and 

late Archean data sets). Each figure has three separate 

histograms for the minimum temperatures, the average 

temperatures, and the maximum temperatures. The deviations 

from the overall shape of the Phanerozoic distribution result 
from the inclusion of data from one or two MORBlike suites; 

that is, 4-8% of the data points. These deviations are within 
the calculated error limits of our data. 

The most striking thing to note in these figures is the 

similarity of the shapes of all the histograms and, in 

particular, the similar distributions of both the Phanerozoic 
and the Archean data. The distributions are all clearly 

unimodal, with extended high-temperature tails. In each data 

set, most of the rocks fall into the midtemperature area of the 
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Table 1. A List of the Greenstone Belts and Ophiolite Suites Used in Our Final Data Base, Along 
With Their Ages and the Highest Liquidus Temperature, T1, Obtained From the Samples. 

Name Age T1 T-err N REE? Fo-O1 Fo-cum Sample # 

ABITIBI 2710 1495 8 28 yes yes no 5 (flowtop) 
ALAWA 600 1229 5 20 no no no 7 

ANDAMAN 63.25 1239 10 12 yes no no 4 
ANGAY-JUR 197.5 1243 6 12 yes no no 4722- la 
ANGAY-TRIAS 224 1217 5 25 yes no no 472-12 
ANSHAN 2660 1514 12 24 yes no no PRC-7b 
ARAVALLI 2550 1427 30 20 yes no no 2 
BAER BASSIT 219 1247 5 18 yes no yes 73104 
B ARBERTON 3451 1576 10 50 yes yes no 331/78 
BAY OF ISLANDS 485.7 1282 11 40 yes yes no 1061A 
BAYKAL-VITIM 1700 1335 11 24 yes yes no 66 
BELINGWE 2760 1466 13 34 yes yes no NG199 
CAPE SMITH 1960 1478 5 38 yes yes no 30420 
CHAMROUSSE 497 1299 5 18 yes no no 8020 
COCKBURN 390.5 1296 5 11 no no no 57983 

DIEMALS 2723 1445 9 25 yes no no 63673 
DUN MT. 272 1268 16 10 yes no yes d (basal0 
ELY 2690 1327 14 56 yes no yes E-205 
FANUJ MASKUTAN 84.5 1307 9 11 no no yes 39 
GILLET 575 1256 10 16 yes no no 5439 
GORGONA 86 1417 14 15 yes yes nz 141 
GULLFJELLET 489 1252 21 10 yes no no Ba9 
HEATHCOTE 555 1231 5 18 yes no no 26380 
HIDROLINA 2508 1353 9 12 no no yes H•230 
ItOLENARSIPUR 3050 1423 5 27 yes no yes 23 
ILE DE GROIX 460 1325 15 9 yes no no 2442 
ISLA MARGARITA 120 1299 13 30 yes no no ]IIH 
ISUA 3760 1393 13 12 yes yes no ! 19229 
JORMUA 1960 1300 31 9 yes no no 625 
KAMBAIX)A 2702 1385 16 12 yes yes no 25 
KOIKARY 2935 1383 5 13 no no yes 1257-1 
KOLAR 29,30 1451 6 35 yes no no 3(17-10) 
KUCHMO 26!0 1394 5 18 no no yes 12 
LAWLEES 2650 1452 22 22 yes no yes 180 
LEKA 497 1267 7 16 yes yes no 78-35 
LE•rISiAN 2•00 1347 5 11 yes no yes 91 
LIGURIDES 172 1319 20 23 yes no yes Li33 
MAD RIVE R 560 1264 10 17 yes no no 5346 
MALENE 3000 1420 30 12 no no no 207625 

MEEICt•ARA 257-) 1442 14 11 no no no 1 

MINNESOTA 3255 1395 9 13 yes no no M-14-16 
NI324D•4N 2150 1431 5 10 no no no BF7 

OMAN 90 1263 5 32 yes yes no OM5782 
OTTAWA 1960 1427 8 10 yes yes no BLS-60-79 
PALAJA LAMBA 2860 1309 6 29 yes no yes 4(414) 
PALOSELVINSKY 2850 1357 5 20 no no yes 8 
PHALUD 1012 1383 22 16 yes no no 221-7 
PINDOS 167 1281 6 12 yes no yes 3 
SHUKSAN 163.5 1256 9 12 yes no no A-572(2) 
SKALvAER 458 1246 9 1(3 yes no no H5 
STAVFJoRDAN 468 1236 6 25 yes no no 8719 
QINGYUAN 2830 1387 5 9 yes no yes 11 
S ARGUR 3050 1 ? 09 5 14 no no yes 2 
SARMIENTO 141 1259 17 11 yes no no U166-2 
SCHILOS-YUZNO 29'30 1305 15 22 no no ao 2 

SHIONOMISAKI 15.5 1212 5 9 yes no no 3-MS-7 
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Table 1. (continued) 

Name Age T1 T-err N REE? Fo-O1 Fo-cum Sample # 

SUOMUSSALMI 2650 i329 9 12 yes no no ' S100 
TAIWAN 15 1308 9 12 yes yes no 112B 
TALGA-TALGA 3500 1529 21 13 yes no no 34 C 
TETILLA 105 1240 13 10 no yes no 25771 
THOMPSON 1883 1366 8 34 yes no yes 109(495) 
TOKSHINSKY 2900 1394 19 10 no no yes 10/41-1 
TORTUGA 140 1223 6 29 yes no no NT-22 
TRINITY 452 1256 5 13 yes no yes •I•,130A 
TROODOS 85 1305 12 9 yes yes no 244AL 
VETRENY-POAS 2010 1422 5 49 no no yes 3552a 
VISNES:KARMOY 485 1335 19 21 yes no no K50 
WATERBURY 500 1250 8 14 yes no no 5218 
WF. LLINGTON 555 1255 9 14 yes no no 26348 
WOOLMIN 444 1273 12 9 no no no 20 

XIGAZE 110 1328 21 26 no yes no 15 

N refers to the total number of good samples in the data set. Because a second sample was used for the 
temperature error estimate, a large number of samples is necessary to obtain a small error on the liquidus 
temperature. REE, Fo-O1 and Fo-cmn refers to the presence (yes) or total absence (no) of such data. The 
sample numbers are those used in the original references for each rock suite (see Table 2). 

plots, while the very high temperature rocks are much less 

abundant, giving the distribution a skewed appearance. 

Sources of Error and Sampling Bias 

In assembling our data base, we used rock compositions from 

both Phanerozoic ophiolite suites and Archean greenstone 

belts. However, Archean greenstones are not exactly like 

Phanerozoic ophiolites. For example, sheeted dikes and 

ultramafic residual mantle rocks are rarely identified in Archcan 

greenstone belts. Although some of these differences have 

been attributed to the hotter Archean mantle and its resulting 

thicker oceanic crust [Hoffman and Ranalli, 1988], it is not 

completely clear how these differences might result in 

preferential preservation, which would bias our results. One 

possible mechanism for such a bias is that areas of the very 

thickest (i.e., 22-30 km) crust, corresponding to hotspot type 

Table 2. Table of References Used to Compile the Data Listed in Table 1 

Sallie References With Geochemical Data 

AB122BI 

ALAWA 

ANDAMAN 

ANGAY-JUR 

ANGAY-TRIAS 

ANSHAN 

ARAVALLI 

B AER BASSIT 

BARBERTON 

BAY OF ISLANDS 

BAYKAL-V1TIM 

BELINGWE 

CAPE SMITH 

CHAMROUSSE 

COCKBURN 

DIEM•S 

DUN MT. 

ELY 

Ludden et al. [1986], Arndt et al. [1977],Arndt [1977], Barnes et al. [1983], 
Cattell and Arndt [1987] 

Elueze [1985] 

Ray et al. [1988] 
Pallister et al. [1989] 

Pallister et al. [I989] 

Jahn and Ernst [1990]• Zl•ai et al. [1990] 

Tremblay et al. [1989] 
Parrot [1977] 

Smith et al. [1984], Hoffman [1984], Sun and Nesbitt [1978], Kroner and Todt 
[1988], Viljoen and Viljoen [1969], Condie et al. [1977] 

Casey et al. [1985], Suen et al. [1979], Dunning and Krogh [1985] 
Dobrzhinestakaya [1986], Konnikov [1991] 
Sun and Nesbitt [1978], Nisbet et al. [1977] Nisbet et al. [1987] 

Moore [1977], Baragar a•wl Scoates [1987], Francis and Hynes [1979], 
Francis et al. [1981], Scott et al. [1988] 

Bodinier et al. [1981] 

Cawood [ 1984] 

Nesbitt et al. [1984] 

Davis et al. [1980] 

Schulz [1982], Green amt Schulz [1977], Sims and Morey [1972], Schulz 
[19771 
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Table 2. (continued) 

Name References With Geochemical Data 

FANUJ MAS KUTAN 

G]LLET 

GORGONA 

GULLFJELLET 

HEATHCOTE 

HIDROLINA 

HOLENARSIPUR 

ILE DE GROIX 

ISLA M/aRGARITA 

ISUA 

JOP, MUA 

I'•B AI DA 

KOIKARY 

KOLAR 

KUCHMO 

LAWLERS 

LEKA 

LEWISIAN 

LIGURIDES 

MAD RIVER 

MALENE 

MEEKATHARA 

MINNESOTA 

{}MAN 

OTfAWA 

PALAJA LAMBA 

PALOSELVINSKOI 

PHALUD 

PINDOS 

QINGYUAN 
SARGUR 

SARMIENTO 

SCHILOS-YUZNO 

SHIONOMISAKI 

SHUKSAN 

SKALVAER 

STAVFJORDAN 

SUOMUSSALMI 

TAllVAN 

TALGA-TALGA 

TETILLA 

THOMPSON 

TOKSHINSKY 

TORTUGA 

TRINITY 

'IROODOS 

VETRENY-POAS 

VISNES:KARMOY 

WATERBURY 

WELLINGTON 

WOOI_MIN 

XlGAZE 

Desmons and Beccaluva [1983] 
Coish et al. [1985] 

