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Abstract—We present a novel unsupervised deep learning
approach that utilizes the encoder-decoder architecture for de-
tecting anomalies in sequential sensor data collected during
industrial manufacturing. Our approach is designed not only
to detect whether there exists an anomaly at a given time step,
but also to predict what will happen next in the (sequential)
process. We demonstrate our approach on a dataset collected
from a real-world Additive Manufacturing (AM) testbed. The
dataset contains infrared (IR) images collected under both
normal conditions and synthetic anomalies. We show that the
encoder-decoder model is able to identify the injected anomalies
in a modern AM manufacturing process in an unsupervised
fashion. In addition, it also gives hints about the temperature
non-uniformity of the testbed during manufacturing, which is
what we are not aware of before doing the experiment.

Index Terms—additive manufacturing, anomaly detection,
fault detection

I. INTRODUCTION

Anomaly detection is an important technique that serves as

the basis of applications across a diverse variety of domains,

such as fault detection, intrusion and fraud detection [18], and

process control. The goal of anomaly detection is to identify

patterns in data that do not conform to a well-defined notion

of normal behavior [2]. Early detection of anomalies and

faults allows us planning preventive maintenance for model

manufacturing, and thus it is crucial for process control.

The availability of massive amount of data due to the intro-

duction of pervasive sensing techniques has brought plenty of

opportunities for data-driven anomaly detection applications;

however, an unresolved challenge is how to make use of these

data for anomaly detection, especially when there is no label
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information that can be used to differentiate between normal

and anomalous working conditions.

A. Learning-Based Anomaly Detection

Depending on the availability of labeled anomalous data,

learning-based anomaly detection approaches can generally

be categorized into supervised and unsupervised methods.

Supervised methods utilize label information for both normal

and anomalous data to train classification models. The trained

classification models from supervised learning can not only

tell the existence of faults but also indicate the likelihood of

an input belonging to a particular type of fault.

A review of the literature reveals that data-driven ap-

proaches relying on supervised learning have demonstrated

promising results in various applications, e.g. Fault Detection

and Diagnosis (FDD) in air conditioning systems [9], [13],

[14].

To train a well-performing model using supervised learning,

a good amount of labeled data from both normal and anoma-

lous conditions are needed, which is not always easy to obtain

in practice.

In addition, supervised models typically lack the ability to

identify an unseen example that does not belong to any of

the classes that appear in the training set. In the context of

anomaly detection, models trained with supervised learning are

likely to give incorrect predictions on out-of-distribution data

instances. This is a limitation of supervised methods because it

is almost impossible to obtain every possible type of anomaly

that could happen on a system. To address this problem,

Jin et al. recently proposed a FDD method that uses Monte-

Carlo dropout [9] to estimate the prediction uncertainty of deep

neural networks. The method was applied to the identification

of incipient faults that are not represented in the training data

that only consists of labeled data of normal and severe faults.

In scenarios where labeled anomalous data are scarce or

unavailable, unsupervised and semi-supervised anomaly detec-

tion approaches are usually applied, because only normal data

are required to train a detection model. The two approaches

differ in their assumptions about the labels of training data. In
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semi-supervised learning, it is assumed that the training set is

comprised of only data instances from the normal class1, while

in an unsupervised setting, it is often implicitly assumed that

few anomalous instances can exist in the training data [2]. We

note that the approach we introduce in this paper can apply to

both settings. We choose to use the term “unsupervised learn-

ing” throughout this paper to refer to both situations where

normal data account for the majority or the entirety of the

training data. Although unsupervised approaches usually lack

the discriminative ability to assign labels to anomalous data,

it is still considered an appealing complement to supervised

approaches in many real-world applications.

Recently, neural network approaches, especially deep neural

networks, have attracted much attention from the machine

learning community, due to their ability to process natural

data in their raw form and learn internal representations that

can be used for detecting or classifying patterns [11]. Yet,

as the authors of the recent review paper [11] also pointed

out, supervised learning accounted for the majority of the

recent success of deep learning, while unsupervised learning

is expected to be far more important in the longer term. This

paper aims at taking advantage of the recent development of

deep learning and provide a methodology for developing unsu-

pervised anomaly detection algorithms for handling sequential

sensing data in industrial applications.

