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Abstract 21 

Bayes Factors can be used to provide quantifiable evidence for contrasting hypotheses and 22 

have thus become increasingly popular in cognitive science. However, Bayes Factors are 23 

rarely used to statistically assess the results of neuroimaging experiments. Here, we provide 24 

an empirically-driven guide on implementing Bayes Factors for time-series neural decoding 25 

results. Using real and simulated Magnetoencephalography (MEG) data, we examine how 26 

parameters such as the shape of the prior and data size affect Bayes Factors. Additionally, 27 

we discuss benefits Bayes Factors bring to analysing multivariate pattern analysis data and 28 

show how using Bayes Factors can be used instead or in addition to traditional frequentist 29 

approaches. 30 

  31 
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1. Introduction 32 

Bayes Factors provide an attractive alternative to the more traditional null hypothesis statistical 33 

testing (NHST) framework. In particular, the use of Bayes Factors allows us to differentiate 34 

between the amount of evidence for one theory over another in an intuitive way and sample 35 

data without a strict sampling plan (Keysers et al., 2020; Wagenmakers et al., 2018). The 36 

newfound popularity of Bayes Factors in cognitive science has not yet extended into cognitive 37 

neuroscience, partly because there are no standard implementations. Here, we will provide a 38 

data-driven guide on how Bayes Factors can be used in cognitive neuroscience, using an 39 

example multivariate classification analysis of Magnetoencephalography (MEG) data. 40 

 41 

Multivariate classification analyses have become a standard tool in analysing time-series 42 

neuroimaging data (Carlson et al., 2019; Contini et al., 2017; Grootswagers et al., 2017; 43 

Pantazis, 2020). To apply classification to time-series neural data, activation patterns are 44 

extracted across MEG sensors and classification analyses are used to test whether a given 45 

stimulus feature is represented in the neural data (see Figure 1 for an example). Across 46 

participants, we can then test whether there is information in the signal by statistically 47 

assessing whether classification accuracy is above chance. Under the null hypothesis the 48 

sample mean equals chance decoding and under the alternative hypothesis the sample mean 49 

is larger than chance decoding. Currently, NHST and p-values are the de-facto method of 50 

choice when assessing whether decoding is above chance. However, recent studies have 51 

started using Bayes Factors to assess classification accuracies (Grootswagers, Robinson, & 52 

Carlson, 2019b; Grootswagers, Robinson, Shatek, et al., 2019; e.g., Grootswagers et al., 53 

2021; Kaiser et al., 2018; Mai et al., 2019; Proklova et al., 2019; Robinson et al., 2019, 2021). 54 

In this paper, we focus on how Bayes Factors can be used to assess whether classification 55 

accuracy is above-chance or at-chance. The Bayesian framework of hypothesis testing  56 

involves directly comparing the predictions of two hypotheses (Jeffreys, 1939, 1935). Bayes 57 

Factors describe the probability of one hypothesis over the other given the observed data. In 58 

the multivariate pattern analysis (MVPA) context, this means we would use Bayes Factors to 59 

test the probability of above-chance classification versus at-chance classification given the 60 

classification results across participants at each timepoint.   61 

 62 

The Bayesian approach brings several advantages (Dienes, 2011, 2014, 2016b; Keysers et 63 

al., 2020; Morey et al., 2016; Wagenmakers et al., 2018). First, when calculating Bayes 64 

Factors, two hypotheses are tested simultaneously. For time-series classification analyses, it 65 

allows us to contrast evidence for above-chance versus at-chance decoding directly. In 66 
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addition, Bayes Factors are a measure of strength of evidence for one hypothesis versus 67 

another which means we can directly assess how much evidence we have for above-chance 68 

versus at-chance decoding at a given timepoint. This makes the interpretation of statistical 69 

results more intuitive, as multiple Bayes Factors can be compared directly with larger numbers 70 

reflecting more evidence. Another advantage is that Bayes Factors can be calculated 71 

iteratively while more data are being collected and that testing can be stopped when there is 72 

a sufficient amount of evidence. Such stopping-rules could be accompanied by a pre-specified 73 

acquisition plan and potentially an (informal) preregistration via portals such as the Open 74 