Aitken and Echeverria [1984], Echeverria [1980] 
Fumes et al. [1982] 

Crawford and Keays [1987] 
Rivalenti et al. [1989], Rivalenti (written communication, 1990) 
Drury [1982], Hussain and Naqvi [1983], Hussian et al. [1982] 
Bernard Griffiths et al. [1986] 
Mottana et al. [ 1985] 

McGregor and Mason [1977], Allart [1976], Sun and Nesbitt [1978] 
Dymek et al. [1988], Nutman [1986], Michard-Vitrac et al. [1977] 

Kontinen [1987] 

Sun and Nesbitt [1978],Ar•lt and Jenner [1986] 

Rybakov and Svetova [1981a], Bogatikov [1988] 
Rajamani et al. [1985] 
Jahn et al. [ 1980], Hahski [1980] 

Sun and Nesbitt [1978], Naldrett and Turner [1977], Barnes et al. [1988] 

Prestvik [1980], Furnes et al. [1988], Dunning and Pedersen [1988] 
Sills et al. [1982], O'Hara [1961] 

Ottohello et al. [ 1984] 
Coish et al. [1986] 

Friend et al. [ 1981], Hall [1980b] 

Hallberg et al. [1976] 
Wooden et al. [1980], GoMich et al. [1980], Schulz [1982] 

Tegyey and Johan [ 1989] 
Lippard et al. [1986] 
Arn& et al. [1987], Baragar and Scoates [1987] 
Lobach-Zuchenko et al. [1978] 

Ry•akov and Svetova [1981b], Bogatikov [1988] 
Volpe and MacDougall [1990] 
Capedri et a/.[1980], Montigny et al. [1973] 
Zhai et al. [1985] 

Venkataramana et al. [1982] 

Stern [1980] 

Sokolov [1981] 

Miyake [1985] 
Dungan et al. [1983] 
Fumes et al. [1982] 

Fumes et al. [1982], Skjerlie et al. [1989] 
Jalm et al. [1980], Mutanen [1976], VMal et al. [1980] 

Suppe et al. [ 1981], Jahn [1986] 
Gruau et al. [1937] 

Spadea et al. [i987] 
Peredery [1979], HaMen [1991], Baragar and Scoates [1987], Paktunc [!984], 

Heaman • t al. [1986] 

Kulikov et al. [1981a], Bogatikov [1988] 
Elthon and RMley [1980], Stern [1980] 
Brouxel and LaPierre [1988] 

Rautenschlein et al. [1985], Sinewing and Potts [1976], 
Flower and Levine [1987] 

Kulikova and Kulikov [1981], Bogatikov [1988] 
Stun et al. [1984] 

Coish et al. [1986] 

Crawford and Keays [1987] 
Cawood [1984] 

Girardeau et al. [ 1985], Hanruo and Wanming [1980] 
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ALL MORB-LIKE SUITES 
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Figure 1. The primitive liquidus temperatures for each rock 
suite versus their ages, for all MORBlike suites used in this 

study. Exponential curves which approximate the shape of the 
radiogenic heat production curve of Wasserburg et al., [1964] 
mark the upper and lower boundaries of the data set. 

temperatures, are essentially unsubductable. The buoyancy of 

the very depleted mantle beneath them causes polarity 

reversals of subduction zones, as has happened most recently 

at the Ontong Java plateau [Kroenke et al., 1991], leaving the 
thick crust unsubducted. Thus Archean greenstone belts formed 

at hotspots would be preferentially preserved. 

This effect would tend to bias middle Archean liquidus 
temperatures, which are the hottest, to even higher values. If 

this bias is significant, we should interpret our middle. 

Archean-Phanerozoic temperature difference as the maximum 

possible value. On the other hand, our data indicate that this 

difference is relatively modest, only 126ø-155 øC (Table 3). 

This argues against a large bias. Unfortunately, we cannot 

address this issue further without a more complete data set from 

Proterozoic MORBlike suites, data which are not available at 

present. 

Another possible problem is a bias of petrologic studies. 

Ever since their discovery, petrologists have been fascinated 

by komatiites and have vied to find the highest temperature 
suites. Greenstone belts which lack komatiites or basaltic 

komatiites (and which correspond to cooler temperatures) have 

received relatively little attention. The peak in the Archean 

temperature histogram, at 1395øC, which lies just above the 

temperature transition between a most primitive sample of 

basaltic composition and a most primitive sample of basaltic 

komatiite composition, might be indicative of a small bias of 

this type. Future petrologic work needs to be more evenly 

distributed among all Archean greenstone belts with 

MORBlike suites, regardless of whether or not komatiites are 

present. 

Comparison With Estimates of Temperature 
Derived 

From The Pacific Plate 

In order to check the overall validity of our technique and 

compare our results with those of others, we looked at the data 

of Klein and Langmuir [1987]. They inferred that the mantle 

Table 3. Compilation of the Mean Temperature Data Derived From the Rocks in Table 1 According to 
Their Age 

Name 

Time Interval, Mean Age, Mean T1, T1 Range T1 Range 
From Rocks, From Curves, 

m.y. m.y. øC øC ø(2 

Phanerozoic 0-600 302+33 1272+7 1212-1417 1218-1425 

Late Archean 2400-3000 2756+_28 1399+13 1305-1514 1301-1533 

Middle Archeart >3000 3344_+114 1437+40 1309-1576 1327-1567 

Name 

Time Interval, Mean Age, Mean Tp, Tp Range, Tp Range 
From Rocks, From Curves, 

m.y. m.y. øC ø(2 øC 

Phanerozoic 0-600 302+33 1380+-10 1286-1594 1297-1606 

Late Archean 2400-3000 2756+_28 1567+18 1432-1726 1425-1750 

Middle Archeart >3090 3344+114 1618+55 1437-1804 1464-1792 

The rock samp!es were divided into the three time intervals listed and a mean age was calculated for each 
time interval. q'he table also shows the high and low temperatures derived from fitting two exponential 
curies which bracketted the highest and lowest liquidus temperatures versus time. The top table shows 
results in te•ms of primitive liquidus temperatures T1, and the bottom table shows results in terms of 

potential temperatures, Tp. 
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Figure 2. The primitive liquidus temperatures for all suites 
which include REE analyses plotted versus their ages. 
Boundary curves are the same as in Figure 1. The similarity in 
the distributions of data indicate that the data are generally 
consistent. 

had a temperature range of 250øC, based on their study of fresh, 

basaltic ridge crest glasses. The Phanerozoic liquidus 

temperatures from MORBlike ophiolite suites which we have 

calculated range from !212øC to 1417øC, a range of 205 øC, 

less than that of Klein and Langmuir [1987]. There may be two 

reasons for this difference. One is that we have relatively few 

Phanerozoic data sets (36 in all). The second is that our 

primitive liquidus temperatures are not the same as the 

potential temperature of the upper mantle. Because of the heat 

of melting, the potential temperature of the upper mantle is 

higher than the primitive liquidus temperature of the melt at 
the surface. 

In order to test our technique, we convert our primitive 

liquidus temperatures to potential temperatures using the 

empirical relationship Tp = -1382.5 + 2.8046 T1 

-0.00049671 (T1) 2 [McKenzie and Bickle, 1988; M. Bickle, 
personal communication, 1993] (Figure 5), and then compare 
them to the potential temperature range derived from our 

ophiolite suite. The potential temperatures derived from the 

liquidus temperatures of Phanerozoic ophiolite suites range 

from 1286øC to 1594øC, a range of 308øC. However, the 

maximum temperature from the Phanerozoic ophiolites is 

derived from Gorgona island, which is thought to be extremely 

unusual. A more representative Phanerozoic temperature range 

is derived from the 1.4% and 98.6% levels (1/36 = 2.8%) of 

potential temperatures calculated from the distribution of 

residual depth anomalies on the Pacific plate (over 50,000 

samples in half degree square areas)[$rnith, 1990]. From 

temperatures derived from the Pacific plate, the potential 

temperature range in the Phanerozoic mantle is 270øC, quite 

comparable to the 250øC range derived by Klein and Langrnuir 
[1987]. 

Mantle Temperature, Crustal Thickness, and 
Residual Depth Anomalies 

The melting column models of Klein and Langmuir [1987] 
and McKenzie and Bickle [1988] show that both the thickness 

of the oceanic crust and the thickness of the depleted portion 

of the mantle correlates with mantle potential temperature, as 

shown in Figure 6. Because the densities of both the crust and 

the depleted mantle differ from normal mantle, we can calculate 

their elevation if we assume that they are in isostatic 

equilibrium with normal mantle. Furthermore, it can be shown 

that residual depth anomalies, i.e., the actual depth minus the 

predicted depth at the top of conductively cooled oceanic crust 
of normal thickness -- are related to crustal thickness and 

therefore also to mantle potential temperature. 