B. Our Contributions

In particular, we investigate the applicability of an encoder-

decoder approach on sequential image sensing data collected

in a real industrial setting. The contributions of this paper are

two-fold:

• We propose using an encoder-decoder architecture for

detecting anomalies in sequential image sensing data

collected from AM process. The learning process is

unsupervised, meaning that no anomalous data are needed

a priori to train the detection model.

• We design a Convolutional Neural Network (CNN)-based

encoder-decoder network to monitor the manufacturing

process of the Laser Additive Manufacturing Pilot System

(LAMPS) testbed, a platform that uses Selective Laser

Sintering (SLS) technology for AM. In our experiment,

the network can not only detect the artificially injected

laser anomalies with high accuracy, but also can in-

dicate regions of the manufacturing testbed where the

temperature is higher than usual. Our results demonstrate

the effectiveness of the proposed algorithm in detecting

anomalous phenomena.

C. Paper Organization

The remainder of this paper is organized as follows.

In Sec. II, we will give the background about LAMPS,

the encoder-decoder architecture and deep-learning-based

anomaly detection approaches. We will define the anomaly

1Note that semi-supervised anomaly detection differs from the traditional
notion of “semi-supervised learning” in machine learning, where both label
and unlabeled data are used simultaneously for training.

(a) LAMPS architecture (b) Boresight image example

Fig. 1: (a) LAMPS testbed [17]. (b) An example image

captured by the boresighted temperature sensor.

detection problem for sequential data in Sec. III. We will

describe our anomaly detection methodology for sequential

image data in Sec IV. In Sec. V, we will describe in details

our anomaly detection algorithm when applied to a real-world

AM dataset with injected faults. Experimental results will be

demonstrated and evaluated in Sec. VI. We will discuss future

work and conclude the paper in Sec. VII.

II. BACKGROUND

A. Laser Additive Manufacturing Pilot System (LAMPS)

AM technologies have transformed the manufacturing land-

scape. [6] In contrast to traditional manufacturing technolo-

gies, AM technology is capable of printing 3D parts with

highly complex geometries in a single process step. Due to its

versatility, AM technology are used in a wide variety of appli-

cations such as medical devices and aircraft manufacturing [1].

One of the prominent AM technologies is Selective Laser

Sintering (SLS) that uses a laser to form solid parts out of

powdered material. Building parts with consistent high-quality

is a key challenge for the SLS process today [6]. Therefore,

having an algorithm that can monitor the SLS printing process

and can indicate potential anomalies will significantly improve

SLS process control. This, in turn, will lead to improved part

quality and ensure repeatability.

We now briefly introduce the SLS printing process and the

testbed we used for data collection and testing purposes. SLS

utilizes a laser to fuse powder geometries layer-by-layer and

hereby generates a solid 3D structure. At the beginning of each

layer, a roller spreads a new powder layer across the powder

bed. Once the powder has been spread, the laser melts the

cross-section of the desired part according to the digital 3D

model. After the laser has finished scanning for the current

layer, a new powder layer is spread and the scanning process

is repeated. Over time the melted powder locations on each

layer will cool down and will solidify to one.

LAMPS is a SLS testbed that was designed and built for

process control research. LAMPS is capable of building 3D

parts out of high-performance plastics (melting temperatures

as high as 350 °C) and is equipped with a variety of sensors,

such as IR and visual cameras, that provide in-situ measure-

ment access. Fig. 1a shows the general architecture of the

LAMPS testbed.



In the context of this paper, we focus on the high-speed

mid-wave infrared (IR) camera which is bore-sighted with

the laser optics to record the laser focus and its immediate

surrounding. The camera has a resolution of 64 × 64 pixels

and has a maximum recording frame rate of 2.24 kHz. Fig. 1b

shows an exemplary IR image of the bore-sighted camera. The

recorded IR information is translated to gray-scale (single-

channel) temperature images, where the intensity value of each

pixel represents the measured temperature value at that pixel.

B. Encoder-decoder architecture

The encoder-decoder architecture has proven to be a useful

approach for learning (deep) representations, and is widely

used in various application domains of deep learning, in-

cluding machine translation [3], and image denoising [23].

An encoder-decoder model generally consists of three parts:

the encoder, the latent space representation, and the decoder.

The purpose of the encoder network Enc is to transform the

input data into a latent space representation z that is often a

vector; the decoder network Dec then produces the output by

decoding z. During training, the encoder and the decoder are

trained together to minimize the empirical risk.