Science Framework (Foster & Deardorff, 2017). Using the data to determine when enough 75 

evidence has been collected is particularly relevant for neuroimaging experiments, as it might 76 

significantly reduce research costs and reduce the risk of having underpowered studies. Thus, 77 

using a Bayesian approach to statistically assess time-series classification results can be 78 

beneficial both from a theoretical as well as an economical standpoint and might ease the 79 

ability to interpret and communicate scientific findings. 80 

 81 

While there are clear advantages to using Bayes Factors for time-series decoding studies, 82 

incorporating Bayes Factors into existing decoding pipelines may seem daunting. The goal of 83 

the current paper is to present an empirically-driven guide to using Bayes Factors for 84 

assessing time-series neuroimaging classification results. We present a practical example 85 

based on a previously published time-series decoding study (Teichmann et al., 2019) and will 86 

present results from simulations to show the influence of certain parameters on Bayes Factors. 87 

We make use of the established Bayes Factor R package (Morey et al., 2015) to calculate the 88 

Bayes Factors but provide sample codes along with this paper showing how to access the 89 

Bayes Factor R package via Matlab and Python 90 

(https://github.com/LinaTeichmann1/BFF_repo). We also show how the Bayes Factors in our 91 

example compare to p-values. Based on empirical evidence, we will give recommendations 92 

for Bayesian analysis applied to M/EEG classification results. The aim of this paper is to 93 

provide a broad introduction to Bayes Factors from a viewpoint of time-series neuroimaging 94 

decoding. We aim to do so without going into the technical or mathematical detail, and instead 95 

provide pointers to relevant literature on the specifics. 96 

 97 
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 98 

Figure 1. Overview of MVPA for time-series neural data with simulated data. (A) Example 99 
MEG sensors / EEG channels. (B) Simulated time-series neuroimaging data for a few 100 
sensors/channels. Vertical lines show stimulus onsets with example stimuli plotted below. 101 
Data is first epoched from -100 to 800 ms relative to stimulus onset, resulting in multiple time-102 
series chunks associated with seeing a red or a green shape. (C) Using the epoched data, we 103 
can extract the sensor/channel activation pattern across the different sensors/channels (only 104 
2 displayed for simplicity) for every trial at every timepoint. Then a classifier (black line) is 105 
trained to differentiate between the activation patterns evoked by red and green trials. (D) 106 
Example of a 4-fold cross validation where the classifier is trained on three quarters of the 107 
data and tested on the left-out quarter. This process is repeated at every timepoint. (E) We 108 
can calculate how often the classifier accurately predicts the colour of the stimulus at each 109 
timepoint by averaging across all testing folds. Theoretical chance level is 50% as there are 110 
two conditions in the simulated data (red and green). During the period before stimulus onset, 111 
we expect decoding to be at chance, and thus the baseline period can serve as a sanity check. 112 

  113 
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2. Methods & Results 114 

2.1 Example dataset & inferences based of Bayes Factors 115 

The aim of the current paper is to show how to use Bayes Factors when assessing time-series 116 

neuroimaging classification results and test what effect different analysis parameters have on 117 

the results. We have used a practical example of previously published MEG data (Teichmann 118 

et al., 2019), which we re-analysed using Bayes Factors. In the original experiment, eighteen 119 

participants viewed coloured shapes and grayscale objects in separate blocks while the neural 120 

signal was recorded using MEG. Here, we only considered the coloured shape trials (“real 121 

colour blocks'', 1600 trials in total). Identical shapes were coloured in red or green and were 122 

shown for 100 ms followed by an inter-stimulus-interval of 800-1100 ms. The data was 123 

epoched from -100 ms to 800 ms (200 Hz resolution) relative to stimulus onset and a linear 124 

classifier was used to differentiate between the neural responses evoked by red and green 125 

shapes. A 5-fold cross-validation was used with the classifier being trained on 80% of the data 126 

and tested on the remaining 20%. This classification analysis resulted in decoding accuracies 127 

over time for each participant. In the original study, permutation tests and cluster-corrected p-128 

values were used to assess decoding accuracies as implemented in CoSMoMVPA (Oosterhof 129 

et al., 2016). Here, we calculated Bayes Factors instead and examined how parameter 130 

