
An Enciphering Scheme Based on a Card Shuffle

Viet Tung Hoang1, Ben Morris2, and Phillip Rogaway1

1 Dept. of Computer Science,
2 Dept. of Mathematics,

University of California, Davis, USA

Abstract. We introduce the swap-or-not shuffle and show that the tech-
nique gives rise to a new method to convert a pseudorandom function
(PRF) into a pseudorandom permutation (PRP) (or, alternatively, to
directly build a confusion/diffusion blockcipher). We then prove that
swap-or-not has excellent quantitative security bounds, giving a Luby-
Rackoff type result that ensures security (assuming an ideal round func-
tion) to a number of adversarial queries that is nearly the size of the
construction’s domain. Swap-or-not provides a direct solution for build-
ing a small-domain cipher and achieving format-preserving encryption,
yielding the best bounds known for a practical scheme for enciphering
credit-card numbers. The analysis of swap-or-not is based on the theory
of mixing times of Markov chains.
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1 Introduction

Overview. Despite the diversity of proposed blockciphers, only two approaches
underlie the construction of real-world designs: essentially everything looks like
some sort of Feistel network (e.g., DES, FEAL, MARS, RC6) or SP-network (e.g.,
Rijndael, Safer, Serpent, Square). Analogously, in the literature on constructing
pseudorandom permutations (PRPs) from pseudorandom functions (PRFs), we
have provable-security analyses for Feistel variants (e.g., [12–14, 18, 21]), as well
as modes of operation (e.g., [10, 11, 18, 19]) that can again be construed as
SP-networks, now on a large domain. Perhaps there just are not that many
fundamentally different ways to make a blockcipher. Or perhaps we might have
failed to notice other possibilities.

In this short paper we describe a very different way to make a blockcipher.
We call it a swap-or-not network (or cipher or shuffle). Besides introducing
the construction, we evidence its cryptographic utility. We do this by showing
that swap-or-not provides the quantitatively best mechanism known, in terms
of concrete security bounds, to convert a PRF into a PRP. We also show that
swap-or-not provides a practical solution for the problem of format-preserving
encryption (FPE) on domains of troublesome size, such as enciphering credit-
card numbers.
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proc EKF (X) //swap-or-not

for i ← 1 to r do
X ′ ← Ki ⊕X
X̂ ← max(X,X ′)
if Fi(X̂) = 1 then X ← X ′

return X

Fig. 1. Cipher E = SN[r, n] encrypts X∈{0, 1}n
using a key KF naming K1, . . . ,Kr ∈ {0, 1}n and

round functions F1, . . . , Fr : {0, 1}n → {0, 1}

Construction. Suppose we
aim to encipher n-bit strings;
our message space is the set
X = {0, 1}n. Assume we will
use r rounds, and that the
blockcipher’s key KF names
subkeys K1, . . . ,Kr ∈ {0, 1}n
as well as round functions
F1, . . . , Fr, each of which
maps n-bits to a single bit, so
Fi : {0, 1}n → {0, 1}. Then
we encipher X ∈ {0, 1}n as
shown in Fig. 1. The reason

that this works, that one gets a permutation, is simply that X �→ Ki ⊕ X is
an involution, and our round function depends on the set {X,Ki ⊕X}. The in-
verse direction for swap-or-not is identical to the forward direction shown above
except for having i run from r down to 1.

Restating the algorithm in English, at each round i we pair the current value
of X ∈ {0, 1}n with a “partner” point X ′ = Ki ⊕ X . We either replace X by
its partner or leave it alone. Which of these two things we do is determined
by applying the boolean-valued Fi to the two-element set {X,X ′}. Actually, in
order to give Fi a more conventional domain, we select a canonical representative
from {X,X ′}, say X̂ = max(X,X ′), and apply Fi to it. Note that each plaintext
maps to a ciphertext by xoring into it some subset of the subkeys {K1, . . . ,Kr}.
This might sound linear, but it most definitely is not.

Card shuffling view. The swap-or-not construction was invented, and will be
analyzed, by regarding it as a way to shuffle a deck of cards. Seeing a blockcipher
as a card shuffle enables one to exploit a large body of mathematical techniques,
these dating back to the first half of the twentieth century. In addition, some
ways to shuffle cards give rise to enciphering schemes that cryptographers did
not consider. Swap-or-not is such a case.