Proper design of the latent space representation z is crucial

to the successful application of the encoder-decoder approach.

Let us take the basic autoencoder model as an example. An

autoencoder is a neural network model that is trained to

reconstruct its input. In other words, an autoencoder is trained

to learn an identity function for the data distribution. By con-

straining z to be a low dimensional vector, the training process

encourages the model to learn the most useful information for

reconstructing the input.

C. Unsupervised anomaly detection with deep learning

Supervised deep learning has been extensively studied in

various applications domains.

In fault/anomaly detection tasks, we often do not have

access to the entire spectrum of off-nominal data, as well as

the labels that come along with it. As a result, unsupervised

approaches that do not require labeled anomaly data are more

suitable in such scenarios.

In this paper, we aim to explore unsupervised anomaly

detection using a deep learning approach. Specifically, we

will adopt the encoder-decoder scheme described earlier in

Sec. II-C.

The general idea behind unsupervised anomaly detection

approaches is to find an approximate model that can capture

the normal behavior of complex systems. The approximate

model can then be used to flag anomalies if the deviation of

the predicted behaviors of the trained model from the actual

observation exceeds some certain threshold. Examples that

share this general idea include One-class Support Vector Ma-

chine (OC-SVM) [5], [8], [20], Principal Component Analysis

(PCA) [12] and autoencoders [19].

The encoder-decoder schemes for anomaly detection that

appeared in literature in general fall into three categories,

which differ in their prediction outputs: 1) autoencoder mod-

els [15], 2) prediction models, and 3) composite models [22]

that performs both reconstruction and regression. We denote

our observation at time instant τ by Sτ . The observations

we observe in time then forms as a sequence {Sτ}. Let g

be a function that maps an input sequence of length p to an

output sequence of length q. These encoder-decoder schemes

are therefore summarized below:

(Sτ−p+1
, . . . , Sτ0)

g
−→











(Sτ−p+1
, . . . , Sτ0), reconstruction model,

(Sτ1 , . . . , Sτq ), regression model,

(Sτ−p+1
, . . . , Sτq ), composite model.

(1)

As previously described, reconstruction models (a.k.a. au-

toencoders) aim to find a compact representation for input

data distribution. Depending on the format of the input data,

different neural network architectures or their combinations

are used to design encoders and decoders. Autoencoders are

first trained on data that are normal or almost fault-free. The

reconstruction errors given by autoencoder models are often

used as anomaly scores to indicate potential anomalies. This

approach is seen in previous literature for anomaly detection

in multivariate timeseries [15].

Similarly, we can also use the encoder-decoder architecture

for prediction tasks. In the case of time series data, a neural

network prediction model can be trained to predict the future

from past observations. Taking the past p observations as input

(Sτ−p+1
, . . . , Sτ0), the model is trained to predict the next q

observations (Sτ1 , . . . , Sτq ). During training, the encoder will

look for information needed for the decoder to predict the

future, and encode the information as latent space representa-

tions. In this case, the prediction errors are used to indicate

potential anomalies.

The authors of [22] argue that a composite model, by

performing the reconstruction and the regression tasks simul-

taneously, can overcome the drawbacks of each one when

performed alone, and thus achieving better performance at

learning useful representations in the data. Previous literature

reports on schemes for detecting anomalies in videos [16] and

multivariate time series. In our case study to be later discussed,

we designed our encoder-decoder model as a composite model

to leverage the advantages of both reconstruction and regres-

sion models.

III. THE ANOMALY DETECTION PROBLEM

Assume that we are given a series of observation data,

Sτ0 , Sτ1 , . . . , Sτi , . . ., where each Sτi ∈ S (S being the input

domain) denotes the representation of the ith data point in the

sequential data. In the anomaly detection setting, we assume

that all data points from the training set are in the normal

state.

Let F be a model class, where each f ∈ F : S → R≥0

denotes a score/fitness function that characterizes how close a

data point is to an abnormal state, i.e., larger f implies higher

chance of a data point being abnormal.