changes affected the results.  131 

 132 

When running statistical tests on classification results, we are interested in whether decoding 133 

accuracy is above-chance at each timepoint. To test this, we can use permutation tests to 134 

establish whether there is enough evidence to reject H₀ which states that decoding is equal to 135 

chance. If there is enough evidence we can reject H₀ and conclude that decoding is different 136 

from chance. Given that below-chance decoding accuracies are not meaningful, we usually 137 

are interested only in above-chance decoding (directional hypothesis). In contrast to the 138 

frequentist approach, Bayes Factors quantify how much the plausibility of two hypotheses 139 

changes, given the data (see e.g., Ly et al., 2016). Here, we ran a Bayesian t-test of Bayes 140 

Factor R package (Morey et al., 2015) at each timepoint, testing whether the data is more 141 

consistent with Hₐ (decoding is larger than chance) over H₀ (decoding is equal to chance). 142 

The resulting Bayes Factors center around 1 with numbers smaller than 1 representing 143 

evidence for H₀ and numbers larger than 1 representing evidence for Hₐ. In contrast to p-144 

values, Bayes Factors are directly interpretable and comparable (cf. Keysers et al., 2020; 145 

Morey et al., 2016; Wagenmakers et al., 2016). That is a Bayes Factor of 10 means that it is 146 

10 times more likely the data came from Hₐ as opposed to H₀. Similarly a Bayes Factor of 1/10 147 

means that it is 10 times more likely the data came from H₀ as opposed to Hₐ. Thus, in the 148 
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context of time-series decoding, Bayes Factors allow us to directly assess whether and how 149 

much evidence there is at a given timepoint for the alternative over the null hypothesis and 150 

vice versa (Figure 2C). 151 

 152 

 153 

Figure 2. Decoding results of our practical example dataset with statistical 154 
assessments. (A) Colour decoding over time (black line). The dashed line shows theoretical 155 
chance decoding (50%). The grey shaded area represents the standard error across 156 
participants. (B) Effect size over time with the cluster-corrected p-values at each timepoint 157 
printed below in grey. (C) Bayes Factors over time for this dataset on a logarithmic scale. Blue, 158 
upwards pointing stems indicate evidence for above-chance decoding and red, downwards 159 
pointing stems show evidence for at-chance decoding at every timepoint. We used a hybrid 160 
one-sided model comparing evidence for above-chance decoding versus a point-nil at 𝛿 = 0 161 
(no effect). For the alternative hypothesis, we used a half-cauchy prior with medium width (r = 162 
0.707) covering an interval from 𝛿 = 0.5 to 𝛿 = ∞. The half-cauchy prior assumes that small 163 
effect sizes are more likely than large ones but the addition of the interval deems very small 164 
effects 𝛿 < 0.5 as irrelevant. During the baseline period (i.e., before stimulus onset), the Bayes 165 
Factors strongly support the null hypothesis, confirming the sanity check expectation.  166 
 167 

2.2 Adjusting the prior range to account observed chance decoding 168 

Bayes Factors represent the plausibility that the data emerged from one hypothesis compared 169 

to another. In the example dataset, the two hypotheses are that decoding is at chance (i.e., 170 

H₀, no colour information present) or that decoding is above chance (i.e., Hₐ, colour 171 

information present). To deal with the fact that observed decoding can be different than the 172 

theoretical chance level, we can adjust the prior range of the alternative hypothesis to allow 173 

for small effects under the null hypothesis (Rouder et al., 2009). The prior range (called “null 174 

interval” in the R package) is defined in standardized effect sizes and consists of a lower and 175 

upper bound. To incorporate the differences between observed and theoretical chance level, 176 
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we can define a range of relevant effect sizes for the alternative hypothesis, for example, from 177 

𝛿 = 0.5 to  𝛿 = ∞. To determine which values are reasonable as the lower bound of this interval, 178 

we changed the prior range systematically and examined the effect on the resulting Bayes 179 