As an independent test of our Phanerozoic results, we decided 

to use geophysical data on residual depth anomalies from the 

Pacific Plate. First, we used the isostatic model (but not the 

densities) of Schubert and Sandwell [1989] to convert residual 

depth anomalies from the Pacific plate [Smith, 1990] to 
estimates of crustal thickness. Then, we used the model of 

McKenzie and Bickle [1988] to relate crustal thickness to 

mantle potential temperature. As a check on our 

methodology, we compared crustal thicknesses calculated from 

REE inversion on geochemical samples of Pacific basement to 

crustal thicknesses calculated from residual depth anomalies 

and found that they were quite comparable. For example, the 

crustal thickness calculated from REE inversion for the Ontong 

Java Plateau (site 807) is 18.7 km [White et al., 1992]. This is 

SUITES WITH OLIVINE COMPOSITIONS 
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Figure 3. Primitive liquidus temperatures plotted versus age for those MORBlike suites with either directly 
measured olivine compositions (open squares) or inferred olivine compositions (solid squares). See text for a 
discussion of the method for inferring liquidus olivine compositions. Boundary curves are the same as in 
Figure 1. Again, note that the distribution of temperatures is similar to those in Figures 1 and 2. 
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Figure 4. (a) Graph of the liquidus temperatures obtained for 
the Phanerozoic (0-600 Ma). (b) Graph of the liquidus 
temperatures obtained for the Arcbean (2400 Ma to 3800 Ma). 
Data for both figures obtained using the methods outlined in 
text. Three percentage areas are shown: MIN, MEAN, and 
MAX. The shapes of the two distributions are very similar, 
i.e., both are unimodal, skewed distributions. This indicates 

that the relative proportion of hotspot volcanism has not 
changed much over geologic time. 

quite comparable to the crustal thickness derived from the 

residual depth anomaly: 18.9 km. 

The Airy theory of isostasy requires that the thickness of the 

mantle root (R) is directly related to the residual depth anomaly 

(H); that is, 

R(Pm-Pc) = H(Pc-Pw) 
where Pm is the density of the mantle, 3.37 Mg/m3; Pw is the 
density of water, 1.028 Mg/m3; and Pc is the density of the 
crust, 2.86 Mg/m3 [Anderson, 1989; Defant, 1961]. As 

shown in Figure 7, the mantle root (R) is almost 4 times as 

thick as the depth anomaly (H). The excess crustal thickness, 
delta t is the sum of H and R. The excess crustal thickness for a 

given residual depth anomaly H is 

delta t = H + R = H + H(Pc-Pw)/(Pm-Pc) = 
H[1 + (pc-Pw)/(pm-Pc)]. 

Calculations show that for every extra kilometer of oceanic 

crustal thickness, there is 218 m of residual depth anomaly. 
Normal crust is assumed to have a thickness of 7.1 km [White 

et al., 1992]. Therefore, the total crustal thickness t c in 
kilometers is 

tc = ( H/218 )+ 7.1 
where H is in meters. 
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Figure 5. The potential temperatures for each rock suite 
versus their ages, for all MORBlike suites used in this study. 
Exponential curves which approximate the shape of the 
radiogenic heat production curve of Wasserburg et al., [1964] 
mark the upper and lower boundaries of the data set. 

The next step is to convert the total crustal thickness (tc) to 

potential temperature (Tp). We used an empirical relationship 
fit to the data of McKenzie and Bickle [ 1988]: 

Tp = 1177.3 +38.080 (ln tc) +3.4131(ln tc) 2 + 6.0121 
(lntc) 3 

This empirical equation fits the data on temperature and crustal 

thickness to a precision of better than 8øC. The empirical 

equation gives a mantle potential temperature of 1310 øC at t -- 
7.1 km and H- 0, which is well within the error of McKenzie 

and Bickle's estimate of a mantle potential temperature of 
1280 øC at a crustal thickness of 7 km. 

Testing With Data From the Pacific Plate 

All of the oceanic crust of the Pacific plate was formed within 

the last 200 Ma. The distribution of basement ages on the 

Pacific plate suggests that the subduction process is random. 

That is, the probability of subducting any one piece of oceanic 

crust at any given time is independent of crustal age [Parsons, 

1982]. Therefore the remaining oceanic lithosphere can be 

regarded as providing a random sample of mantle melts from 
the late Phanerozoic. Thus we can use the data on residual 

depth anomalies to independently verify the Phanerozoic 

THICKNESS OF CRUST PRODUCED BY RISING 

MANTLE OF DIFFERING TEMPERATURES 

27 KM 

ß CRUST 

•[] MELTING 
ß SOLID 

7 KM 

1555 øC 1309 øC 

Figure 6. Illustration of melting column model. Hotter 
mantle begins to melt at a greater depth and produces thicker 
oceanic crust. Colder mantle begins to melt at lower depths 
and produces thinner oceanic crust. 
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Figure 7. An illustration of Airy-type isostatic balance. 
Airy isostasy, requires that thicker crust is compensated by a 
mantle root with a thickness which is directly proportional to 
the size of the residual depth anomaly. 

temperature range that we derive from the ophiolite liquidus 

temperatures. 

We used Smith's [1990] Pacific age-depth curve to estimate 

residual depth anomalies. Smith's curve is fit to ship 

soundings which were checked for quality using a crossover 

error analysis [Smith, 1993]. The curve is based on data 

distributed throughout the Pacific plate and fit to median, as 

opposed to mean, depths. We calculated the residual depth, H, 

in each 1/2 degree square within the Pacific plate and obtained 

a histogram of residual depth values. The histogram was then 

converted from residual depths into potential temperature 

using the above equations and the result is shown in Figure 8b. 

The upper mantle temperatures derived from off-ridge hotspot 
volcanism tend to be overestimated, due to the fact that the 

new hotspot crust is not distinguished from the older crust it is 

built upon. Therefore we assume a 40øC error in each of the 

temperature calculations, which is roughly equivalent to an 
excess crustal thickness of 7 km. Because of the term In tc in 

the equation for potential temperature from crustal thickness, 

the actual error is somewhat lower for the highest temperature 
rocks . 

A 40 øC value may be also an overestimate of the error 

because the age-depth curve of Stnith [1990] produces far fewer 

positive residual depth anomalies than other curves. For 

example, the area of the South Pacific near French Polynesia is 
anomalously shallow with respect to the Parsons and Sclater 

[1977] curve; this shallowing has been called a "superswell" 
by McNutt and Judge [1990]. Smith [1990] showed that most 

of the Pacific plate seafloor less than 40 m.y. of age is in the 
South Pacific. Because Smith's curve is fit to medians of 

samples equally distributed in area (a "majority-rule" 
approach), the superswell area defines the young age behavior 
of Smith's curve. 

Thus the superswell area shows residual depths near zero 

(potential temperatures near 1310øC) when Smith's curve is 

used. In contrast, the Parsons and Sclater [1977] curve was fit 

to a limited number of data selected from particular sites in the 

North Pacific and predicts deeper values than are seen in the 

South Pacific. By using Smith's curve, we make the implicit 

assumption that superswell depths are normal; if one uses the 

Parsons and Sclater curve then the superswell depths imply a 
large area of hotter temperature, as McNutt and Judge [1990] 

suggested. In fact, however, there is no evidence for a hotter 

region in the heat flow data from this area [Stein and Abbott, 

1991]. 

Smith's median depth approach has other consequences for 

the shape of the histogram. Because the median depth curve 

estimates where the majority of depths fall at a given age, it 

minimizes the number of histogram counts which lie far from 

the curve. Thus the fatness of the tails of the histogram is less 

than it would be if we used some other curve fitting procedure. 

For example, a least squares fit minimizes the extreme values 

at the ends of the tails, rather than their fatness. Therefore the 

median depth approach is conservative in estimating the 

residual depth histogram. 

In attributing all residual depths to variations in crustal 

thickness, and then potential temperature, we are ignoring the 

possibility that some residual depths are produced by pressure 

gradients in the asthenosphere (e.g. hotspot swells) [Smith 

and Morgan, 1992] and are not indicative of crustal thickness. 

However, Smith's [1990] map of residual depths shows that 

active hotspot swells are few, and their H values are of smaller 

map area and magnitude than the plateaus (Ontong Java, 

Manihiki, etc.). Thus it is the plateaus that contribute the 

most structure to the histogram. The plateaus were primarily 

generated at spreading centers [Mahoney et al., 1993] and are 

areas of thick crust in isostatic equilibrium [Schubert and 

Sandwell, 1989]. The remaining positive anomalies are 

mostly associated with hotspot-generated ridge pairs (Cocos, 

Nazca) which formed at spreading centers. Therefore our 

assumptions about going from the residual depth anomaly (H) 

to potential temperature (Tp) are valid for most oceanic 
plateaus and hotspot tracks. 

In order to compare our results from the inversion of residual 

depth anomalies on the Pacific plate to our results from 

Phanerozoic ophiolites, it is necessary to convert our residual 
depth anomaly results from estimates of crustal thickness, tc, 

to estimates of primitive liquidus temperature, T 1. To do this, 

we use the following empirical equation [McKenzie and Bickle, 

1988; M. Bickle, personal communication, 1993]: 

T 1 = 1147.1 + 23.685 (ln tc)-2.0338 (ln tc) 2 + 5.2411 
(ln tc) 3. 

Figure 8 is a comparison of liquidus temperatures derived 

from the modern Pacific plate with those derived from the 

Phanerozoic ophiolites in our data set. As can be seen in 

Figure 8, the shapes of the two distributions are very similar, 

with most of the temperatures clustered over a 100øC range. 