For a given threshold value ǫ > 0, we define the detection

precision of f as

prec(f, ǫ) = ES [1 {S is abnormal} | f(S) > ǫ]

where the expectation is taken over the distribution of the test

data, and the recall of f as

recall(f, ǫ) = ES [1 {f(S) > ǫ} | S is abnormal]

Our goal is to learn a score function fscore ∈ F and a

corresponding threshold ǫ, such that (fscore, ǫ) achieves the best

detection accuracy and recall of anomalies on the (unseen) test

data.

IV. METHODOLOGY

We utilize the encoder-decoder architecture described in

Sec. II-C to design a neural network that can be used to

detect possible anomalies in AM process. Since we are dealing

with image data in LAMPS application, we choose to use

CNNs [10] as the main building blocks for our encoder-

decoder model. Our approach uses the composite prediction

model described earlier in Sec. II-C – the designed model will

not only attempt to reproduce the input but also predict what

will happen next.

A. CNN-based encoder-decoder model

In our unsupervised learning setting, we only have access

to data points collected under normal condition. The learning

goal is to use a neural network to model the normal behaviors

of the system under study. Outliers to the learned distribution

will be identified as potential anomalies.

Let us suppose that each observation Sτ in the sequential

data is a single-channel 2D image of dimension m × n,

i.e. Sτ ∈ R
m×n. To capture the temporal correlations among

the observations, a sliding window approach can be used to

divide the original image sequence into snippets, where each

snippet Zk ∈ R
m×n×(p+q) comprise of p + q consecutive

frames, and k is the index of the snippet.

When a regression or composite prediction scheme is used

to train an encoder-decoder model, the frames in a snippet

constitute the input and the output. For training a regression

model, the first p frames in a snippet Xk ∈ R
m×n×p constitute

the model input, and the rest q frames are the output to be

predicted. In the case of a composite model, the input is still

the Xk, and the output is the entire p+ q frames. If we view

the frames in a snippet as channels in an image, the learning

problem can be cast as an image-to-image translation task. To

be more specific, we will train the encoder-decoder network

M to learn a mapping g : R
m×n×p → R

m×n×(p+q) that

transforms a p-channel image input Xk to an output Ẑk with

(p+ q) channels. The prediction output Ẑk can be seen as the

combination two parts, X̂k and Ŷk. X̂k is the reconstruction

of the p input frames, and Ŷk is a prediction of the q frames

following the input frames.

When training the encoder-decoder model, we aim to min-

imize the errors on both the reconstruction part and the

regression part. Since the model input and output are both

images, the following pixel-wise Mean Square Error (MSE)

can be used as the error metric on frame Sτ .

ℓmse(Sτ , Ŝτ ) = ‖Sτ − Ŝτ‖F , (2)

where ‖·‖F is the Frobenius norm of a matrix.

Let us suppose the frames in snippet k are taken at time

instants τ0k , τ
1
k , . . . , τ

p+q−1
k . By choosing (2) as the error met-

ric, we can define the reconstruction error erec
k and regression

error e
reg

k on snippet k as follows

erec
k

.
=

∑

0≤i<p

ℓmse(Sτ i
k
, Ŝτ i

k
), (3)

e
reg

k

.
=

∑

0≤i<p+q

ℓmse(Sτ i
k
, Ŝτ i

k
). (4)

The loss function L to minimize during model training can

then be defined as as the weighted sum of reconstruction error

erec
k and regression error e

reg

k on all training samples k ∈ K.

L =
∑

k

erec
k + λe

reg

k (5)

where λ is a weighting factor that adjusts the relative im-

portance between the reconstruction error and the regression

error.

B. Using the trained model for anomaly detection

Assuming the trained encoder-decoder model has learned a

good representation of the normal behavior of the system, the

differences between the predicted images and their correspond-

ing ground truth can be used to indicate possible anomalies.

By comparing the images, we are essentially getting a large

number of pixel-wise errors, and thus a method is needed

to process this information in order to detect and locate the

anomalies.

One simple idea is to use the original loss function (5) that

we used for training the network. These loss values can be

derived directly from the prediction results, and can be used as

good indicators for evaluating the network’s prediction quality;

however, this approach also suffers from two drawbacks. First,

if the anomaly is only localized to a small area, it is likely

that the prediction errors are only significant in a small part

of the image. When we calculate the pixel-wise MSE over the

entire image, useful indications of anomalies may be buried in

noise and averaged out. In addition, even if a significant loss is

observed on an image, this approach only indicates a potential

anomaly on the image level, but it does not give further hint

about the occurrence of this anomaly. It is unknown whether

the anomaly is local to only a small area or affects the entire

image.

