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ABSTRACT 

Background: Within-subject biospecimens pooling can theoretically reduce bias in dose-response 

functions issued from biomarker-based studies when exposure assessment suffers from classical-

type error. However, collecting many urine voids each day is cumbersome. We evaluated the 

empirical validity of a within-subject pooling approach and compared several options to avoid 

collecting all daily urine samples.  

Methods: In 16 pregnant women who collected a spot of each urine void over several 

nonconsecutive weeks, we compared concentrations of 10 phenols in daily, weekly and pregnancy 

within-subject pools. Pools were prepared from either three or all daily samples. From a simulation 

study using these data, we quantified bias in dose-response functions when using one to 20 urine 

samples per subject to assess methylparaben (a compound with moderate within-subject 

variability) and bisphenol A (high variability) exposures. 

Results: Correlations between exposure estimates from pools of all and of only three voids per day 

were above 0.8 for all time windows and compounds, except for benzophenone-3 and triclosan in 

the daily time-window (correlations, 0.6-0.7). With one spot sample to assess pregnancy exposure, 

correlations were all below 0.74. Using one biospecimen led to an attenuation bias in the dose-

response functions of 30% (methylparaben) and 68% (bisphenol A); four and 18 samples, 

respectively, were required to decrease bias to 10%. 

Conclusion: For non-persistent chemicals, collecting and pooling three samples per day instead of 

all daily samples efficiently estimates exposures over a week or more. Collecting around 20 

biospecimens can strongly limit attenuation bias for very little persistent chemicals like bisphenol 

A.  

 

Main Text
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INTRODUCTION 

 

Investigating the potential human health impact of environmental pollutants requires an accurate 

estimation of a proxy exposure over relevant time-windows.1,2 For chemicals with multiple or 

poorly characterized sources, given the high sensitivity of targeted biochemical assays, exposure 

biomarkers are the most frequently used option in human studies. However, despite its analytical 

accuracy, this approach may entail strong exposure misclassification. Indeed, for chemicals whose 

biomarker concentrations display high (within-subject) temporal variability (e.g., phenols, 

phthalates, dialkyl phosphates),3–5 relying on a single or a couple of biospecimens per subject 

provides a poor estimate of the average exposure over time. In the case of classical-type error, this 

is expected to lead to (sometimes strong) attenuation bias in dose-response relationships.2,6 

Classical-type measurement error occurs when individual’s biomarker concentrations vary around 

the true value, which can be approximated by the mean of repeated measurements throughout the 

target time window.7 

Increasing the number of biospecimens collected from each subject mitigates attenuation bias .2,8 

If several biospecimens are available in at least part of the study population, one can quantify 

biomarker concentrations in each biospecimen and use measurement error models to limit bias.7,9,10 

This approach increases analytical costs. One alternative consists in pooling the biospecimens 

within-subject, which benefits from the repeated exposure information collected for each subject, 

without increasing analytical costs because one or a few pools are analysed per subject. This so-

called within-subject biospecimens pooling approach has been validated theoretically,8 but its 

implementation in large-scale epidemiological studies and long exposure windows (e.g., the entire 

pregnancy) raises practical issues. In particular, collecting all daily urine samples may be 
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cumbersome; consequently, evaluating the efficiency of downgraded approaches in which only a 

few daily voids are sampled would help designing efficient and feasible studies. 

Our aims were: 1) to evaluate the efficiency of a sampling design based on collecting three spot 

urine samples per day to approximate the average exposure over daily, weekly and whole 

pregnancy exposure windows, compared to collecting all daily urine voids; and 2) to empirically 

investigate the effect of within-subject temporal variability in biomarkers concentrations in actual 

populations on bias in dose-response functions. We used select phenols as examples of non-

persistent biomarkers covering a large range of within-subject variability.  
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METHODS 

Overview 

We relied on pregnant women recruited for the SEPAGES (Suivi de l’Exposition à la Pollution 

Atmosphérique durant la Grossesse et Effets sur la Santé; Assessment of air pollution exposure 

during pregnancy and effects on health) cohort feasibility study, who collected a spot sample of 

each urine void over three pregnancy weeks.3,11 Urine was pooled within-subject using different 

approaches, from which we assessed the agreement between two estimates of daily, weekly and 

pregnancy exposure: one relied on pools made from all daily samples for each subject, and one on 

pools using fewer samples (aim 1). From the same exposure dataset, we generated a fictitious study, 

assumed phenols impacted a health outcome, and evaluated the impact on the estimated dose-

response function of increasing the number of biospecimens for exposure assessment, and of using 

an a posteriori disattenuation approach8 (aim 2).  