One can always see a card shuffle as an enciphering scheme, and vice versa.
If you have some method to shuffle N cards, this determines a corresponding
way to encipher N points: place a card at each position X ∈ [N ], where [N ] =
{0, 1, . . . , N−1}; shuffle the deck; then look to see the position where the card
initially at position X ended up. Call that position the ciphertext Y for X . The
randomness used in the shuffle corresponds the cipher’s key.

The first thing needed for a card shuffle to give rise to a computationally fea-
sible blockcipher is that the shuffle be oblivious, an idea suggested by Moni Naor
[18, p. 62], [23, p. 17]. In an oblivious shuffle one can trace the trajectory of
a card without attending to lots of other cards in the deck. Most conventional
shuffles, such as the riffle shuffle, are not oblivious. The Thorp shuffle [26] is
oblivious—and so is swap-or-not. As a shuffle, here’s how it looks.
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K
$←{0, 1}n //swap-or-not as a shuffle

for each pair of positions {X,K ⊕X}
b

$← {0, 1}
if b = 1 then swap the cards
at positions X and K ⊕X

Fig. 2. Mixing a deck of N = 2n cards, each at a

position X ∈ {0, 1}n. The code shows one shuffle.

For better mixing, the shuffle is repeated r times.

Recasting swap-or-not as
a way to shuffle cards, sup-
pose we have N cards, one at
each position X ∈ [N ], where
N = 2n. To shuffle the deck,
choose a random K∈{0, 1}n
and then, for each pair of
card positions X and K ⊕X ,
flip a fair coin. If it lands
heads, swap the cards at the
indicated positions; if it lands
tails, leave them alone. See Fig. 2. The process can be repeated any number r
times, using independent coins (both the K-values and the b-values) for each
shuffle.

When the swap-or-not shuffle of Fig. 2 is translated back into the language
of encryption, one recovers the swap-or-not cipher of Fig. 1; these are different
views of precisely the same process. The random pairing-up of cards specified
by K for the ith shuffle corresponds to the subkey Ki. The random bit b flipped
at the shuffle’s round i for the pair {X,K ⊕X} corresponds Fi(X̂).

proc EKF (X) //Generalized domain

for i ← 1 to r do
X ′ ← Ki −X
X̂ ← max(X,X ′)
if Fi(X̂) = 1 then X ← X ′

return X

Fig. 3. Cipher E = SN[r,N,+] encrypts X∈ [N ]

using a key KF naming K1, . . . ,Kr∈ [N ] and round

functions F1, . . . , Fr : [N ] → {0, 1}

Generalizing. It is useful to
be a bit more general here,
working in a finite abelian
groupG = ([N ],+) instead of
the group ({0, 1}n,⊕) of bit
strings under xor. (For con-
venience, we have assumed
that the group elements are
named [N ] = {0, . . . , N−1}.)
In this way we won’t need the
number of points N in the
message space X = [N ] to be

a power of two—we’ll be able to encipher points on any set X = [N ], just by
naming a group operator, say addition modulo N . For generalizing the shuffle of
Fig. 2, the value K is uniformly drawn from [N ] rather than from {0, 1}n, and
we consider the pair of positions {X,K −X} rather than {X,K ⊕X}. For the
generalized cipher—see Fig. 3—the key KF will name subkeys K1, . . . ,Kr ∈ [N ]
and round functions F1, . . . , Fr : [N ] → {0, 1}. We set X ′ ← Ki−X rather than
X ′ ← Ki⊕X . The inverse remains what one gets by iterating from r down to 1.

Results. As with Luby and Rackoff’s seminal paper [14], we can analyze the
swap-or-not construction by regarding its constituent parts as uniformly ran-
dom. Formally, let us write SN[r,N,+]: K × [N ] → [N ] for the blockcipher E
specified in Fig. 3 that is swap-or-not with r rounds, a message space of [N ], the
indicated group operator, and where the key space names all possible subkeys
K1, . . . ,Kr ∈ [N ] and all possible round functions F1, . . . , Fr : [N ] → {0, 1}.
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FE-4 FE-6 TH-8 TH-20
SN-8

SN-10

Fig. 4. Illustration of results. The message space has N = 264 points. The
graphs show established upper bounds on CCA advantage when the adversary asks q
queries, where log2(q) labels the x-axis. Rightmost two graphs: the new results—the
swap-or-not cipher for either eight passes (512 rounds) (SN-8) or 10 (SN-10), as given
by Theorem 4. (One pass is defined as �lgN� rounds.) For comparison, the leftmost
two graphs are for balanced Feistel, both the classical 4-round result of Luby and
Rackoff [14, 20] (LR-4) and then a six-round result of Patarin (LR-6) [22, Th. 7]. The
middle two graphs are for the Thorp shuffle, either with eight passes (TH-8) or 20
(TH-20), as given by [17, Th. 5].