Each distribution has a high-temperature tail which extends to 
over 1400øC; in other words, each shows the skewed unimodal 

distribution which we described earlier in the paper. In 

addition, there is very good agreement between the two sets of 

liquidus temperatures. The distribution of temperatures for the 

modern Pacific plate is aways within 40øC of the calculated 

potential temperatures derived from the Phanerozoic 
MORBlike suites in our data base. 

We argue that the slightly higher average temperatures (on 

average 32øC higher) derived from the Phanerozoic ophiolites 

are not significant given our present degree of resolution on 

geothermometers (+5%), the differences in time range of the 

data, and probable differences in spreading rate distribution of 

the data. Because half of the surface area of the Pacific plate is 

0-60 m.y. old crust, the liquidus temperatures from the Pacific 

plate are most representative of the time interval 0-60 m.y. 

B.P. rather than 0-180 m.y.B.P. The Phanerozoic ophiolites 

represent the time interval from 0 - 600 m.y.B.P. and on that 

basis alone would be expected to give an average temperature 

about 7øC higher. 
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Figure 8. Three percentage areas are shown: MIN, MEAN, 
and MAX. (a) Distribution of liquidus temperatures derived 
from the most primitive rock in each of 36 Phanerozoic 

ophiolite suites compiled for this study. The minimum, mean 
and maximum histograms were calculated using the error bars 
for the temperature values in Table 1. (b) Distribution of 

liquidus temperatures calculated from the residual depth 
anomalies in the modern Pacific plate. The minimum, mean 
and maximum histograms are the result of using different bin 
midpoints for the data. 

An additional source of higher temperatures may be the 

spreading rate distribution of the Phanerozoic ophiolites. It is 

known that off-ridge hotspots on slow spreading ridges can 

contaminate and increase the crustal thickness of the on-ridge 

magmatism. The reason for this is that the slope of the 

lithosphere-asthenosphere boundary is steep enough on slow 

spreading ridges to allow hot spot melts to migrate laterally 

[Rowley et al., 1992]. In contrast, the slope of the 
lithosphere-asthenosphere boundary on fast spreading ridges 

is too small to permit lateral melt migration of hot spot 

magma. Thus oceanic crust created at fast spreading ridges is 
less influenced by hotspots and will have a residual depth 

anomaly distribution with a smaller proportion of high 

temperatures. Although the spreading rate distribution of all 

of our Phanerozoic ophiolites is not known, some are inferred 

to have formed at slow spreading ridges [Coleman, 1977, 

1984a, 1984b]. We suggest that a temperature distribution 

derived from crust formed at slow spreading ridges will have a 

larger high-temperature tail. In contrast, virtually all of the 

crust formed on the Pacific plate in the last 60 m.y. was formed 

at ridges which spread at rates that are too high to allow 

hotspot melts to migrate laterally. Thus part of the relative 

narrowness of the high-temperature tail of the distribution 

from the Pacific plate is due to its derivation from crust that 

formed at high seafloor spreading rates. 

Figure 9 compares the shape of the temperature distribution 

for the Pacific plate with that of the Archean temperatures 

presented in this paper. We calculated the effects of using 

temperature data from a broad time interval by adding together 

three Pacific plate distributions, each offset by 30 øC. The 

resulting histogram mimics the effects of our estimated 60øC 

change in the liquidus temperature from 2.4 Ga to 3.5 Ga. Note 

that by adding together the three histograms with temperature 

offsets, we reduce the size of the peak by about half, from 60% 
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Figure 9. (a) Distribution of liquidus temperatures from the 
Pacific plate as modeled for the interval 2400-3500 m.y.B.P. 
During this time interval, mean mantle liquidus temperatures 
changed by around 60øC. We modeled the shape of the 
resulting temperature distribution by adding together three 
temperature distributions for the Pacific plate to which were 
added three temperature offsets: 0øC, 30øC, and 60øC. (b) 
Distribution of liquidus temperatures calculated from the most 
primitive rocks in the Archaean MORBlike suites. Three 

percentage areas are shown: MIN, MEAN, and MAX. The 
minimum, mean and maximum histograms were calculated 
using the error bars for the temperature values in Table 1. 
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to 31% frequency. We also make the peak broader. For the 
Archean data, we also calculated minimum and maximum 

temperature curves from the estimated error in the temperature 

calculations. Note that only one peak is statistically 

signficiant: this one peak appears in all three curves. Again, 
we see the skewed unimodal distribution which was discussed 

earlier. We also believe that as more data become available 

from all types of Archean greenstone belts, not only those 

with komatiites, the cluster of temperatures in the midrange of 
the distribution will increase in number. 

Conclusions 

We have compiled petrological data from 71 greenstone belts 

and ophiolite suites. We used this data set to calculate the 

range of mantle temperatures from the early Archean to the 

present. Our data show that the mean liquidus temperature has 

declined from roughly 1437+40øC in the middle Arcbean to 

roughly 1272+7øC in the Phanerozoic. The highest liquidus 

temperatures in our data set in each time interval have declined 
from 1576øC in the middle Archean Barberton Greenstone Belt 

to 1417øC in the Phanerozoic Gorgona Island ophiolite. 

These declines in liquidus temperature are relatively modest. 

After converting our liquidus temperatures to potential 

temperature, we find that the mean mantle potential 

temperature has declined from 1618+55øC in the middle 

Archean to roughly 1380+10øC in the Phanerozoic. The 

highest potential temperatures in our data set have declined 
from 1804øC in the middle Arcbean Barberton Greenstone Belt 

to 1594øC in the Phanerozoic Gorgona Island ophiolite. 

Consequently, our work does not support the contention of 

Sleep and Windley [1982], Nisbet and Fowler [1983], and 
McKenzie [1984] that the Archean mantle was very much 
hotter than the present-day mantle. Our results are more 

consistent with those of Jarvis and Campbell [1983] and 

Campbell and Jarvis [ 1984]. 

Because of preservational and sampling biases, our work 

probably gives an upper bound to the change in mantle 

temperature since the Archean. The temperature change 

obtained by using an envelope technique gives a lower bound 

to the change in mantle temperatures. The amount of change 

in the potential temperature from the late Archean to the 

present day ranges from a low of 137+ 8øC (from temperature 

ranges) to 187+42øC (from temperature means). The amount of 

change in the potential temperature from the middle Arcbean to 

the present ranges from a low of 177+14øC (from temperature 

ranges) to a high of 238+ 56øC (from temperature means). It is 

reassuring to note that the mean values for the temperature 

change obtained from both techniques have standard 

deviations which indicate that the temperature changes are the 
same within the limits of error. 

Our results show that komatiites do not represent "normal" or 

"average" Archean mantle, as argued by Nisbet and Fowler 

[1983], but rather fall on the high-temperature tail of a skewed, 

unimodal Archean temperature distribution. In other words, 

the temperature distribution of the Archean mantle was not 

bimodal. Therefore komatiites more probably were derived 

from Archean hotspots, not from average Archean mantle. 

These results satisfy the conditions put forth by Kato et al. 

[1988a, 1988b] with regard to the near-chondritic trace 

element ratios in the present-day mantle. 

The skewed, unimodal shape of our Arcbean temperature 

distribution also implies that hotspots produced only a 

relatively small proportion of magmas in the Arcbean and 

hence accounted for only a small percentage of the total 

oceanic heat loss in the Archean. Consequently, the major 
method of terrestrial heat loss in the Arcbean must have been 

the production, convective hydrothermal cooling, and 

subduction of normal, ridge-produced oceanic lithosphere, just 

as it is in the present day. The existence of Archean hotspots 

also supports the idea of a large temperature discontinuity 

across the Archean core-mantle boundary [Sleep et al., 1988], 

because the generation of hotspots is probably the result of 

plumes formed at that depth. 

The results of our comparison of the temperature regimes in 

the Archean and the Phanerozoic do not support suggestions 

that there was a sudden change in mantle convection at the 

Archean-Proterozoic boundary [Campbell and Grijffiths, 1992]. 

Our data are most consistent with a gradual evolution of the 

temperature regime in the mantle, directly correlated with 

changes in the rate and amount of radiogenic heat production. 

Acknowledgments. We thank William Menke, Mike 

B ickle, Hazel Chapman, Dave Walker, Geoff Davies, Dave 

Stevenson, Jeff Weissel, and Sarah Hoffman for helpful 

comments on the manuscript. We thank the following 

contracts for partial support of this work: NSF grant EAR88- 
15975 and OCE92-00116. Lamont-Doherty Earth Observatory 
Contribution //5184 

References 

Aitken, B. G., and L. M. Echeverria, Petrology and geochemistry of 
komatiites and tholeiites from Gorgona Island, Columbia, Contrib. 
Mineral. Petrol., 86, 94-105, 1984. 

Allart, J. H., The pre-3760 m.y. old supracrustal rocks of the Isua area, 
Central West Greenland, and the associated occurence of quartz- 
banded ironstone, in The Early History of the Earth , edited by B. F. 
Windley, pp. 177-190, John Wiley, New York, 619 pp., 1976. 

Anders, E., and N. Grevesse, Abundances of the elements: Meteoritic and 
solar, Geochirn. Cosrnochirn. Acta, 53, 197-214, 1989. 

Anderson, D. L., Theory of the Earth, 366 pp., Blackwell Scientific, 
Boston, Mass., 1989. 

Arndt, N. T., Thick, layered peridotite-gabbro flows in Munro Township, 
Ontario, Can. J. Earth Sci., 14, 2620-2637, 1977. 

Arndt, N. T. and G. A. Jenner, Crustally contaminated komatiites and 
basalts from Kambalda, Western Australia, Chern. Geol., 56, 229-255, 
1986. 