To address the above mentioned challenge when using for

evaluating image-to-image differences, we propose a “spatial

scoping” approach: we aim to find a a × b window from the

m × n error matrix Eτ = Sτ − Ŝτ that has the maximum

Frobenius norm. The new error metric ℓss is thus defined as:

ℓss(Sτ , Ŝτ ) = max
0≤i≤m−a
0≤j≤m−b

‖Ei:i+a,j:j+b
τ ‖F , (6)



Fig. 2: An top-down illustration of the benchmark dataset. (Left) On the top we show examples of boresight images when the

laser head it at column start, line start, line middle and line end, respectively; on the bottom we illustrate the trace of scanning

laser; (Middle) the nominal and off-nominal scan lines pattern; (Rigth) Examples of preprocessed data (boresight images)

where the superscript in Ei:i+a,j:j+b
τ indicates the position of

the window in the original error matrix Eτ .

Next we define two anomaly scores, the reconstruction

anomaly score f rec
score(τ) and the regression anomaly score

f
reg
score(τ), as the metrics for evaluating the “degree of anomaly”

of an observation Sτ . Note that there is more than one snippet

that encompasses Sτ because we used a sliding window

approach to generate the snippets. To get a single anomaly

score taking into account the prediction errors from all relevant

snippets, we define the anomaly score as the average prediction

errors from all these snippets.

Suppose K rec
τ is the index set of snippets whose reconstruc-

tion window covers Sτ , and K rec
τ is the index set of snippets

whose reconstruction or regression window covers Sτ . The

reconstruction and regression anomaly scores on Sτ can be

defined by as follows

f rec
score(τ) =

1

|K rec
τ |

∑

k∈Krec
τ

erec
k , reconstruction (7a)

f reg
score(τ) =

1

|K reg
τ |

∑

k∈K
reg
τ

e
reg

k , regression (7b)

where |K rec
τ | and |K reg

τ | are the cardinalities of sets K rec
τ and

K
reg
τ respectively. A notable difference between K rec

τ and K
reg
τ

is their sizes. In the reconstruction case, all snippets whose

regression windows (of length p) cover Sτ are included in

K rec
τ . As a result, |K rec

τ | = p, except at the start or end of

sequence {Sτ} because at the boundaries there are be fewer

snippets covering an observation. In the regression case, as

long as an anomaly is seen in either the reconstruction window

(of length p) or the regression window (of length q), the

anomaly would (probably) be caught in the regression error.

Therefore, |K reg
τ | = p+q except at the start or end of sequence

{Sτ}.

The anomaly scores introduced above can be used to

evaluate how likely an observation Sτ will correspond to an

anomalous state of the system under study. Later in Sec. V and

Sec. VI, we will present a case study on LAMPS to illustrate

our proposed approach.

V. ALGORITHMIC DETAILS FOR LAMPS

A. Benchmark dataset with synthetic faults

Fig. 2 shows the laser trajectory in LAMPS machine. It

is clear that the laser follows a periodical motion pattern in

our experiment. The laser firstly moves rightward till the right

boundary of the column and then move leftward to the left

boundary. During each period of motion, the laser power will

move forward 1 unit in the line axis. There is no laser power

in the leftward process which is depicted with dashed lines

in Fig. 2. We therefore only took the rightward process into

consideration in this experiment.

For testing our anomaly detection algorithm, we created an

“off-nominal” build with the LAMPS machine. During this

build, the laser power was altered at specific time instances

from its nominal power. We will detail the layout of the build

below.

The off-nominal build consisted of three columns being built

over the course of 250 layers. Each column had the same off-

nominal pattern applied in order to create a large dataset. For

each layer, the laser scanned the rectangles (the horizontal

section of the columns) with straight scan lines that were

horizontally aligned. Off-nominal conditions were applied to

every fourth layer by scanning specific scan lines with off-

nominal laser power instead of nominal laser power. The off-

nominal conditions were only applied every fourth layer to



Fig. 3: Network Structure

ensure that there would be no temperature influences between

off-nominal layers.