Thus a random key KF for this cipher has the Ki and Fi values uniformly
chosen. We define the CCA (also called the “strong-PRP”) advantage of an ad-
versary A attacking E by dropping it into one of two worlds. In the first, the
adversary gets an oracle for EKF (·), for a random KF , and also an oracle for
its inverse, E−1

KF (·). Alternatively, the adversary is given a uniformly random
permutation π : [N ] → [N ], along with its inverse, π−1(·). Define

Advcca
SN[r,N,+](q) = max

A

{
Pr[AEKF (·), E−1

KF (·) ⇒ 1]− Pr[Aπ(·), π−1(·) ⇒ 1]
}
,

the maximum over all adversaries that ask at most q total queries. Our main
result is that

Advcca
SN[r,N,+](q) ≤ 4N3/2

r + 4

(
q +N

2N

)r/4+1

. (1)

Roughly said, you need r = 6 lgN rounds of swap-or-not to start to see a good
bound on CCA-security. After that, the adversary’s advantage drops off inverse
exponentially in r. The summary explanation of formula (1) just given assumes
that the number of adversarial queries is capped at q = (1 − ε)N for some
fixed ε > 0.

The quantitative guarantee above is far stronger than anything a balanced
Feistel network can deliver. The only remotely comparable bound we know,
retaining security to N1−ε queries instead of (1 − ε)N queries, is the Thorp
shuffle [26] (or, equivalently, a maximally-unbalanced Feistel network [17]). But
the known result, establishing Advcca

E′ (q) ≤ (2q/r + 1)(4nq/N)r if one shuffles
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N = 2n points for r(4n − 2) rounds [17], vanishes by the time that q ≥ N
4 lgN .

Numerically, the Thorp-shuffle bounds come out much weaker for most r, q,
and N . See Fig. 4 for sample graphs comparing known bounds on balanced
Feistel, the Thorp shuffle, and swap-or-not.

As a simple numerical example, swap-or-not enciphering 64-bit strings for 1200
rounds using a random round function will yield a maximal CCA advantage of
less than 10−10, even if the adversary can ask q = 263 queries. While the number
of rounds is obviously large, no other construction can deliver a comparable
guarantee, achieving security even when q is close to N .

For a more complexity-theoretic discussion of swap-or-not, see Section 4.

Format-preserving encryption. Swap-or-not was originally invented as a
solution for format-preserving encryption (FPE) [1, 3, 5], where it provides the
best known solution, in terms of proven-security bounds, when N is too big
to spend linear time computing, yet too small for conventional constructions
to deliver desirable bounds. This landscape has not much changed with the
recent work of Stefanov and Shi [24], who, following Granboulan and Pornin [9],
show how to speed up (e.g., to Θ̃(N0.5) time) determining where a card goes
in a particular N -card shuffle after spending Θ̃(N) time at key-setup. For more
discussion of swap-or-not and its use in FPE, see Section 5.

2 Preliminaries

Total variation distance. Let μ and ν be probability distributions on Ω.
The total variation distance between distributions μ and ν is defined as

‖μ− ν‖ =
1

2

∑
x∈Ω

|μ(x)− ν(x)| = max
S⊂Ω

{μ(S)− ν(S)} .

Blockciphers. Let E : K×M → M be a blockcipher, meaning that K and M
are finite and each EK(·) = E(K, ·) is a permutation on M. We emphasize
that K and M need not consist of binary strings of some particular length, as is
often assumed to be the case. For any blockcipher E, we let E−1 be its inverse
blockcipher.

For blockcipher E : K × M → M and adversary A the advantage of A in
carrying out an (adaptive) chosen-ciphertext attack (CCA) on E is

Advcca
E (A)=Pr[K

$←K:AEK(·),E−1
K (·) ⇒ 1]−Pr[π

$← Perm(M):Aπ(·),π−1(·) ⇒ 1].