Factors (Figure 3). We found that smaller lower bounds at 𝛿 = 0 and 𝛿 = 0.2 resulted in weaker 180 

evidence supporting the null hypothesis than ranges starting at 𝛿 = 0.5 and 𝛿 = 0.8. The range 181 

did not have a large effect on timepoints with strong evidence for Hₐ. The effect of changing 182 

the prior range is larger for the null hypothesis than the alternative as chance decoding is not 183 

exactly 50% but distributed around chance. Changing the lower bound of the prior range 184 

means that the effects that are just larger than 𝛿 = 0 can support the null hypothesis. Thus, 185 

the results here demonstrate that we can compensate for the differences between theoretical 186 

and observed chance by adjusting the prior range and effectively considering small effect sizes 187 

as evidence for the null hypothesis rather than the alternative. 188 

 189 

 190 

Figure 3. The effect of changing the prior range (null interval) on Bayes Factors in our 191 
example data. Intervals starting at larger effect sizes led to more timepoints showing 192 
conclusive evidence for H₀. This is due to the fact that theoretical and observed chance levels 193 
are not the same. The panels on the right show the prior distributions with the different null 194 
intervals.  195 
 196 

To further examine what a reasonable lower bound of the prior range is, we looked at effect 197 

sizes observed during the baseline window (before stimulus onset) in a selection of our 198 

previous studies (Grootswagers et al., 2021; Grootswagers, Robinson, & Carlson, 2019a; 199 

Moerel, Grootswagers, et al., 2021; Moerel, Rich, et al., 2021; Teichmann et al., 2018, 2020). 200 

Using the baseline window allows us to quantify the difference between theoretical and 201 

observed chance, as we do not expect any meaningful effects before stimulus onset (e.g., 202 

stimulus colour is not decodable before the stimulus is presented). Thus, the baseline period 203 

can effectively tell us which effect sizes can be expected by chance. Across our selection of 204 

previous studies, we found an average maximum effect size of 𝛿 = 0.39 before stimulus onset 205 
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and an average maximum effect size of 𝛿 = 1.91 after stimulus onset (Figure 4). This survey 206 

shows that effect sizes as large as 𝛿 = 0.5 can be observed when when no meaningful 207 

information is in the signal. Thus, this supports the conclusions from the example dataset 208 

showing that prior ranges with a lower bound of 𝛿 = 0.5  may be a sensible choice when using 209 

Bayes Factors to examine time-series M/EEG decoding results. 210 

  211 

 212 

Figure 4. Estimated maximum effect sizes during baseline and after stimulus onset for 213 
prior studies using visual stimuli. These estimations show that a reasonable range for Hₐ 214 
would start at 𝛿 = 0.5 or above, as during baseline decoding accuracies corresponding to 215 
standardized effect sizes as high as 𝛿 = 0.5 were observed. 216 
  217 
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2.3 Changing the prior width to capture different effect sizes 218 

Another feature that can be changed in the Bayesian t-test is the width of the half-Cauchy 219 

distribution (referred to as r-value in the Bayes Factor Package). Small r-values create a 220 

narrower, sharply peaking distribution, whereas larger values make the distribution wider with 221 

a prolonged peak. Standard prior widths incorporated in the Bayes Factor R package are 222 

medium (r = 0.707), wide (r = 1), and ultrawide (r = 1.414). Keeping the prior range consistent 223 

([0.5, Inf]) while using the three prior widths implemented into the R Bayes Factor Package 224 

(medium = 0.707; wide = 1; ultrawide = 1.414). We found that changing the width of the 225 

Cauchy prior did not have a pronounced effect on the Bayes Factors (Figure 5). In our specific 226 

example, this is probably the case because the effect sizes quickly rose to 𝛿 > 2 (Figure 2b) 227 

which means that the subtle differences between the different prior widths do not have a 228 

substantial effect on the likelihood of the data arising from Hₐ over H₀. Thus, using the default 229 

prior width (r = 0.707) for the decoding context seems like a reasonable choice. 230 

 231 

 232 

Figure 5. Bayes Factors over time for the example data set when the prior width is 233 
changed. The width of the prior had no pronounced effect on the Bayes Factors we calculated. 234 
The panels on the right show the prior distributions with the different widths.  235 
 236 