 

Biospecimens 

Urine collection 

SEPAGES-feasibility was approved by the appropriate ethical committees (CPP; CNIL; CCTIRS; 

ANSM). All participants provided written informed consent for biological measurements and data 

collection. The involvement of the Centers for Disease Control and Prevention (CDC) laboratory 

did not constitute engagement in human subject research.  

As detailed elsewhere,3 30 pregnant women living in Grenoble urban area (France) collected a spot 

sample of each urine void in polypropylene containers during three nonconsecutive weeks (median: 

13, 23, and 32 gestational weeks) between July 2012 and July 2013.  

Samples were kept in the participants’ refrigerators until the study staff retrieved them, aliquoted 

and froze them at -80oC into polypropylene cryovials at Inserm Institute for Advanced Biosciences, 
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Grenoble. Women recorded any missed void. Biomarkers were quantified in the 16 women with 

the smallest number of missed voids. Two women collected a sample of all their voids (no missing 

void, group A1), six more than 95% (group A2) and eight between 80 and 95% of their voids (group 

B).  

Urine pools 

We pooled individual samples as detailed in Figure 1. For each subject, we prepared (i) within-

subject daily pools (seven daily pools per subject per week) using an equal volume of all voids of 

each day (there were on average eight voids per day); (ii) within-subject weekly pools, obtained by 

pooling an equal volume of all daily pools of each of the three weeks; and (iii) a within-subject 

pregnancy pool, obtained by pooling all weekly pools. This ideal approach corresponds to protocol 

1. 

In a downgraded pooling approach (protocol 2), daily pools were prepared using three randomly 

selected samples (instead of all in protocol 1) from each subject: one from the morning (midnight 

to 11:59 A.M.), one from the afternoon (12:00-5:59 P.M.) and one from the evening (6:00-11:59 

PM). Weekly and pregnancy pools were prepared as in protocol 1 from these downgraded daily 

pools (Figure 1).  

All samples were kept frozen at -80°C in 2 mL polypropylene cryovials until shipment on dry ice 

to the CDC (Atlanta, Georgia, USA), where all biospecimens were stored (-70°C) until analysis. 

 

Quantification of phenol biomarkers 

Total (free plus conjugated) concentrations of 2,4-dichlorophenol, 2,5-dichlorophenol, 

benzophenone-3, bisphenol A, bisphenol S, triclosan, butylparaben, methylparaben, ethylparaben, 

and propylparaben were quantified using online solid-phase extraction high-performance liquid 

chromatography-isotope dilution-tandem mass spectrometry.12  
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Phenols were quantified in pregnancy pools of all 16 women. Because of cost limitations, we 

quantified phenols in weekly pools only in the eight women of groups A1 and A2 (group A); in 

daily pools of a whole week in the two women from group A1; and in only one random day in 

group A2 (20 daily pools in total). 

 

Aim 1: Efficiency of a downgraded within-subject pooling protocol for exposure assessment 

We compared the efficiency of the downgraded pooling approach (protocol 2), with that of the 

ideal pooling approach (protocol 1, our reference) to provide an estimate of exposure to the ten 

considered phenols over exposure windows of a day, a week and the whole pregnancy 

(corresponding to the average of the three follow-up weeks).  

For the pregnancy exposure window, we also compared exposure estimates from the ideal approach 

to other downgraded approaches based on reliance on one to eight spot samples randomly selected 

from all available samples collected for each of the eight women of group A: 

- Protocol 3, relying on a single random spot sample, consistent with the typical 

epidemiological study published in recent years (with the difference that samples are 

generally not randomly selected); 

- Protocols 4 and 5, relying on the averaged biomarker concentrations in three and eight 

random spot samples, respectively. 

Non-detectable concentrations were replaced by instrumental readings and, for null instrumental 

readings, by the biomarker-specific non-null lowest instrumental reading divided by √2. Biomarker 

concentrations were ln-transformed. 