Here Perm(M) is the set of all permutations on M. We say that A carries out
an (adaptive) chosen-plaintext attack (CPA) if it asks no queries to its second
oracle. Adversary A is non-adaptive if it asks the same queries on every run.
Let Advcca

E (q) be the maximum advantage of any (adaptive) CCA adversary
againstE subject to the adversary asking at most q total oracle queries. Similarly
define Advncpa

E (q) for nonadaptive CPA attacks (NCPA).
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For blockciphers F,G : K × M → M let F ◦ G denote their cascade, with
F ’s output fed into G’s input; formally, F ◦ G : K2 × M → M is defined by
(F ◦G)(K,K′) = GK′(FK(X)).

Lifting ncpa to cca security. We bound the CCA-security of a Feistel net-
work from its NCPA-security by using the following result of Maurer, Pietrzak,
and Renner [15, Corollary 5]. It is key to our approach, effectively letting us as-
sume that our adversaries are of the simple, NCPA breed. Recall that in writing
F ◦G, the blockciphers are, in effect, independently keyed.

Lemma 1 (Maurer-Pietrzak-Renner). If F and G are blockciphers on the
same message space then, for any q, Advcca

F◦G−1(q) ≤ Advncpa
F (q)+Advncpa

G (q).

3 Security of Swap-or-Not

Fix a finite abelian group G = ([N ],+) where [N ] = {0, 1, . . . , N − 1}. We
define the swap-or-not shuffle SN[r,N,+] of r rounds over the elements of G.
The shuffling at round t is as follows. Initially, each of N distinct cards is at a

position in the set [N ]. To shuffle during this round, chooseKt
$← [N ], the subkey

at round t. Then, for each set {X,Kt −X} with X ∈ G, choose b
$←{0, 1} and

then swap the cards at positions X and Kt −X if b = 1.
Let {Wt : t ≥ 0} be the Markov chain representing the swap-or-not shuffle

with N cards. More formally, let C be a set of cardinality N , whose elements we
call cards. The state space of {Wt} is the set of bijections from C to {0, . . . , N−1}.
For a card z ∈ C, we interpret Wt(z) as the position of card z at time t.

Let A be a deterministic adversary that makes exactly q queries. Our proof
is based on an analysis of the mixing rate of the swap-or-not shuffle. However,
since A makes only q ≤ N queries, we need only bound the rate at which
some q-element subset of the cards mixes. So let z1, . . . , zq be distinct cards
in C, and let Xt be the vector of positions of cards z1, . . . , zq at time t. For j
in {1, . . . , q} we write Xt(j) for the position of card zj at time t, and define
Xt(1, . . . , j) = (Xt(1), . . . , Xt(j)). We shall call Xt the projected swap-or-not
shuffle. Note that the stationary distribution of Xt, which we denote by π, is
uniform over the set of distinct q-tuples of elements from G. Equivalently, π is
the distribution of q samples without replacement from G. Let τt denote the
distribution of Xt.

Theorem 2 (Rapid mixing). Consider the swap-or-not shuffle SN[r,N,+]
for r,N ≥ 1, and let q ∈ {1, . . . , N}. Fix z1, . . . , zq and let {Xt : t ≥ 0} be the
corresponding projected swap-or-not shuffle, let π be its stationary distribution,
and let τt be the distribution of Xt. Then

‖τr − π‖ ≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

.
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Proof. Let τkt be the conditional distribution ofXt given the subkeysK1, . . . ,Kr.
(Here we consider K1, . . . ,Kr random variables, and we condition on the σ-
algebra of these random variables.) We will actually show that E(‖τkr − π‖)
satisfies the claimed inequality. Note that since K1, . . . ,Kr are random variables,
so is τkr , and hence so is ‖τkr − π‖. This implies the theorem since τr = E(τkr )
and hence

‖τr − π‖ = ‖E(τkr − π)‖ ≤ E
(
‖τkr − π‖

)
,

by Jensen’s inequality, since for distributions μ and τ , the total variation dis-
tance ‖μ − τ‖ is half the L1-norm of μ − τ , and the L1-norm is convex. For a
distribution ν on q-tuples of Ω, define

ν(u1, . . . , uj) = Pr[Z1 = u1, . . . , Zj = uj ] and

ν(uj | u1, . . . , uj−1) = Pr[Zj = uj | Z1 = u1, . . . , Zj−1 = uj−1]

where (Z1, . . . , Zq) ∼ ν. For example, τt(u1, . . . , uj) is the probability that, in the
swap-or-not shuffle, cards z1, . . . , zj land in positions u1, . . . , uj at time t, while
τt(uj | u1, . . . , uj−1) is the probability that at time t card zj is in position uj

given that cards z1, . . . , zj−1 are in positions u1, . . . , uj−1. On the other hand,
π(uj | u1, . . . uj−1) is the probability that, in a uniform random ordering, card zj
is in position uj given that cards z1, . . . , zj−1 land in positions u1, . . . , uj−1.