The horizontal cross-section of each column is of a rectangle

shape. Fig. 2 illustrates the off-nominal scan line pattern for

one of the three rectangles. Each rectangle consists of 215

horizontal scan lines and the bore-sight camera is able to

approximately take 40 frames for each scan line. The off-

nominal laser power magnitude stayed the same within every

off-nominal layer, but was continuously changed throughout

the build. For more comprehensive testing, the anomalies

injected have different lasting areas, from 1 line to 4 lines.

B. CNN-based encoder-decoder network design

To create training data for the encoder-decoder model, we

divide the dataset into snippets with each consisting p + q

frames. As illustrated in Fig. 2, each snippet is oriented

in the vertical direction and spans p + q scan lines. The

frames within a scan line are ordered by the time sequence

the images were taken. Let us denote by Si,j the jth frame

taken in the ith scan line; here the indices for column num-

ber and layer number are omitted for brevity. The encoder-

decoder model is trained to transform each input data point

Xk = (Si,j , Si−1,j , . . . , Si−p+1,j) ∈ R
m×n×p into a predicted

output Ẑk = (Ŝi,j , Ŝi−1,j , . . . , Ŝi−p+1,j) ∈ R
m×n×(p+q).

We choose a VGG-based [21] structure. The convolution

kernel size is chosen to be 3× 3 and the pooling kernel size

is chosen to be 2 × 2 to build a deeper network instead of

using a large kernel size. As shown in Fig. 3, in our network

there are four stacked down-sampling layer groups and four

stacked up-sampling layer groups to sample the data and

reconstruct the data respectively. Each down-sampling group

has one or two Convolution layers (depending on the network

depth) and a “Maxpooling” layer and correspondingly each up-

sampling layer has the same number of “Convolution” layers

and a “Up-sampling” layer. Functionally, when the data is

input into the neural network, each down-sampling layer group

will down-sample the spatial dimensions (width, height) and

double the depth of the data while each up-sampling layer

will up-sample the spatial dimensions and halve the depth.

Between the up-sampling groups and down-sampling groups,

we set two fully connected layers, from which the latent

(a) Reconstruction (b) Regression (c) Temperature

Fig. 4: Top-down views

TABLE I: Experiment results on different layers

Layers
Off-nominal laser power

(% of max value)
Absolute power deviation

(% of max value)
Precision Recall

A1 58 13 0.93 0.95
A2 56 11 0.90 0.99
A3 54 9 0.88 0.87
A4 50 5 0.81 0.65
A5 48 3 0.75 0.61

space representations can be extracted. In addition, in order

to prevent the network from over-fitting, we add a “Dropout”

layer to each group. To make training more efficient, we add

a “BatchNormalization” [7] layer to each group between the

“Maxpooling” layer and the “Dropout” layer.

VI. EXPERIMENTAL EVALUATION

A. Data preparation and preprocessing

We choose five nominal layers as our training set and five

off-nominal layers with different size of anomalies as our test

set; see Table I for details about the off-nominal layers.

In our data preprocessing step, the data was normalized

by changing the range (the difference between max and min

values) of the data to one. We down-sampled the original

64 × 64 image data to a resolution of 32 × 32, to reduce

the complexity of our network. We chose p = q = 3 in our

experiment for creating the snippets as described in Sec. V-B.

To improve the robustness of our model against small

perturbation in input data, we augmented our dataset by

adding a small Gaussian noise (with zero mean and a standard

deviation of 0.01°C) to the training data. In addition, we

know from physics that the thermodynamics of the powder

bed is largely governed by the gradient of the temperature

distribution; therefore, we can generate additional synthetic

data by adding a constant temperature bias b (in our ex-

periment b ∈ [−1.8°C,+1.8°C]) to the original data. This

helps regularize our network to better capture the underlying

thermodynamics.

B. Network implementation and hyperparameter tuning

We used Keras [4] as the framework for implementing the

encoder-decoder model. λ was set to 1 so that the reconstruc-

tion and regression errors were equally weighted. The model

was trained for 500 epochs.



(a) (b)

Fig. 5: (a) The line-wise reconstruction and regression anomaly scores, averaged on each scan line, and (b) the de-trended and

normalized line-wise reconstruction and regression anomaly scores, as well as the detected anomalies. In (a), the raw MSE

error metric (2) is used to calculate the errors and the anomaly scores; in (b) the spatial scoping error metric (6) is used. To give

the readers a clearer understanding, we use dark pink shades in (b) to indicate the locations of injected anomalies. A lighter

pink color is used to indicate lines adjacent to the injected anomalies if one (or more) window that is used for calculating the

anomaly score at this line overlaps with the injected anomalies. In our setting, the affected region has a width of p+ q−1 = 5
on each side of an anomaly. In the plots, the first (and last) three lines are grayed out to ignore boundary effects.