Arndt, N. T., and E.G. Nisbet, What is a komatiite?, in Komatiites, edited 
by N. T. Arndt and E.G. Nisbet, pp. 19-27, Allen and Unwin, 
Winchester, Mass., 1982. 

Arndt, N. T., A. J. Naldrett, and D. R. Pyke, Komatiitic and iron-rich 
thoeleiitic lavas of Munro Township, northeast Ontario, J. Petrol., 18, 
319-369, 1977. 

Arndt, N. T., G. E. Brugmann, K. Lehnert, C. Chauvel, and B. W. 
Chappell, Geochemistry, petrogenesis, and tectonic environment of 
Circum-Superior belt basalts, in Geochemistry and Mineralization of 
Proterozoic Volcanic Suites, edited by T.C. Pharaoh, R.D. Beckinsdale, 
and D. Rickard, Spec. Publ. Geol. Soc. London, 33, pp. 133-145, 1987. 

Baragar, W. R. A., and R. F. J. Scoates, Volcanic geochemistry of the 
northern segments of the Circum-Superior Belt of the Canadian shield, 
in Geochemistry and Mineralization of Proterozoic Volcanic Suites, 
edited by T. C. Pharaoh, R. D. Beckinsdale, and D. Rickard, Spec. 
Pull. Geol. Soc. London, 33, 113-131, 1987. 

Barnes, S. J., M. P. Gorton, and A. J. Naldrett, A comparative study of 
olivine and clinopyroxene spinifex flows from Alexo, Abitibi 
greenstone belt, Ontario, Canada, Contrib. Mineral. Petrol., 83, 293- 
308, 1983. 

Barnes, S. J., R. E. T. Hill, and M. J. Gole, The Perseverence ophiolite 
complex, western Australia: the product of a komatiite lava river, J. 
Petrol., 29, 305-331, 1988. 

Beccaluva, L., G. B. Piccardo, and G. Serri, Petrology of northern 
Apenine ophiolites and comparison with other Tethyan ophiolites, in 
Ophiolites: Proceedings International Ophiolite Symposium Nicosia 
Cyprus, 1979, edited by A. Panayiotou, pp. 314-331, Cyprus Geological 
Survey Department, Nicosia, 1980. 

Bernard-Griffiths, J. M., S.N. Carpenter, J.J. Peucat, and B.M. Jahn, 
Geochemical and isotopic characteristics of blueschist facies rocks 



13,848 ABBOTT ET AL.: THERMAL HISTORY OF MANTLE 

from the Ile de Groix, Armorican Massif (northwest France), Lithos, 
19, 235-253, 1986. 

Bodinier, J.L., C. Dupuy, J. Dostal, and F. Carme, Geochemistry of 
ophiolites from the Chamrousse complex (Belledonne Massif, Alps), 
Contrib. Mineral. Petrol., 78, 379-388, 1981. 

Bogatikov, O. A., Early Precambrian Komatiites and High Magnesium 
Volcanics on the Baltic ShieM, (in Russian), 192 pp., Nauka, Leningrad, 
1988. 

Brouxel, M., and H. LaPierre, Geochemical study of an early Paleozoic 
island-arc-back-arc basin system, 1, The Trinity ophiolite (northern 
California), Geol. Soc. Am. Bull., I00, 1111-1119, 1988. 

Campbell, I. H., and R. W. Griffiths, The changing nature of mantle 
hotspots through time: Implications for the chemical evolution of the 
mantle, J. Geol. 92, 497-523, 1992. 

Campbell, I. H., and G. T. Jarvis, Mantle convection and early crustal 
evolution, Precambrian Res., 26, 15-56, 1984. 

Campbell, I. H., R. W. Griffiths, and R. I. Hill, Melting in an Archaean 
mantle plume: Heads it's basalts, tails it's komatiites, Nature, 339, 697- 
699, 1989. 

Capedri, S., G. Venturelli, G. Bocchi, J. Dostal, G. Garuti, and A. Rossi, 
The geochemistry and petrogenesis of an ophiolitic suite from Pindos, 
Greece, Contrib. Mineral. Petrol., 74, 189-200, 1980. 

Casey, J. F., D• L. Elthon, F. X. Siroky, J. A. Karson, and J. Sullivan, 
Geochemical and geological evidence bearing on the origin of the Bay 
of Islands and Coastal Complex ophiolites of Western Newfouadland, 
Tectonophysics, 116, 1-40, 1985. 

Cattell, A., and N. Arndt, Low- and high-alumina komatiites from a Late 
Archaean sequence, Newton Township, Ontario, Contrib. Mineral. 
Petrol., 97, 218-227, 1987. 

Cawood, P. A., A geochemical study of metabasalts from a subduction 
complex in Eastern Australia, Chem. Geol., 43, 29-47, 1984. 

Christie, D. M., I. S. E. Carmichael, and C. H. Langmuir, Oxidation state 
of mid-ocean ridge basalt glasses, Earth Planet. Sci. Lett. 79, 397-411, 
1986. 

Coish, R. A., F. S. Fleming, M. Larsen, R. Poyner, and J. Seibert, Early riff 
history of the Proto-Atlantic ocean: Geochemical evidence from 
metavolcanic rocks in Vermont, Am. J. Sci., 285, 351-378, 1985. 

Coish, R. A., D. A. Perry, C. D. Anderson, and D. Bailey, Metavolcanic 
rocks from the Stowe formation, Vermont: Remnants of ridge and 
intraplate volcanism in the Iapetus Ocean, Am. J. $ci., 286, 1-28, 1986. 

Coleman, R. G., Ophiolites: Ancient Oceanic Lithosphere?, Springer- 
Verlag, New York, 1977. 

Coleman, R. G., Ophiolites and the tectonic evolution of the Arabian 
Peninsula, in Ophiolites and Oceanic Lithosphere, edited by I. G. Gass, 
S. J. Lippard, and A. W. Shelton, pp. 359-366, Blackwell Scientific, 
Boston, Mass., 1984a. 

Coleman, R. G., The diversity of ophiolites,Geol. Mijnbouw, 63, 141-150, 
1984b. 

Condie, K. C., M. J. Viljoen, and E. J. D. Kable, Effects of alteration on 
element distributions of Archean tholeiites from the Barberton 

greenstone belt, South Africa, Contrib. Mineral. Petrol., 64, 75-89, 
1977. 

Crawford, A. J., and R. R. Keays, Petrogenesis of Victorian Cambrian 
tholeiites and implications for the origin of associated boninites, J. 
Petrol., 28, 1075-1109, 1987. 

Davis, T. E., M. R. Johnston, P. C. Rankin, and R. J. Still, The Dun 
mountain ophiolite belt in East Nelson, New Zealand, in Ophiolites: 
Proceedings International Ophiolite Symposium Cyprus, 1979, edited 
by A. Panayiotou, pp. 480-496, Cyprus Geological Survey Department, 
Nicosia, 1980. 

Defant, A., Physical Oceanography, vol. 1, 729 pp., Pergamon, New 
York, 1961. 

Desmons, J., and L. Beccaluva, Mid-ocean ridge and island-arc affinities 
in ophiolites from Iran: paleogeographic implications, Chem. Geol., 39, 
39-63, 1983. 

Dobrzhinestakaya, L. F., Petrochemistry and geochemistry of the volcanic 
and plutonic basite-hyperbasite rocks in the early Proterozoic Baykal- 
Vitim Greenstone Belt, Geokhimiya, 7, 15-28, 1986. 

Drury, S. A., Geochemistry of Archaean metavolcanic rocks from the 
Holenarsipur and Shigegudda volcano-sedimentary belts of Karnataka, 
South India, Precambrian Res., 19, 119-139, 1982. 

Dungan, M. A., J. A. Vance, and D. P. Blanchard, Geochemistry of the 
Shuksan greenschists and blueschists, North Cascades, Washington: 
Variably fractionated and altered metabasalts of oceanic affinity, 
Contrib. Mineral. Petrol., 82, 131-146, 1983. 

Dunning, G. R., and T. E. Krogh, Geochronology of ophiolites of the 
Newfoundland Appalachians,Can. J. Earth Sci., 22, 1659-1670, 1985. 

Dunning, G. R., and R. B. Pedersen, U/Pb ages of ophiolites and arc- 
related plutons of the Norwegian Caledonides: Implications for the 
development of Iapetus, Contrib. Mineral. Petrol., 98, 13-23, 1988. 

Dymek, R. F., S.C. Brothers and C. M. Schiffties, Petrogenesis of 
ultramafic metamorphic rocks from the 3800 Ma Isua Supercrustal 
Belt, West Greenland, J. Petrol., 29, 1353-1397, 1988. 

Echeverria, L. M., Tertiary and Mesozoic komatites from Gorgona island, 
Colombia: Field relations and geochemistry, Contrib. Mineral. Petrol., 
73, 253-266, 1980. 

Elthon, D. and W. I. Ridley, The petrology of the Tortuga ophiolite 
complex, southern Chile, in Ophiolites: Proceedings International 
Ophiolite Symposium Cyprus, 1979, edited by A. Panayiotou, pp. 507- 
513, Cyprus Geological Survey Department, Nicosia, 1980. 

Elueze, A. A., Petrochemical and petrogenetic characteristics of 
Precambrian amphibolites of the Alawa district, Northwest Nigeria, 
Chem. Geol., 45, 29-41, 1985. 

Flower, M. F. J., and H. M. Levine, Petrogenesis of a tholeiite-boninite 
sequence from Ayios Mamas, Troodos ophiolite: Evidence for splitting 
of a volcanic arc?, Contrib. Mineral. Petrol., 97, 509-524, 1987. 