Each of the conditional distributions τkt ( · | u1, . . . , uj−1) converges to uniform
as t → ∞. When all of these distributions are “close” to uniform, then τkt will
be close to π. In fact, we only need the conditional distributions to be close “on
average,” as is formalized in the following lemma, which is easily established
using coupling. For a proof, see [17, Appendix A].

Lemma 3. Fix a finite nonempty set Ω and let μ and ν be probability distribu-
tions supported on q-tuples of elements of Ω, and suppose that (Z1, . . . , Zq) ∼ μ.
Then

‖μ− ν‖ ≤
q−1∑
l=0

E
(
‖μ( · | Z1, . . . , Z�)− ν( · | Z1, . . . , Z�)‖

)
. (2)

Note that in the above lemma, since Z1, . . . , Zq are random variables (whose
joint distribution is given by μ), so is ‖μ( · | Z1, . . . , Z�) − ν( · | Z1, . . . , Z�)‖ for
every 	 < q; each summand in the right-hand side of (2) is the expectation of
one of these random variables.

Recall that τkt is the conditional distribution of Xt given K1, . . . ,Kr. Fix 	 ∈
{0, . . . , q−1}. We wish to bound the expected distance between the distribution
τkt ( · | Xt(1), . . . , Xt(	)) and π( · | Xt(1), . . . , Xt(	)) (i.e., the uniform distribution
on G \ {Xt(1), . . . , Xt(	)}).

For t ≥ 0, let St = G \ {Xt(1), . . . , Xt(	)}. Thus St is the set of positions that
card z�+1 could be located in at time t, given the positions of cards z1, ..., z�. For
a ∈ St, let pt(a) = τkt (a | Xt(1), . . . , Xt(	)). Then we have

‖τkt ( · | Xt(1, . . . , 	))− π( · | Xt(1, . . . , 	))‖ =
1

2

∑
a∈St

|pt(a)− 1/m|, (3)
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where m = |St| = N − 	. Using the Cauchy-Schwarz inequality twice gives

(
E

[ ∑
a∈St

|pt(a)− 1/m|
])2

≤ E

⎡
⎣
(∑

a∈St

|pt(a)− 1/m|
)2

⎤
⎦

≤ m ·E
[ ∑

a∈St

(pt(a)− 1/m)2

]

≤ N ·E
[ ∑

a∈St

(pt(a)− 1/m)2

]
. (4)

We shall prove, by induction on t, that

E

[ ∑
a∈St

(pt(a)− 1/m)2

]
≤

(
	+N

2N

)t

(5)

for every t ≤ r. Then, substituting t = r to (3), (4), and (5), we have

E
(
‖τkr ( · | Xr(1, . . . , 	))− π( · | Xr(1, . . . , 	))‖

)

≤ 1

2

(
N · E

[ ∑
a∈Sr

(pr(a)− 1/m)2

])1/2

≤
√
N

2

(
	+N

2N

)r/2

.

Substituting this into Lemma 3 gives

E
(
‖τkr − π‖

)
≤

q−1∑
�=0

E
(
‖τkr ( · | Xr(1, . . . , 	))− π( · | Xr(1, . . . , 	))‖

)

≤
q−1∑
�=0

√
N

2

(
	+N

2N

)r/2

≤ N3/2

∫ q/2N

0

(1/2 + x)r/2dx ≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

.

We now verify equation (5). First, consider the base case t = 0. Since the initial
positions of the cards are deterministic,

E
[∑
a∈S0

(p0(a)− 1/m)2
]
= (1− 1/m)2 + (m− 1) · (0− 1/m)2 = 1− 1/m < 1 .

Now suppose that equation (5) holds for t. We prove that it also holds for t+1.