The comparison of phenol concentrations averages (as well as creatinine and specific gravity 

measurements) between protocols was done using correlation coefficients, paired t-tests, Cohen’s 

Kappa coefficients, scatter plots and Bland-Altman plots.13,14  
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Aim 2: Impact of biomarker variability on dose-response estimates 

Methods are detailed in eAppendix 1. Our approach parallels that described in a theoretical study 

in which biomarker concentrations were simulated,8 with the difference that we relied here on 

phenol urinary concentrations from eight spot samples randomly selected from all available 

biospecimens collected throughout pregnancy in eight women (group A). A bootstrap approach 

was used to generate populations of 3,000 subjects with one to 20 biospecimens each. We 

quantified bias and statistical power of epidemiological studies aiming at relating exposure to two 

phenol biomarkers to a continuous health outcome (assumed to correspond to child weight at 3 

years). We chose two compounds, methylparaben (intraclass correlation coefficient, ICC=0.85) 

and bisphenol A (ICC=0.38), because of their contrasted pregnancy-specific ICCs in the studied 

population of eight women.3 Exposure was assumed to be assessed from biomarker concentration 

in one random spot sample or in within-subject pools of an increasing number of biospecimens.  

Bias was estimated as the difference in percent between the mean effect estimate (𝛽) over 1,000 

studies for the surrogates of exposure and the true effect (𝛽𝑡𝑟𝑢𝑒), divided by the true effect. 

Statistical power was calculated as the fraction of the 1,000 studies with a p-value for the 

association below 0.05.  

We additionally reported a posteriori disattenuated effect estimates.2,7,8 These estimates were 

obtained by dividing the regression coefficient associated to each compound by the ICC of the 

compound. We used two pregnancy-specific ICC: ICC1, ICC corresponding to the true value for 

this specific population, and estimated in our study population of eight women,3 and ICC2, average 

ICC from previous studies of pregnant women, namely 0.45 (methylparaben) and 0.20 (bisphenol 

A).15–20 Data were analysed using STATA 12.1 (Stata Corporation).   



9 

 

RESULTS 

Population 

Each woman collected between three and 15 urine specimens per day (median, 7, 25th-75th centiles, 

6-10) over three weeks (total number of samples: median, 160, 25th-75th centiles, 136-188). A 

median time of 8.9 weeks separated successive follow-up weeks (eTable 1). 

 

Efficiency of a downgraded within-subject pooling protocol 

Daily exposure window 

In daily pools from protocol 1, detection frequencies were above 75% for all phenols except 

benzophenone-3 (45%). Using three voids per day (protocol 2), detection frequencies were similar 

for most compounds except triclosan (50%) and benzophenone-3 (30%, Table 1).  

Biomarker daily averages were similar between protocols 1 and 2 for all biomarkers except 

bisphenol S, and triclosan, for which there was a trend of underestimation of daily averages with 

protocol 2 compared to protocol 1 (t-test p value<0.001, eFigures 1-2). Pearson correlations 

between ln-transformed biomarker concentrations from protocols 1 and 2 were highest for parabens 

(r≥0.96, Table 1) and above 0.80 for all compounds except benzophenone-3 (r=0.57) and triclosan 

(r=0.68). 

Weekly exposure window 

Detection frequencies in weekly pools were similar to those observed for the daily pools, except 

for butylparaben (58% in weekly pools, 85% in daily pools, Tables 1-2). Protocol 2 weekly 

concentration averages were similar to those of protocol 1, except for 2,5-dichlorophenol, 

propylparaben and bisphenol A, with median concentrations tending to be higher in protocol 2, 

compared to protocol 1 (eFigures 3-4). Ln-transformed weekly biomarker concentrations were 
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highly correlated between both protocols (r>0.8), the lowest correlation being for benzophenone-

3 (r=0.81) and the highest for three parabens and 2,5-dichlorophenol (r≥0.98, Table 2).  

Pregnancy exposure window 

In pregnancy pools, detection frequencies (median, 25th-75th centiles) were similar between 

protocols 1 (97%, 83-100%) and 2 (97%, 90-100%), and generally lower for protocol 3 (69%, 50-

88%), except for benzophenone-3 (63% [protocol 3] vs. 31% [protocols 1 and 2], Table 3).  

For all biomarkers, protocols 1 and 2 pregnancy averages (n=16 women) were in close agreement 

(r≥0.86). Regarding protocols 3-5 (n=8), correlations with estimates from protocol 1 increased with 

the number of spot biospecimens used to assess pregnancy exposure: depending on the compounds, 

correlations ranged from −0.67 to 0.74 for protocol 3 (one biospecimen during pregnancy), from 

0.60 to 0.92 for protocol 4 (3 biospecimens), and from 0.68 to 0.98 for protocol 5 (8 biospecimens, 

Table 3, Figure 2). For protocols 4-5, correlations with protocol 1 were above 0.80 for all 

biomarkers but bisphenols and triclosan. Scatter plots and Bland-Altman plots suggested 

underestimation of pregnancy exposure when using protocols 3-5, compared to protocol 1 

(eFigures 5-6). 