2.4 The effect of data size on statistical inferences 237 

In a lot of cases, there are financial and time limits on how many participants can be tested 238 

and for how long. To obtain an estimate of how much data is needed to draw conclusions and 239 

avoid ending up with underpowered studies, we used the example dataset and reduced the 240 

data size for analysis. As classification analyses are usually run at the subject level but 241 

statistical assessment is run at the group level, we tested how changing data size both by trial 242 

numbers and participant numbers influences Bayes Factors in the time-series decoding 243 

context (Figure 6). In the original example dataset, the classifier was trained on 1408 trials 244 

and tested on 352 trials (5-fold cross-validation). There were five different shapes in the red 245 

and the green condition (160 repetitions for each coloured shape) and the cross-validation 246 
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schema was based on leaving all trials of one shape out for testing. Statistical inferences were 247 

drawn on the group level which contained data from 18 participants. To examine the effect of 248 

data size (and effectively noise level) on the Bayes Factor calculations, we re-ran the analysis 249 

reducing the data size first by subsampling from the trials each participant completed, retaining 250 

1200 (75%), 800 (50%), 400 (25%), and 160 (10%) trials. We cross-validated in the same way 251 

as in the original paper, with the only difference being how many trials of each shape were 252 

included. In addition, we subsampled from the whole group, retaining data from the first 6, 12, 253 

or all 18 participants and re-ran the statistical analysis. We then compared the results from 254 

the reduced-size colour datasets using Bayes Factors and cluster-corrected p-values1. 255 

 256 

Overall, our analyses highlight that we need to have a large enough number of trials and a 257 

large enough number of participants to draw firm conclusions about our time-resolved 258 

decoding results. Testing more participants resulted in stronger evidence for Hₐ and H₀, with 259 

fewer timepoints in the inconclusive range (Bayes Factors) and more significant above-chance 260 

decoding timepoints (p-values). Similarly, running the classification with more trials, led to 261 

more timepoints with large Bayes Factors supporting Hₐ and more above-chance decoding 262 

timepoints. However, one of the key advantages of using Bayes Factors instead of p-values 263 

is that we can potentially obtain a good idea of how many trials are needed even if we run a 264 

pilot experiment with a limited number of participants. A reasonable strategy would be to 265 

overpower the subject-level data (i.e., number of trials) for the pilot sample and then sub-266 

sample to explore how many trials are needed. In our example, we can see that the amount 267 

of evidence for Hₐ at peak decoding is not sufficient when we only use 160 trials (10% of the 268 

original sample), regardless of the number of subjects. Increasing the trials to 400 or 800 (25% 269 

or 50% of the original sample) leads to similar conclusions as using all 1600 trials. As Bayesian 270 

statistics allow for sequential sampling, we could collect data from more participants until a 271 

criterion is reached. The data here suggest that insufficient data at the subject-level ultimately 272 

leads to inconclusive evidence, highlighting that a large number of trials is just as, if not more 273 

important, than large numbers of participants.  274 

 275 

 
1 In comparison to the original paper, we did not use trial label permutations. Instead, we performed 
sign-flip permutations (which reduces the computational time) as implemented in CoSMoMVPA to 
generate the null distribution. 
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 276 

 277 

Figure 6. Results of colour MEG decoding, using a limited number of trials and 278 
participant data to simulate a piloting scenario. (A) The first three plots show Bayes 279 
Factors over time along with cluster-corrected p-values. The colour in all plots reflects the 280 
number of trials used to train and test the classifier. (B) Compares Bayes Factors at peak 281 
decoding (125ms) for the different data sizes.  282 
 283 

  284 
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In addition to manipulating data size, we also simulated larger datasets with fixed effect sizes 285 

between 𝛿 = 0 and 𝛿 = 1 and examined the interaction of sample size with different prior ranges 286 

(Figure 7). We simulated 1000 datasets with specific effect sizes for each sample size and 287 

calculated the Bayes Factors. We then calculated the median Bayes Factor for each sample- 288 

and effect size combination to show how prior range choices interact with the possibility of 289 

finding evidence for effects of different sizes. Specifically, we compared a prior range of 0.5 to 290 

infinity (Figure 7A) to a prior range of zero to infinity (Figure 7B). When specifying the prior 291 

range to 0.5 to infinity (Figure 7A), our results show that particularly small effect sizes lead to 292 

substantial evidence for H₀ faster, while particularly large effect sizes lead to substantial 293 

evidence for Hₐ faster. In these cases, large sample sizes were not needed to draw solid 294 

conclusions. In contrast, if the effect size fell in between the specified ranges for the prior of 295 