Francis, D., and A. J. Hynes, Komatiite-derived tholeiites in the 
Proterozoic of New Quebec, Earth Planet. Sci. Lett., 44, 473-481, 
1979. 

Francis, D.M., A.J. Hynes, J.N. Ludden, and J. Bedard, Crystal 
fractionation and partial melting in the petrogenesis of a Proterozoic 
high-MgO volcanic suite, Ungava, Quebec, Contrib. Mineral. Petrol., 
78, 27-36, 1981. 

Friend, C.R.L., R.P. Hall, and D.J. Hughes, The geochemistry of the 
Malene (Mid-Archaean) ultramafic-mafic amphibolite suite, southern 
west Greenland, Archean Geology, 2nd Int. Symp., edited by J. E. 
Glover and D.I. Groves, Spec. Publ. Geol. Soc. Aust., 7, 515 pp., 1981. 

Fumes, H., D. Roberts, B. Sturt, B. A. Thon, and G.H. Gale, Ophiolite 
fragments in the Scandinavian Caledonides, in Ophiolites: Proceedings 
International Ophiolite Symposium Cyprus, 1979, edited by A. 
Panayiotou, pp. 582-599, Cyprus Geological Survey Department, 
Nicosia, 1980. 

Fumes, H., A. Thon, J. Nordas, and L. B. Gatmann, Geochemistry of 
Caledonian metabasalts from some Norwegian ophiolite fragments, 
Contrib. Mineral. Petrol., 79, 295-307, 1982. 

Fumes, H., R. B. Pederson, and C. J. Stillman, The Leka ophiolite 
complex, central Norwegian Caledonides: Field characteristics and 
geotectonic significance, J. Geol. Soc. London, 145, 401-412, 1988. 

Gill, J. B., Sr-Pb-Nd isotopic evidence that both MORB and OIB sources 
contribute to oceanic island arc magmas in Fiji, Earth Planet. Sci. Lett., 
68, 443-458, 1984. 

Girardeau, J., J. C. C. Mercier, and W. Xibin, Petrology of the mafic 
rocks of the Xigaze ophiolite, Tibet, Contrib. Mineral. Petrol., 90, 309- 
321, 1985. 

Goldich, S.S., C. E. Hedge,T. W. Stern, J. L. Wooden, J. B. Bodkin, and 
R. M. North, Archean rocks of the Granite Falls area, southwestern 
Minnesota, pp. 19-43, Spec. Pap. Geol. Soc. Am., 182 pp., 1980. 

Green, J. C., and K. J. Schulz, Iron-rich basaltic komatiites in the early 
Precambrian Vetmillion district, Minnesota, Can. J. Earth Sci., 14, 
2181-2192, 1977. 

Gruau, G., B. M. Jahn, A. Y. Glikson, R. Davy, A. H. Hickman, and C. 
Chauvel, Age of the Archean Talga-Talga subgroup, Pilbara block, 
Western Australia and early evolution of the mantle: New Sm-Nd 
isotopic evidence, Earth Planet. $ci. Lett., 85, 105-116, 1987. 

Halden, N.M., Existence of a marginal basin within the Circum-Superior 
Belt: Geochemical evidence from the Churchill-Superior boundary in 
Manitoba, Canada, Precambrian Res., 49, 167-183, 1991. 

Hall, R., Disrupted Tethyan ophiolites, in Ophiolites: Proceedings 
International Ophiolite Symposium Cyprus, 1979, edited by A. 
Panayiotou, pp. 287-291, Cyprus Geological Survey Department, 
Nicosia, 1980. 

Hall, R. P., The tholeiitic and komatiitic affinities of the Malene 
metavolcanic amphibolites from Ivisartoq, southwestern Greenland, pp. 
1-20, Rapp. 97, Groenl. Geol. Unders., 1980a. 

Hallberg, J. A., D. N. Carter, and K.N. West, Archaean volcanism and 
sedimentation near Meekatharra, Western Australia, Precambrian 
Res., 3, 577-595, 1976. 

Hanruo, W. and D. Wanming, Basic geological features of the Yarlung 
Zangbo ophiolite belt, Xizang, China, in Ophiolites: Proceedings 
International Ophiolite Symposium Cyprus, 1979, edited by A. 
Panayiotou, pp. 462-472, Cyprus Geological Survey Department, 
Nicosia, 1980. 

Hanski, E., Komatiitic and tholeiitic metavolcanics of the Siivikkovaara 
area in the Archean Kuhmo greenstone belt, Eastern Finland, Suom. 
Geol. Seura Bull., 52, 67-100, 1980. 

Hawkins, J., Petrology of back-arc basins and island arcs: Their possible 
role in the origin of ophiolites, in Ophiolites: Proceedings Internatiotml 
Ophiolite Symposiu•n Cyprus, 1979, edited by A. Panayiotou, pp. 244- 
254, Cyprus Geological Survey Department, Nicosia, 1980. 

Heaman, L. M., N. Machado, T. E. Krogh, and W. Weber, Precise U-Pb 
zircon ages for the Molson dyke swarm and the Fox River sill: 
Constraints for Early Proterozoic crustal evolution in northeastern 
Manitoba, Canada, Contrib. Mineral. Petrol., 94, 82-89, 1986. 

Hoffman, P. F., and G. Ranalli, Archean oceanic flake tectonics, 
Geophys. Res. Lett., 15, 1077-1080, 1988. 

Hoffman, S. E., Alteration minerology and geochemistry of the Archean 
Onverwacht group, Barberton Mountain Land, South Africa, M.S. 
thesis, 386 pp., Oregon State Univ., Corvallis, 1984. 

Hussain, S. M., and S. M. Naqvi, Geological, geophysical, and 
geochemical studies over the Holenarsipur schist belt, in Precambrian 
of South India, edited by S. M. Naqvi and J. J. W. Rogers, Mere. Geol. 
Surv. India, 4, 73-95, 1983. 



ABBOTI' ET AL.: THERMAL HISTORY OF MANTLE 13,849 

Hussain, S. M., S. M. Naqvi, and T. G. Rao, Geochemistry and 
significance of mafic-ultramafic rocks from the southern part of the 
Holenarsipur schist belt, Karnataka, J. Geol. Soc. India, 23, 19-31, 
1982. 

Jahn, B. M., and W. G. Ernst, Late Archean Sm-Nd isochron age for 
mafic-ultramafic supracrustal amphibolites from the northeastern Sino- 
Korean craton, China, Precambrian Res., 46, 295-306, 1990. 

Jahn, B. M., Mid-ocean ridge ophiolite or marginal basin origin of the East 
Taiwan ophiolite: chemical and isotopic evidence, Contrib. Mineral. 
Petrol., 92, 194-206, 1986. 

•ahn, B. M., B. Auvray, S. Blais, R. Capdevila, J. Cornichet, F. Vidal, and 
J. Hameurt, Trace element geochemistry and petrogenesis of Finnish 
greenstone belts, J. Petrol., 21, 201-244, 1980. 

Jarvis, G., and I. H. Campbell, Archean komatiites and geotherms: 
Solution to an apparent contradiction, Geophys. Res. Lett., 10, 1133- 
1136, 1983. 

Kato, T, A. E. Ringwood, and T. Irifune, Experimental determination of 
element partitioning between silicate perovskites, garnets, and liquids: 
Constraints on early differentiation of the mantle, Earth Planet. Sci. 
Lett., 89, 123-145, 1988a. 

Kato, T., A. E. Ringwood, and T. Irifune, Constraints on element partition 
coefficients between MgSiO 3 perovskite and liquid determined by 
direct measurements, Earth Planet. Sci. Lett., 90, 65-68, 1988b. 

Klein, E. M., and C. H. Langmuir, Global correlations of ocean ridge 
basalt chemistry with axial depth and crustal thickness, J. Geophys. 
Res., 92, 8089-8115, 1987. 

Konnikov, E.G., On the problem of ophiolites of the Baikal-Muya Belt, 
Soy. Geol. Geophys., Engl. Transl., 32(3), 104-113, 1991. 

Kontinen, A., An early Proterozoic ophiolite - The Jormua mafic- 
ultramafic complex, northeastern Finland, Precambrian Res., 35, 313- 
341, 1987. 

Kroenke, L. W., W. H. Berger, T. R. Janecek et al., Introduction, 
Proceedings of the Ocean Drilling Program, Initial Reports, 130, pp 5- 
9, College Station, Texas, (Ocean Drilling Program), 1991. 

Kroner, A., and W. Todt, Single zircon dating constraining the maximum 
age of the Barberton greenstone belt, southern Africa, J. Geophys. 
Res., 93, 15,329-15,339, 1988. 

Kulikova, V. V., V.S. Kulikov, and A. A. Cherepanov, Tokshinsky 
structure, in Volcanism of the Archean Greenstone Belts of Karelia (in 
Russian), edited by V. A. Sokolov, pp. 56-61, Nauka, Leningrad, 
1981a. 

Kulikov, V. S, V. V. Kulikova, and V. N. Furman, Kamennozero 
structure, in Volcanism of the Archean Greenstone Belts of Karelia (in 
Russian), edited by V. A. Sokolov, pp. 41-50, Nauka, Leningrad, 
1981b. 

Kulikova, V. V., and V. S. Kulikov, Schilos structure, in Volcanism of the 
Archean Greenstone Belts of Karelia (in Russian), edited by V. A. 
Sokolov, pp. 29-37, Nauka, Leningrad, 1981. 