 

Impact of biomarker variability on dose-response estimates  

One biospecimen for exposure assessment 

When using one random spot sample per subject to assess exposure, the average effect estimate for 

methylparaben was -71g (95% confidence interval [CI]: -101, -40), corresponding to an attenuation 

bias of 29% compared to the true effect of -100g. Power was 99% (eTable 2).  
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For bisphenol A, relying on a single spot sample led to an average effect estimate of -31g (95% CI: 

-76, 16; attenuation bias, 69%). Power was 27% (eTable 3). 

A posteriori disattenuation using study-specific ICCs (ICC1) reduced the attenuation bias to 16% 

(methylparaben) and 19% (bisphenol A). By contrast, disattenuation applied with an average value 

of the biomarker-specific ICC from external studies (ICC2) overcorrected the effect estimate for 

both biomarkers: bias was +58% for methylparaben (compared to -29% without correction) and 

+54% for bisphenol A (compared to -69%, eTables 2-3). 

For both compounds, type I error rate did not increase (5%) when no effect of the true exposure 

was assumed (data not shown). 

Increasing the number of biospecimens 

Four (methylparaben) and 18 (bisphenol A) samples, were required to limit bias below 10% (Figure 

3). If disattenuation was applied using study-specific ICCs, the numbers of samples required were 

two (methylparaben) and three (bisphenol A). 
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DISCUSSION 

 

Assessing exposure biomarkers from one spot biospecimen per subject provides an error-prone 

estimate of exposure to chemicals with strong within-subject variability. Within-subject 

biospecimens pooling is an efficient way to estimate exposure. We compared four downgraded 

protocols with an ideal approach to provide insight about whether the within-subject biospecimens 

collection could be simplified without increasing error. Within-subject pooling of three samples 

per day was almost as efficient as collecting all daily samples to assess exposure averages over 

short (one week) to longer time periods (the whole pregnancy) for phenols with relatively short 

elimination half-lives. This was also the case for shorter (daily) time windows, except for 

benzophenone-3 and triclosan. When the entire pregnancy was the targeted exposure window, 

collecting 3 to 8 random spot biospecimens was almost as efficient as collecting all or three samples 

per day for several weeks, but not for all chemicals. 

Exposure misclassification from reliance on spot biospecimens entails bias in dose-response 

functions; we provided an empirical estimation of the amplitude of the corresponding attenuation 

bias, which was strong for compounds with high within-subject variability such as bisphenol A. 

Increasing the number of biospecimens collected per subject reduced the attenuation bias and 

increased statistical power. Applying the ICC-based a posteriori disattenuation method8 corrected 

part of the attenuation bias. The same approach using external ICCs derived from the literature 

increased the amplitude of the bias, showing the strong sensitivity of this method to the ICCs used. 

 

Study considerations 

By comparing exposure estimates in a small group of women (n=8), we may have reduced the 

variability of exposure biomarkers, possibly increasing measured correlations. However, the 
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number of biospecimens analysed (n=124) to make these comparisons was large. Missed voids 

may have artificially increased correlations between the two within-subject pooling approaches, by 

lowering the number of specimens in the ideal pooling approach. We limited this problem by 

selecting women with few missed voids.  

There are several ways to combine biospecimens within-subject. We created equal-volume pools, 

the simplest option in practice. Alternatives include pooling proportionally to the total volume of 

each void (a rather cumbersome approach), or taking into account the dilution of each urine sample 

(e.g., pooling volumes proportional to urine dilution). All pooling protocols were similarly affected 

by this choice, which might not strongly impact the agreement between the compared pooling 

protocols. The present study was restricted to a specific population and select chemicals. Hence, 

generalization of our results should be considered with great caution, as we discussed elsewhere.3 

In the simulation, we assumed that measurement error was of classical type, a reasonable 

assumption for exposure biomarkers.7,21  

 