Define st =
∑

a∈St
(pt(a)− 1/m)2. It is sufficient to show that

E(st+1 | st) =
(
	+N

2N

)
st. (6)



An Enciphering Scheme Based on a Card Shuffle 9

Define f : St → St+1 by

f(a) =

{
a if a ∈ St+1;
Kt+1 − a otherwise.

Note that f is a bijection from St to St+1: it sends St to St+1 because if a ∈ St

then either a or Kt+1−a must be in St+1, and it has an inverse f−1 : St+1 → St

defined by

f−1(b) =

{
b if b ∈ St;
Kt+1 − b otherwise.

Furthermore, note that

pt+1(f(a)) =

{
pt(a) if Kt+1 − a /∈ St;
1
2pt(a) +

1
2pt(Kt+1 − a) otherwise.

Since Kt+1 is independent of the process up to time t, for every y ∈ G, we have
Pr[Kt+1 − a = y | st] = 1/N . Hence, since |St| = m, conditioning on the value
of Kt+1 − a gives

E
([

pt+1(f(a))− 1
m

]2
| st

)
=

	

N

(
pt(a)− 1

m

)2
+

1

N

∑
y∈St

[pt(a) + pt(y)

2
− 1

m

]2
. (7)

The sum can be rewritten as
∑
y∈St

1
4

[
(pt(y)− 1/m) + (pt(a)− 1/m)

]2

=1
4

∑
y∈St

(pt(y)−1/m)
2
+ 1

2 (pt(a)−1/m)
∑
y∈St

(pt(y)−1/m) + 1
4

∑
y∈St

(pt(a)− 1/m)2

=1
4st +

m
4 (pt(a)− 1/m)2 ,

since
∑

y∈St
(pt(y)− 1/m) = 0. Combining this with (7) gives

E
([

pt+1(f(a)) − 1/m
]2

| st
)
=

st
4N

+
4	+m

4N
(pt(a)− 1/m)

2
. (8)

Note that

E(st+1 | st) =
∑

b∈St+1

E
([

pt+1(b)− 1/m
]2

| st
)

=
∑
a∈St

E
([

pt+1(f(a))− 1/m
]2

| st
)
.

Evaluating each term in the sum using (8) gives

E(st+1 | st) = mst
4N

+
4	+m

4N

∑
a∈St

(pt(a)− 1/m)
2

=
mst
4N

+
(4	+m)st

4N

=
	+N

2N
st,
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where the last line holds because m + 	 = N . It follows that E(st+1 | st) =(
�+N
2N

)
st, which verifies (6) and hence (5). This completes the proof. ��

CCA-security. Observe that if E = SN[r,N,+] for some abelian group G =
([N ],+) then E−1 is also SN[r,N,+]. Employing Lemma 1 we conclude our main
theorem.

Theorem 4. Let E = SN[2r,N,+]. Then Advcca
E (q) ≤ 4N3/2

r + 2

(
q +N

2N

)r/2+1

.

4 Complexity-Theoretic Interpretation

While Theorem 4 is information-theoretic, it should be clear that the result
applies to the complexity-theoretic setting too, in exactly the same manner as
Luby-Rackoff [14] and its successors. Namely, from a PRF F : K × {0, 1}∗ →
{0, 1} and a number n, define n-bit round functions Fi(X) whose jth bit is
F (〈i, j, n,X〉). Also define n-bit round keysKi whose jth bit is F (〈i, j, n〉). Using
these components, apply the swap-or-not construction for, say, r = 7n rounds,
yielding a PRP E on n bits. Translating the information-theoretic result into
this setting, the PRP-security of E is the PRF-security of F minus a term that
remains negligible until q = (1 − ε)2n adversarial queries, for any ε > 0. That
is, from the asymptotic point of view, the swap-or-not construction preserves
essentially all of a PRF’s security in the constructed PRP.

We emphasize that our security results only cover the (strong) PRP notion of
security. An interesting question we leave open is whether the swap-or-not cipher
is indifferentiable from a random permutation [16]. Following Coron, Patarin,
and Seurin [6], Holenstein, Künzler, and Tessaro show that the 14-round Feistel
construction is indifferentiable from a random permutation [12]. But their proof
is complex and delivers very poor concrete-security bounds. It would be desirable
to have a construction supporting a simpler proof with better bounds.