Langmuir, C. H., E. M. Klein, and T. Plank, Petrological constraints on 
mid-ocean ridge basalts: constraints on melt generation beneath ocean 
ridges, Mantle Flow and Melt Generation at Mid-Ocean Ridges, 
Geophys. Mono. 71, 361pp., 183-280, 1992. 

Leeman, W. P., D. R. Smith, W. Hildreth, Z. Palacz, and N. Rogers, 
Compositional diversity of late Cenozoic basalts in a transect across the 
southern Washington Cascades: Implications for subduction zone 
magmatism, J. Geophys. Res., 95, 19,561-19,582, 1990. 

Lippard, S. J., A. W. Shelton, and I. G. Gass, The Ophiolite of Northern 
Oman, Mere. 11, Geol. Soc. of London, 1-178 pp., 1986. 

Lobach-Zuchenko, S. B., N.A. Arestova, and I. N. Krylov, Palaja Lamba 
greenstone belt, in Geology and Petrology of Archean Granite- 
Greenstone Complexes in Karelia (in Russian), edited by K. O. Kratz, 
pp. 8-57, Nauka, Leningrad, 1978. 

Longhi, J., D. Walker, and J. F. Hays, The distribution of Fe and Mg 
between olivine and lunar basaltic liquids, Geochim. Cosmochin• Acta, 
42, 1545-1558, 1978. 

Ludden, J., C. Hubert, and C. Gariepy, The tectonic evolution of the 
Abitibi greenstone belt of Canada, Geol. Mag., 123, 153-166, 1986. 

Mahoney, J. J.,et al. Geochemistry and age of the Ontong Java Plateau, in 
The Mesozoic Pacific: Geology, Tectonics and Volcanism, Geophys. 
Mono. 77, edited by M. S. Pringle, W. W. Sager and S. Stein, pp. 233- 
261, 1993. 

McGregor, V. R., and B. Mason, Petrogenesis and geochemistry of 
metabasaltic and metasedimentary enclaves in the Amitsoq gneisses, 
West Greenland, Am. Mineral., 62, 887-904, 1977. 

McKenzie, D. P., The generation and compaction of partially molten 
rock, J. Petrol., 25, 713-765, 1984. 

McKenzie, D. P., and M.J. Bickle, The volume and composition of melt 
generated by extension of the lithosphere, J. Petrol., 29, 625-679, 1988. 

McNutt, M. K., and A. V. Judge, The superswell and mantle dynamics 
beneath the South Pacific, Science, 248, 969-975, 1990. 

Michard-Vitrac, A., J. Lancelot, and C. J. Allegre, U-Pb ages on single 
zircons from the early Precambrian rocks of West Greenland and the 
Minnesota River valley, Earth Planet. Sci. Lett., 35, 449-453, 1977. 

Miyake, Y., MORB-like tholeiites formed within the Miocene forearc 
basin, Southwest Japan, Lithos, 18, 23-34, 1985. 

Montigny, R., H. Bougalt, Y. Bottinga, and C. J. Allegre, Trace element 

geochemistry and genesis of the Pindos ophiolite suite, Geochim. 
Cosmochin• Acta, 37, 2135-2147, 1973. 

Moore, J. M., Jr., Orogenic volcanism in the Proterozoic of Canada, 
Spec. Pap. Geol. Assoc. Can. in Volcanic Regimes in Canada, edited by 
W. R. A. Baragar, L. C. Coleman, and J. M. Hall, 16, 127-148, 1977. 

Mottana, A., R. Bocchio, G. Liborio, L. Morten, and W. V. Maresch, The 
eclogite-bearing metabasaltic sequence of Isla Margarita, Venezuela: 
a geochemical study, Chemical Geology, 50, 351-368, 1985. 

Mutanen, T., Komatiites and komatiite provinces in Finland, Geologi, 28, 
49-56, 1976. 

Naldrett, A. J., and A. R. Turner, The geology and petrogenesis of a 
greenstone belt and related nickel sulfide mineralization at Yakabindie, 
Western Australia, Precambrian Res., 5, 43-103, 1977. 

Nesbitt, R. W., I. W. Walker, and D.F. Blight, Geochemistry of Archean 
metabasaltic lavas, Diemals, Western Australia, in Archean Geology, 
edited by J. E. Grover and D. I. Groves, Report Geol. Surv. Western 
Aust., 12, 15-26, 1984. 

Nisbet, E.G., and C. M. R. Fowler, Model for Archean plate tectonics, 
Geology, 11, 376-379, 1983. 

Nisbet, E.G., and M. J. Cheadle, Constraints on Archean magmatism from 
fresh komatiites, paper presented at International Geological Congress, 
Kyoto, Japan, August 24-Sept. 3, 1992. 

Nisbet, E.G., M. J. Bickle, and A. Martin, The mafic and ultramafic lavas 
of the Belingwe greenstone belt, Rhodesia, J. Petrol., 18, 521-566, 
1977. 

Nisbet, E.G., et al., Uniquely fresh 2.7 Ga komatiites from the Belingwe 
greenstone belt, Zimbabwe, Geology, 15, 1147-1150, 1987. 

Nutman, A. P., The early Archaean to Proterozoic history of the Isukasia 
area, southern West Greenland, Bull. Groen.. Geol. Unders. 154, 1-71, 
1986. 

O'Hara, M. J., Zoned ultrabasic and basic gneiss masses in the early 
Lewisian metamorphic complex at Scourie, Sutherland, J. Petrol., 2, 
248-276, 1961. 

Ottohello, G., J. L. Joron, and G. B. Piccardo, Rare earth and 3D transition 
element geochemistry of peridotitic rocks, II, Ligurian peridotites and 
associated basalts, J. Petrol., 25, 373-393, 1984. 

Paktunc, D. A., Petrogenesis of ultramafic and mafic rocks of the 
Thompson Nickel Belt, Manitoba, Contrib. Mineral. Petrol., 88, 348- 
353, 1984. 

Pallister, J. S., J. R. Budahan, and B. L. Murchey, Pillow basalts of the 
Angayucham terrane: Oceanic plateau and island crust accreted to the 
Brooks range, J. Geophys. Res., 94, 15,901-15,923, 1989. 

Parrot, J. F., Assemblage ophiolitique du Baer-Bassit et termes effusifs du 
volcano-sedimentaire, Tray. Doc. ORSTOM, 72, 292 pp., 1977. 

Parsons, B. A., Causes and consequences of the relation between area 
and age of the ocean floor, J. Geophys. Res., 87, 289-302, 1982. 

Parsons, B., and J. G. Sclater, An analysis of the variation of ocean floor 
bathymetry and heat flow with age, J. Geophys. Res., 82, 803-827, 
1977. 

Pearce, J. A., and J. R. Cann, Tectonic setting of basic volcanic rocks 
determined using trace element analyses, Earth Planet. Sci. Lett., 19, 
290-300, 1973. 

Pearce, J. A., and M. J. Norry, Petrogenetic implications of Ti, Zr, Y, and 
Nb variations in volcanic rocks, Contrib. Mineral Petrol., 69, 33-47, 
1979. 

Pearce, J. A., S. J. Lippard, and S. Roberts, Characteristics and tectonic 
significance of supra-subduction zone ophiolites, in Marginal Basin 
Geology, edited by B. P. Kokelaar, and M. F. Howells, Spec. Publ. 
Geol. Soc. London, 16, 77-94, 1984. 

Peredery, W. V., Relationship of ultramafic amphibolites to metavolcanic 
rocks and serpentinites in the Thompson Belt, Manitoba, Can. Mineral., 
17, 187-200, 1979. 

Prestvik, T. The Caledonian ophiolite complex of Leka, north central 
Norway, in Ophiolites: Proceedings International Ophiolite 
Symposium Cyprus, 1979, edited by A. Panayiotou, Cyprus Geological 
Survey Department, Nicosia, pp. 555-556, 1980. 

Rajamani, V., K. Shivkumar, G. N. Hanson, and S. B. Shirey, 
Geochemistry and petrogenesis of amphibolites, Kolar schist belt, South 
India: Evidence for komatiitic magma derived by low percentages of 
melting of the mantle, J. Petrol., 26, 92-123, 1985. 

Rautenschlein, M., G. A. Jenner, J. Hertogen, A. W. Hofmann, R. 
Kerrich, H. U. Schminke, and W. M. White, Isotopic and trace element 
composition of volcanic glasses from the Akaki canyon, Cyprus: 
Implications for the origin of the Troodos ophiolite, Earth Planet. Sci. 
Lett., 75, 369-383, 1985. 

Ray, K. K., S. Sengupta, and H. J. Van den Hul, Chemical characters of 
volcanic rocks from Andaman ophiolite, India, J. Geol. Soc. London., 
145, 393-400, 1988. 

Richardson, S. H., J. J. Gurney, A. J. Erlank, and J. W. Harris, Origin of 
old diamonds in enriched mantle, Nature, 310, 198-202, 1984. 

Rivalenti, G. V., A. V. Girardi, M. Coltorti, C. T. Correia and M. 
Mazzucchelli, Geochemical models for the petrogenesis of komatiites 
from the Hidrolina Greenstone Belt, Central Goias, Brazil, J. Petrol., 
30, 175-197, 1989. 

Roeder, P. L., and R. F. Emslie, Oilvine-liquid equilibrium, Contrib. 
Mineral. Petrol., 29, 275-289, 1970. 