Assessing exposure over time windows of various lengths 

For an exposure window of several weeks (typically the whole pregnancy), biomarker 

concentrations from a single random spot sample were, in general, in poor agreement with 

pregnancy exposure averages from the ideal protocol 1, confirming that relying on a single random 

spot sample does not accurately represent the pregnancy average. Increasing the number of 

biospecimens per subject improved the agreement for most of the studied chemicals, with fair 

agreement with protocol 1 pregnancy exposure averages when relying on three to eight random 

biospecimens, except for triclosan and bisphenols. However, although the exposure ranking was 

preserved (as seen from the correlation coefficients), when using 3-8 spot samples, the pregnancy 

average concentration was generally not perfectly estimated. This may not be an issue when one is 
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interested in estimating the slope of a dose-response function assumed to be linear, but becomes 

one when dose-response functions are not linear, or for biomonitoring studies. For chemicals with 

variability such as that of ethylparaben, triclosan and bisphenols, relying on eight random spot 

samples to assess pregnancy exposure may not be enough. Our previous study in the same 

population reported high within-subject variability for these compounds.3 In contrast to protocols 

relying on random spot samples, agreement with the ideal approach was high for all biomarkers 

when repeatedly collecting three daily samples, which confirmed that this approach is efficient to 

assess exposure over both short and long exposure windows, even for some of the chemicals with 

highly variable concentrations. 

Efficiently characterizing the average exposure over a week could be achieved collecting three 

biospecimens per day that week. When it came to characterizing exposure over a day, the approach 

was still efficient, except for benzophenone-3 and triclosan (correlations in the 0.5-0.7 range). 

However, caution is required in interpreting these results, as these biomarkers had the lowest 

detection frequencies.  

For a few chemicals (e.g., bisphenol A and triclosan for the daily window; 2,5-dichlorophenol, 

propylparaben and benzophenone-3 for the weekly window), exposure averages differed between 

protocols 1 and 2, but exposure rankings were preserved for all compounds except triclosan in the 

daily window. Results for triclosan are quite consistent across exposure windows; be it for exposure 

ranking or dose-response function estimation, collecting half a dozen of biospecimens in the 

exposure window of interest may not be sufficient to assess exposure. 

 

Bias in dose-response functions 

Attenuation in regression analyses is well-known in the context of classical-type error.7,8,21 Using 

real data, we quantified the attenuation bias in regression parameters when a single error-prone 
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biomarker measurement is used as surrogate of the true underlying exposure. Our findings confirm 

theoretical results according to which bias is related to ICC;2,7,8 e.g., Perrier et al.8 who, using 

simulated exposure data, reported an attenuation bias of 80% for highly variable biomarker 

concentrations (ICC=0.2), and of 40% for chemicals with less variable concentrations (ICC=0.6).  

Without a posteriori disattenuation, four samples were required for methylparaben and 18 for 

bisphenol A to limit bias below 10%, compared to six and 35 samples, respectively, in Perrier et 

al.8 Hence, we observed an attenuation bias of lower magnitude and a smaller number of 

biospecimens required to efficiently reduce bias. This may be due to the relatively high ICCs values 

in our study population, compared to those assumed by Perrier et al.8 Our overall assessment is that 

a few (3-5) biospecimens over a specific time window are required for chemical biomarker with a 

relatively low within-subject variability, while for highly variable chemical biomarkers, at least 

one or two dozen biospecimens are needed. 

A posteriori disattenuation, a simple technique to limit the impact of classical-type measurement 

error on dose-response function estimates, partly reduced the attenuation bias when using the ICCs 

observed in our population, which differed from the perfect correction observed by Perrier et al.8 

Perrier et al. simulated data using a predefined ICC, while we estimated ICCs from a small sample 

size (n=8 women), which may have reduced the precision of the ICCs estimates. Using ICCs 

extracted from the literature overcorrected (i.e., created a bias in the opposite direction with greater 

magnitude) regression estimates. Discrepancies in the temporality of urine collection between 

studies may partly explain the lack of validity of external ICCs, because ICCs depend on the 

considered time window.3 Also, exposure sources, pathways and toxicokinetics of chemicals may 

vary between populations, resulting in different ICCs. This underlines the relevance of estimating 

variability for each study, e.g. by analysing multiple spot biospecimens from a subsample of the 

study population to correct bias using a posteriori disattenuation, even though within-subject 



16 

 

pooling is used. When population-specific ICCs are not available, employing external ICCs to 

correct estimates should be done with great caution, if at all.7,22  

 

Within-subject pooling approach 

The downgraded within-subject pooling approach allows the investigation of short (days, weeks) 

or long (trimesters of pregnancy) exposure windows for the target biomarkers, despite limited 

efficiency for benzophenone-3 and triclosan in the shortest time windows (day) for the present 

study population. Overall, such an approach, without being too cumbersome for study participants, 

permits to combine information from many biospecimens to estimate exposure averages and reduce 

attenuation bias in effect estimates in dose-response functions, without increasing analytical costs 

because a single pooled sample per woman is analysed for a target exposure window.8,23 We have 

applied this approach in 479 pregnant women from SEPAGES couple-child cohort recruited in 

2014-2017 in Grenoble area,24 and in a subgroup of HELIX exposome project participants,25 

showing the feasibility of its implementation. 