Hₐ and H₀ (i.e., between 0 and 0.5), we found that small sample sizes in particular tended to 296 

result in inconclusive Bayes Factors neither supporting Hₐ or H₀. However, if the sample size 297 

increased, the confidence that small effects were “real” also increased and therefore resulted 298 

in stronger confidence supporting one of the hypotheses. Importantly, however, large sample 299 

sizes did not automatically lead to an interpretable Bayes Factor if the effect was truly in 300 

between the specified prior ranges of Hₐ and H₀, indicating that sampling strategy had no 301 

effect on Bayes Factors. Consistent with our results for the example data, the simulations also 302 

showed that changing the range of the prior has a strong effect on finding substantial evidence 303 

for H₀. If the prior range for the alternative is specified to start at zero (Figure 7B), it was almost 304 

impossible to find any evidence for H₀, even if the effect size was truly zero. Thus, the 305 

simulations show that defining the prior range with a gap between effects expected under H₀ 306 

and Hₐ is critical and that more data leads to larger Bayes Factors, but only if there is a true 307 

underlying effect.  308 

 309 

 310 

 311 

 312 
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 313 

Figure 7. Simulated data varying effect sizes and numbers of participants. (A) Bayes 314 
Factors obtained using a half-cauchy with an interval [0.5 Inf]. (B) Bayes Factors obtained 315 
using a half-cauchy without an interval. The first and third rows show the median Bayes 316 
Factors of 1000 simulations as a function of the number of participants. The second and fourth 317 
rows show the distribution (violin plots) of the 1000 simulations at varying effect sizes using 318 
n=30 (left panels) and n=100 (right panels), with the black cross indicating the median. Note 319 
the different scales on the y-axis between panels. 320 
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Discussion 321 

Bayes Factors have seen a recent increase in popularity in cognitive science, as they can be 322 

used to provide quantifiable evidence for contrasting hypotheses. However, their uptake has 323 

to date been slow for neuroimaging experiments. To facilitate their adoption, we have provided 324 

an empirically-driven guide on implementing Bayes Factors for time-series neuroimaging 325 

decoding, using both real and simulated data. We showed that using Bayes Factors and 326 

cluster-corrected p-values lead to similar results when statistically assessing time-series 327 

neuroimaging decoding results. However, the key advantages of using Bayes Factors are the 328 

ability to compare evidence for Hₐ with evidence for H₀ and having results that are quantifiable 329 

(e.g., Dienes, 2014; Wagenmakers et al., 2016). Our results show that for time-series 330 

decoding data, half-Cauchy priors with default width and an interval ranging from effect sizes 331 

of 0.5 to infinity provide sensible results. We also show that even a small number of 332 

participants can yield informative Bayes Factors, which can be useful for making decisions on 333 

experimental design parameters (e.g., number of trials) during piloting stages of a study. 334 

 335 

Our results showed that the overall conclusions derived from Bayes Factors and p-values 336 

were quite similar, highlighting that theoretical considerations should be the deciding factor 337 

when choosing a statistical approach to analyze neural time-series data. In the decoding 338 

context, p-values afford a dichotomous decision of whether there is enough evidence to reject 339 

the hypothesis that decoding is at chance at a given timepoint. Rejecting the null hypothesis 340 

is decoupled from any prior beliefs or theories (Dienes, 2011) and is linked to an accepted 341 

overall error rate such as 𝛂 = 0.05. However, they allow us to test for the presence of an effect 342 

at a given timepoint using widely accepted thresholds for evidence. While Bayes Factors can 343 

in principle be thresholded to draw dichotomous conclusions, one of the added benefits of 344 