5 Format-Preserving Encryption

In the format-preserving encryption (FPE) problem, one wants to encipher on
an arbitrary set X , often X = [N ] for some number N . Usually constructions
are sought that start from a conventional blockcipher, like AES. The problem
has attracted increasing interest [1–5, 8, 9, 17, 24, 25, 27], and is the subject of
ongoing standardization work by NIST and the IEEE.

When N is sufficiently small that one can afford Ω̃(N)-time to encrypt, prov-
ably good solutions are easy, by directly realizing a random shuffle [3]. And
when N is sufficiently large that no adversary could ask anything near N1/2

queries, nice solutions are again easy, using standard cryptographic constructions
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like multi-round Feistel. But for intermediate-size domains, like those with
230–260 points, the bounds associated to well-known construction are disap-
pointing, even if known attacks are not remotely feasible, and spending time
proportional to the domain size, even in key-setup phase, is not attractive.

With these problematic-size domains in mind, suppose we use swap-or-not to
encipher 9-digit social security numbers (N ≈ 230). Employing Theorem 4, if
we use 340 rounds we are guaranteed a maximal CCA advantage of less than
10−10 even if the adversary can ask q = 108 queries. Similarly, suppose we use
swap-or-not to encipher 16-digit credit cards (N ≈ 253). If we use 500 rounds
we are guaranteed a maximal CCA advantage of less than 10−10 even if the
adversary can ask q = 1015 queries. (Of course these numbers assume random
round functions; if one bases the construction on AES, say, one will have to
add in a term for its insecurity.) The round counts are obviously high, yet the
rounds are fast and the guarantees are strong. (We note too that, at least for
the binary-string setting and AES as a starting point, there are tricks to reduce
the number of blockcipher calls by a factor of five, as shown in prior work [17].
But this is probably not helpful in the presence of good AES support, as with
recent Intel processors.)

A very different approach to small-domain FPE is taken by Granboulan and
Pornin [9], who show how to realize a particular shuffle on N cards in O(lg3 N)
encryption time and O(lgN) space. But the method seems to be impractical,
requiring extended-precision arithmetic to sample from a hypergeometric distri-
bution. Stefanov and Shi go on to show how to exploit preprocessing to realize
a different N -card shuffle [24]. Their method is applicable when the key-setup
cost of Θ̃(N) is feasible, as is key storage and per-message encryption cost of
Θ̃(N1/2). Near or beyond N ≈ 230, these assumptions seem unlikely to hold
in most settings. That said, the approach allows an adversary to query all N
points, whereas the shuffle of this paper has only been proven to withstand
(1− ε)N queries. (We conjecture that swap-or-not works well for N queries and
reasonable r—that its mixing time is fast—but no such result is proven here.)

6 Confusion/Diffusion Ciphers

proc EKL(X) //inner-product realization

for i ← 1 to r do
X ′ ← Ki ⊕X
X̂ ← max(X,X ′)
if Li� X̂ = 1 then X ← X ′

return X

Fig. 5. Cipher E = SN[r, n,�] encrypts a string

X∈{0, 1}n using a key KL that specifies subkeys

K1, . . . ,Kr, L1, . . . , Lr ∈ {0, 1}n

Swap-or-not can also be con-
strued as an approach for
making a confusion/diffusion
blockcipher. In doing this one
would instantiate round func-
tions Fi : {0, 1}n → {0, 1} by
a fast, concrete construction.
Perhaps the simplest plausi-
ble instantiation is have Fi

be specified by an n-bit
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string Li, letting Fi(X̂) = Li � X̂ = Li[1]X̂[1] ⊕ · · · ⊕ Li[n]X̂[n] be the inner-
product of Li and X̂ . This concrete realization of swap-or-not is shown in Fig. 5.
(We comment that for this instantiation it is necessary to use “max” instead
of “min” in selecting a canonical one of {X,X ′}; otherwise, we’d have X = 0n

always encrypting to 0n.)
We do not know how many rounds to suggest such that the construction of

Fig. 5 should be a good blockcipher. It is incorrect to think that the theoretical
analysis suggests a value like r = 6n; for one thing, there is an enormous gap
between computing a random round function Fi(X̂) and an inner product Li� X̂ .
We leave it as a problem for cryptanalysts to investigate how large r needs to
be, to ascertain if inner product with Li is actually a good choice for Fi, and to
understand what other choices might work well.
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