13,850 ABBOTI' ET AL.: THERMAL HISTORY OF MANTLE 

Rogers, G., and A.D. Saunders, Magnesian andesites from Mexico, Chile 
and the Aleutian Islands: Implications for magmatism associated with 
ridge-trench collision, in Boninites, edited by A.J. Crawford, Unwin 
Hyman, pp. 416-445, London, 1989. 

Rowley, C., C. W. Gable, and C. Kincaid, Dynamical interaction between 
upper mantle plumes and a spreading ridge: Three-dimensional 
experiments (abstract), Eos Trans. AGU, 73, 582, 1992. 

Rybakov, S. I., and A. I. Svetova, Koikary-Korbozero structure, in 
Volcanism of the Archean Greenstone Belts of Karelia (in Russian), 
edited by V.A. Sokolov, pp. 17-21, Nauka, Leningrad, 1981a. 

Rybakov, S. I., and A. I. Svetova, Paloselvginsky structure, in Volcanism 
of the Archean Greenstone Belts of Karelia (in Russian), edited by V. 
A. Sokolov, pp. 22-26, Nauka, Leningrad, 1981b. 

Schubert, G., and D. Sandwell, Crustal volumes of continents and of 
oceanic and continental submarine plateaus, Earth Planet. Sci. Lett., 92, 
234-246, 1989. 

Schulz, K. J., The petrology and geochemistry of Archean volcanics, 
western Vermillion district, northwestern Minnesota, Ph.D. thesis, 366 

pp., Univ. of Minn., 1977. 
Schulz, K. J., Magnesian basalts from the Archaean terrains of 

Minnesota, in Komatiites, edited by N.T. Arndt and E.G. Nisbet, pp. 
171-186, Allen and Unwin, Winchester, Mass., 1982. 

Scott, D. J., M. R. St-Onge, S. B. Lucas and H. Helmstaedt, The 1998 Ma 
Purtuniq ophiolite: Imbricated and metamorphosed oceanic crust in the 
Cape Smith thrust belt, northern Quebec, Geology, 16, 144-151, 1988. 

Sills, J. D., D. Savage, J. V. Watson, and B. F. Windley, Layered 
ultramafic-gabbro bodies in the Lewisian of northwest Scotland: 
Geochemistry and petrogenesis, Earth Planet. Sci. Lett., 58, 345-360, 
1982. 

Sims, P. K., and G. B. Morey, Geology of Minnesota: A Centennial 
Volume, St. Paul, Minn., Minnesota Geol. Survey, 632 pp., 1972. 

Skjerlie, K. P., H. Fumes, and R. J. Johansen, Magmatic development and 
tectonomagmatic model of the Solund-Stavfjord ophiolite complex, 
West Norwegian Caledonides, Lithos, 23, 137-151, 1989. 

Sleep, N.H., and B. F. Windley, Archean plate tectonics: Constraints and 
inferences, J. Geol., 90, 1129-1234, 1982. 

Sleep, N.H., M. A. Richards, and B. H. Hager, Onset of mantle plumes in 
the presence of preexisting convection, J. Geophys. Res., 93, 7672- 
7689, 1988. 

Smewing, J. D., and P. J. Potts, Rare-earth abundances in basalts and 
metabasalts from the Troodos Massif, Cyprus, Contrib. Mineral. Petrol., 
57, 245-258, 1976. 

Snfith, H. S., J. R. O'Neill, and A. J. Erlank, Oxygen isotope compositions 
of minerals and rocks and chemical alteration patterns in pillow lavas 
from the Barberton greenstone belt, South Africa, in A rchean 
Geochemistry, edited by A. Kroner et al., pp. 115-137, Springer- 
Verlag, New York, 1984. 

Smith, W. H. F., Marine geophysical studies of seamounts in the Pacific 
Ocean, Ph.D. thesis, Columbia Univ., New York, 1990. 

Smith, W. H. F., On the accuracy of digital bathymetric data, J. Geophys. 
Res., 98, 9591-9603, 1993. 

Smith, W. H. F., and J.P. Morgan, A dynamic origin for asymmetric 
subsidence and geoid anomalies in the South Atlantic Ocean? 
(abstract), Eos Trans. AGU, 73, 582, 1992. 

Sokolov, V. A., Volcanism of the Archaean Greenstone Belts of Karelia (in 
Russian), 152 pp., Nauka, Leningrad, 1981. 

Spadea, P., M. Delaloye, A. Espinosa, A. Orrego, and J. J. Wagner, 
Ophiolite complex from La Tetilla, Southwestern Columbia, South 
America, J. Geol., 95, 377-395, 1987. 

Stein, C. A., and D. H. Abbott, Heat flow constraints upon the South 
Pacific Superswell, J. Geophys. Res., 96, 16,083-16,100, 1991. 

Stern, C., Geochemistry of Chilean ophiolites: Evidence for compositional 
evolution of the mantle source of back-arc basin basalts, J. Geophys. 
Res., 85, 955-966, 1980. 

Sturt, B. A., D. Roberts, and H. Furnes, A conspectus of Scandinavian 
Caledonian ophiolites, in Ophiolites and Oceanic Lithosphere, edited 
by I. G. Gass, S. J. Lippard, and A. W. Shelton, pp. 381-391, Blackwell 
Scientific, Boston, Mass., 1984. 

Suen, C. J., F. A. Frey, and J. Malpas, Bay of Islands ophiolite suite, 
Newfoundland: Petrologic and geochemical characteristics with 
emphasis on rare earth element geochemistry, Earth Planet. Sci. Lett., 
45, 337-348, 1979. 

Sun, S.S., and R. W. Nesbitt, Petrogenesis of Arcbean ultrabasic and 
basic volcanics: Evidence from rare earth elements, Contrib. Mineral. 
Petrol., 65, 301-325, 1978. 

Suppe, J., J. G. Liou, and W. G. Ernst, Paleogeographic origins of the 
Miocene East Taiwan ophiolite, Am. J. Sci., 281,228-246, 1981. 

Tegyey, M., and V. Johan, Une sequence komatiitique dans le 
Proterozoique inferieur de Guinee (Afrique de l'Ouest): Caracteres 
petrographiques, mineralogiques et geochimiques, Petrologie, C.R. 
Acad. Sci. Paris, 308, 193-200, 1989. 

Tremblay, A., R. Hebert, and M. Bergeron, Le complex d'Ascot des 
Appalaches du sud du Quebec: Petrologle et geochemie, Can. J. Earth 
Sci., 26, 2407-2420, 1989. 

Ulmer, P., The dependence of the Fe2+-Mg cation partitioning between 
olivine and basaltic liquid on pressure, temperature, and composition, 
Contrib. Mineral. Petrol., I01,261-273, 1989. 

Venkataramana, P., Chemical remnants of the Archaean protocrust in the 
Sargur schist belt of Karnataka craton, India, Precambrian Res., 19, 
51-74, 1982. 

Vidal, P., S. Blais, B. M. Jahn, R. Capdevila, and G. R. Tilton, U-Pb and 
Rb-Sr systematics of the Suomussalmi Arcbean greenstone belt 
(Eastern Finland), Geochim. Cosmochim. Acta, 44, 2033-2044, 1980. 

Viljoen, M. J., and R. P. Viljoen, Evidence for the existence of a mobile 
extrusive peridotitic magma from the Komati formation of the 
Onverwacht Group, in Upper Mantle Project pp. 88-113, Geol. Soc. S. 
Afr., Spec. Publ. No. 2, 1969. 

Volpe, A.M., and J. D. Macdougall, Geochemistry and isotopic 
characteristics of mafic (Phalud Ophiolite) and related rocks in the 
Delhi supergroup, Rajasthan, India: Implications for rifting in the 
Proterozoic, Precambrian Res., 48, 167-191, 1990. 

Walker, R. J., S. B. Shirey, and O. Stecher, Comparative Re-Os, Sm-Nd, 
and Rb-Sr isotope and trace element systematics for Arcbean komatiite 
flows from Munro Township, Abitibi Belt, Ontario, Earth Planet. Sci. 
Lett., 87, 1-12, 1988. 

Wasserburg, G. J., G. J. MacDonald, F. Hoyle, and W. A. Fowler, 
Relative contributions of uranium, thorium and potassium to heat 
production in the Earth, Science, 143, p. 465, 1964. 

White, R. S., D. MacKenzie, and R. K. O'Nions, Oceanic crustal thickness 
from seismic measurements and rare earth element inversions, J. 

Geophys. Res., 97, 19,683-19,715, 1992. 
Wooden, J. L., S.S. Goldich, and N.H. Suhr, Origin of the Morton Gneiss, 

southwestern Minnesota, 2, Geochemistry, Spec. Pap. Geol. Soc. Am. 
182, 57-75, 1980. 

Zhai, M. G., R. Y. Yang, W. Lu, and J. Zhou, Geochemistry and evolution 
of the Qingyuan Archaean granite-greenstone terrain, NE China, 
Precambrian Res., 27, 37-62, 1985. 

Zhai, M. G., B. F. Windley, and J. D. Sills, Archaean gneisses, 
amphibolites, and banded iron formations from the Anshan area of 
Liaoning Province, NE China: Their geochemistry, metamorphism and 
petrogenesis, Precambrain Res., 46, 195-216, 1990. 

D. Abbott, L. Burgess, and J. Longhi, Lamont-Doherty Earth 
Observatory, Rm 103A- Oceanography Building, Palisades, NY 10964. 

W.H.F. Smith, NOAA Geosciences Lab., N/OES-12, Building SSMC-12, 
Stat 8423, 1305 East West Highway, Silver Springs, MD 20910 

(Received February 15, 1993; 
revised October 18, 1993; 

accepted January 13, 1994.) 