Bayes Factors over p-values is the ability to quantify the evidence. Another useful benefit of 345 

using Bayes Factors to analyse time-series decoding data is that Bayes Factors allow us to 346 

accrue evidence for above-chance as well as at-chance decoding. For time-series analyses 347 

in particular, this is a useful feature as the time period prior to stimulus onset can be considered 348 

as a control period where we would expect evidence for the null hypothesis. Testing both 349 

hypotheses simultaneously can also be a beneficial feature when the research question 350 

involves hypotheses predicting certain time-periods without any information in the neural 351 

signal (e.g., “X happens before Y” versus “Y happens before X”). Thus, depending on the 352 

research question it may be clear which statistical approach suits the time-series decoding 353 

analysis best. Otherwise, as overall conclusions do not differ, Bayes Factors and p-values can 354 

be used in a complementary way to provide quantifiable evidence for and against the tested 355 
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hypotheses as well as definitive decisions (see also Lakens et al., 2020; van Dongen et al., 356 

2019; Wagenmakers et al., 2018). 357 

 358 

Through our results, we provide an empirical, straightforward guide to help implement Bayes 359 

Factors and demonstrate the extent of practical benefits when using Bayes Factors for time-360 

series neural decoding. Using a data-driven approach, we showed which analysis parameters 361 

are most suitable for statistical assessment of time-series decoding data with Bayes Factors. 362 

While the Bayes Factors in our example MEG decoding dataset were robust against changes 363 

in the predefined width of the prior, defining the prior range so that there is a gap between Hₐ 364 

and H₀ was critical for finding evidence for the H₀. This strong effect of the prior range on the 365 

resulting Bayes Factors is particularly relevant in the decoding context, as classification 366 

accuracies under the null are not symmetrically distributed around chance (cf. Allefeld et al., 367 

2016). Thus, a gap between H₀ and the lower bound of Hₐ ensures that small above-chance 368 

classification accuracies are not treated as evidence for Hₐ. Furthermore, we systematically 369 

varied dataset size and showed that using Bayes Factors for time-series decoding data is 370 

particularly beneficial when there is limited, noisy data such as in a piloting scenario, as 371 

quantifiable evidence for one hypothesis over another gives a stronger sense of whether it is 372 

worth pursuing the research question with the piloted design, or make changes (e.g., modify 373 

trial numbers or add/remove conditions). Finally, Bayes Factors can be calculated sequentially 374 

while evidence accumulation is monitored to stop once a criterion is reached (Dienes, 2011; 375 

Rouder, 2014), which can save resources and avoid underpowered studies (Wagenmakers et 376 

al., 2018). 377 

 378 

An open question is to what extent our parameter choices generalize to different paradigms, 379 

analysis approaches, and modalities. The Bayes Factor parameters used here were optimized 380 

for time-series decoding. It is in principle possible to use Bayes Factors in a similar way to 381 

analyse other time-series data such as event related potentials, oscillations or regressions, 382 

however, the Bayes Factor parameters might have to be adjusted. Similarly, the analysis 383 

pipeline discussed here could be extended to other neural decoding modalities such as fMRI 384 

(see e.g., Moerel, Rich, et al., 2021). Pilot data or analyses of previous data can be used to 385 

examine how parameters have to be modified in order to get sensible results.  386 

 387 

A final consideration is the multiple comparisons problem arising from statistically testing many 388 

time points. When using Bayes Factors, as long as the evidence for each hypothesis is 389 

interpreted at face value (and not thresholded for ‘significance’), we do not need to control for 390 

multiple comparisons (Dienes, 2011, 2016a; Świątkowski & Carrier, 2020). That is because 391 

once we have established a prior and collected the data, we examine how much we have to 392 
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adjust our prior beliefs given the data and compare the adjustment required for both 393 

hypotheses. This idea is not related to overall error rates and thus does not change if we 394 

sample data sequentially or run multiple tests (Dienes, 2016a). If a research question strongly 395 

depends on a dichotomous decision on multiple tests, then we advise to report corrected p-396 

values (for which correction methods are well established) alongside the Bayes Factors. 397 

 398 

In conclusion, we have provided an empirically-driven guide on how to use and interpret Bayes 399 

Factors for time-series neuroimaging decoding data. We show that Bayes Factors bring 400 

several advantages to interpreting time-series decoding results such as quantifiable evidence 401 

and an ability to compare evidence for above-chance with evidence for at-chance decoding. 402 

We hope this guide, and the accompanying example code 403 

(https://github.com/LinaTeichmann1/BFF_repo) can serve as a starting point to incorporate 404 

Bayesian statistics to existing analysis pipelines. 405 

 406 
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