Fig. 6: The ROC curves of our learning-based model (darker

colors) vs. the non-learning model (lighter colors) on the five

test layers A1-A5 with injected anomalies.

In our unsupervised setting, we did not have labeled anoma-

lous data for using the conventional cross-validation technique

to tune the hyper-parameters as in supervised learning. To

create a validation set that contains both normal and anoma-

lous data points, we used a simple method to create some

synthetic anomalies. 20% of the training data was first picked

out as the validation data. We tuned the hyper-parameters

(e.g., dropout rates and the number of convolution kernels)

until the validation loss on normal data had converged.

C. Result analysis and evaluation

To assess the performance of our model, we tested our

model using layers that have different degrees of anomaly. We

plotted the distributions of the reconstruction anomaly score

in Fig. 4a and the regression anomaly score in Fig. 4b from

a top-down view, with the raw MSE (2) used as the error

metric. It can be clearly seen that some of the regions with

a high anomaly score are located along certain scan lines. To

better visualize and quantify the variation of anomaly scores

across different scan lines, we display in Fig. 5a the average

anomaly score along each scan line. From the plot, we can

see that scan lines with high anomaly scores appear either as

“sharp peaks”, or as “big bumps”, which may indicate different

causes of anomalous conditions, and should thereby be treated

and analyzed separately.

Sharp peaks To isolate these sharp peaks in Fig. 5a, a

detrend technique can be applied to filter out the slowly

varying component; here we use a simple detrend technique by

subtracting the signal using a window size of 20. In addition,

we also apply the spatial scoping technique (6) as the error

metric for calculating the anomaly score. The resulting signal

is displayed in Fig. 5b, where we can see a clear correlation

between the large peaks and the injected anomalies. A simple

thresholding method is used to do anomaly detection. We

test our model on the entire training sets and choose the

maximum line-wise regression score as the threshold, so no

false positives can be detected on all these normal layers. Most

injected anomalies can now be correctly detected. We also

observe that the first anomaly is difficult to detect. Due to the



fact that the deviated laser power merely lasts for 1 line, the

temperature there has not yet been significantly changed since

the energy accumulated is not sufficient to cause temperature

variation in case of limited lasting time and these anomalies

may sometimes be buried in the noise. Table I shows the

performance of our detection model on the five off-nominal

layers. The detection model performs better on layers with

higher laser power deviation; the precision and recall rates

both exceed 90% in layers A1 and A2. In layers A4 and A5,

the precision and recall rates drop significantly, which is due

to the reduced temperature disturbance due to smaller laser

power deviation. It can also be seen in Fig. 6, the Area Under

the Curve (AUC) rate exceeds 0.97 in layer A1 and layer A2

but drops to only 0.776 in layer A5.

For comparison, we also implemented a simple non-learning

method that simply used raw temperature measurement for

detecting anomalies. The anomaly score for each image Sτ is

defined as its root-mean-square intensity (temperature) value

over the image, i.e.

f temp
score(τ) = ‖Sτ‖F . (8)

As an example, we visualize the distribution of the anomaly

scores on Layer A2 from the non-learning method in Fig. 4c.

The ROC curves obtained from applying this non-learning

method on these anomalous layers are displayed in Fig. 6. It

can be seen that our encoder-decoder approach gives a much

superior performance to the non-learning method.

Big bumps Having found the cause of sharp peaks, we would

like to identify the cause of large bumps in the anomaly scores.

By comparing the three top-down views in Fig. 4, we observe

an obvious correlation among these large bump regions. We

conjecture that the elevated anomaly scores are due to the high

temperature (generally 2°C higher than surroundings) and the

steep temperature gradient in these parts of the powder bed.

VII. CONCLUSION

In this paper, we proposed an unsupervised deep learning

approach for detecting potential anomalies in an AM system.

As future work, we plan to apply the proposed technique to

other industrial applications. We also plan to conduct a more

in-depth theoretical analysis of the proposed technique.
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