We assumed that pooling samples did not entail any error. Pooling error may exist because of 

technical differences (e.g., technician-related variability, instruments precision); physical 

conditions (e.g., ambient temperature, thawing duration);26 or of lack of consideration of urinary 

dilution in the pooling strategy. In our study, a single technician pooled samples, limiting error due 

to biospecimens manipulation.  

Collecting and pooling three daily urine specimens over toxicologically-relevant exposure 

windows has the advantage of being less cumbersome than collecting all urine voids. Compared to 

collecting a single spot biospecimen per subject, the logistic burden and overall study costs are 

increased, which may affect sample size. Some subjects may be reluctant to repeatedly collect 

biospecimens, but these should not be excluded since unbalanced designs (with varying number of 
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biospecimens per subject) can give acceptable estimates of dose-response functions, despite a 

slightly higher bias in effect estimates.8 If collecting repeated samples is only possible among a 

few subjects, then this should still be undertaken, to provide an internal estimate of ICCs, which 

could be used to apply a posteriori disattenuation to estimates, at least as a sensitivity analysis. 

 

Conclusion 

Whatever its sensitivity and accuracy, quantification of non-persistent chemicals in a spot 

biospecimen can provide a poor estimate of exposure over time windows of a day or more. One 

relevant alternative is repeated collection of within-subject biospecimens without pooling or a 

within-subject biospecimens pooling approach.8 We demonstrate here for a large family of 

chemicals and range of within-subject variability in biomarker concentrations that a sampling 

approach relying on repeated within-subject pooling of three daily spot samples over a target 

exposure window (days, weeks, whole pregnancy) can accurately estimate exposure averages over 

this time window, without increasing analytical costs or being excessively cumbersome. Not 

pooling biospecimens and measuring exposure biomarkers in each biospecimen allows reliance on 

measurement error models,7,8 further limiting bias but for a larger assay cost.  

The within-subject biospecimens pooling approach appears to be a cost-efficient solution to 

minimize exposure misclassification related to the temporal variability of non-persistent exposure 

biomarkers. It may also be considered for non-persistent effect biomarkers, such as hormonal levels 

or seminal parameters.27 While repeating (and possibly averaging) measurements within each 

observation unit is a basic metrological principle in other areas of health and environmental 

sciences, (e.g., assessment of blood pressure or air pollution exposure), it is currently seldom 

applied to biomarker-based studies. Within-subject collection of repeated samples, with or without 
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pooling, could allow epidemiologists making the best of the “biomarker revolution”28 for 

biomarkers with high within-subject variability.  
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FIGURE LEGENDS 1 

Figure 1. Study design (n = 16 pregnant women from SEPAGES cohort feasibility study).  2 

 3 

 4 

Figure 2. All exposure windows – Pearson correlation coefficients (r) between Protocols 1 5 

(equal volumes of all spot urine voids were pooled within-subject) and 2 (equal volumes of 6 

three spot urine voids were pooled within-subject for daily pools, triangle marks) for all time 7 

windows: exposure estimates over a day (n = 8 women, N = 20 daily averages), a week (n = 8 8 

women, N = 24 weekly averages) and the whole pregnancy (based on three measurement 9 

weeks, n = 16 women, N = 16 pregnancy averages). For the whole pregnancy, estimates from 10 

Protocols 3 (+), 4 (×), and 5 (∗) are also reported (8 women, 8 pregnancy averages). 11 

 12 

 13 

Figure 3. Bias in the health eff ect estimate (in %) depending on the number of biospecimens 14 

pooled per subject to assess exposure (1,000 simulation runs with 3,000 subjects each; 15 

continuous health outcome, true eff ect β true = -100g), (A), Methylparaben (ICC1 of 0.85 and 16 

ICC2 of 0.45). (B), Bisphenol A (ICC1 of 0.38 and ICC2 of 0.2). 17 
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