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In recent years, the convolutional neural network (CNN) has made remarkable achievements in semantic segmentation. The
method of semantic segmentation has a desirable application prospect. Nowadays, the methods mostly use an encoder-decoder
architecture as a way of generating pixel by pixel segmentation prediction. The encoder is for extracting feature maps and
decoder for recovering feature map resolution. An improved semantic segmentation method on the basis of the encoder-
decoder architecture is proposed. We can get better segmentation accuracy on several hard classes and reduce the computational
complexity significantly. This is possible by modifying the backbone and some refining techniques. Finally, after some
processing, the framework has achieved good performance in many datasets. In comparison with the traditional architecture,
our architecture does not need additional decoding layer and further reuses the encoder weight, thus reducing the complete
quantity of parameters needed for processing. In this paper, a modified focal loss function is also put forward, as a replacement
for the cross-entropy function to achieve a better treatment of the imbalance problem of the training data. In addition, more
context information is added to the decode module as a way of improving the segmentation results. Experiments prove that the
presented method can get better segmentation results. As an integral part of a smart city, multimedia information plays an
important role. Semantic segmentation is an important basic technology for building a smart city.

1. Introduction

Convolution neural network is the part and parcel of image
recognition, detection, and segmentation. The image seman-
tic segmentation can provide a strong foundation for the
construction of a smart city and has received much attention
and research in recent years. Semantic segmentation is aimed
at classifying all pixels in the image according to a specific
category, which is commonly referred to as dense prediction.
It is different from image classification because we do not
classify the entire image into one class but all pixels. Thus,
we boast a set of predefined categories and we need to distrib-
ute a tag to all pixels of the image according to the context of
various objects in the image [1]. Deep neural network is no
secret to the innovation of computer vision, particularly
image classification. Since 2012, it has surpassed its prede-

cessors by a large margin. In fact, artificial intelligence is
superior to human in image classification. Inevitably, we
adopted the same technology for semantic segmentation.
Therefore, we put forward a network structure on the basis
of encoder-decoder and atrous spatial pyramid pooling [2].
At the same time, a combination of multiple loss functions
is used to be the ultimate loss function.

A relatively naive approach to construct the neural net-
work architecture is simply stacking several convolutions,
using the same padding to preserve that the dimensions
remain the same and then output an ultimate segmentation
map. Through a series of feature mapping transformations,
the corresponding mapping of segmentation results can be
learned directly from the input image. But it is quite expen-
sive in computation to keep the whole resolution in the whole
network. This architecture is illustrated in Figure 1.
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2. Related Works

In the deep convolution networks, the first layer studies the
low-level notions, and the second layer studies the high-
level feature mapping. As a way of maintaining the expres-
sion ability, the quantity of feature maps (channels) is usually
increased while deepening the network. Different from the
image classification which only needs the target category,
image segmentation needs the location information of each
pixel, so it cannot use pooling or trided convolutions to
reduce the computation as safely as in the classification task.
Image segmentation needs a whole-resolution semantic pre-
diction. A popular image segmentation model is based on an
encoder-decoder structure. In the encoder part, down sam-
pling is adopted to reduce the input spatial resolution, so as
to generate a lower resolution feature mappings (which is
computationally efficient and can effectively distinguish dif-
ferent categories); in the decoder part, these feature represen-
tations are up sampled and restored to the full-resolution
segmentation map.

2.1. Fully Convolutional Network. Long et al. introduces the
way to utilize end-to-end, pixel-to-pixel image segmentation
task trained by the fully convolutional network at the end of
2014. In this paper, the author proposes to use the existing
and well-researched image classification network as the
encoder module of the network, adds transpose convolution
layer in the decoding module, and upgrades the coarse fea-
ture mapping to the full-resolution segmentation mapping
[3]. Full convolution network (FCNs) has achieved great suc-
cess in the application of dense pixel prediction in semantic
segmentation. The algorithm is required for predicting a
variable for all pixels of the input image, a basic task in
advanced computer vision understanding [1, 3]. Some of
the most attractive applications include automatic driving
[4], human-computer interaction [2, 5, 6], intelligent trans-
portation system [7], auxiliary photo processing [8], and
medical imaging [9]. The great achievements of FCNs come
from the powerful characteristics picked up by CNNs. It is
important that the convolution computer system makes the
calculation efficiency of training and reasoning very high.

2.2. Encoder-Decoder. The encoder-decoder structure is a
common architecture of current semantic segmentation
algorithms. The structure is composed of an encoder and
decoder. Classic image semantic segmentation algorithms
such as FCN, U-net, and DeepLab all adopt this structure.

The encoder is usually a network (VGG, Resnet, Xcepiton,
etc); it consists of a deconvolution layer and upper sam-
pling layer. Down sampling is aimed at capturing semantic
or context information, while up sampling is aimed at
recovering spatial information. Common decoders include
bilinear interpolation, deconvolution, and dense up sam-
pling convolution.

2.3. Dilated Convolution. In FCNs, because of continuous
max pooling and down sampling operations, the feature res-
olution is greatly reduced. Finally, the feature mapping
recovered by up sampling loses the detail sensitivity of the
input image. In the full convolution network, the extended
convolution is used instead of the standard convolution, so
that the convolution network can accurately control the res-
olution of the image when calculating the feature response
[10]. At the same time, the receiving the field of the filter is
effectively expanded without adding the quantity of parame-
ters and the amount of computing. Many experiments show
that the algorithm uses more context information to obtain
more dense features, thus improving the image semantic
segmentation accuracy. It can be seen from Figure 2 that this
is an expansion convolution filter with three different expan-
sion rates: each element in the filter is a (a) 1-expansion
convolution and a 3 × 3 receptive field, (b) 2-expansion con-
volution and a 7 × 7 receptive field, and (c) 3-expansion con-
volution and a 15 × 15 receptive field. The quantity of
parameters related to each layer is the same. The receptive
field increases exponentially and the number of parameters
increases linearly [11].

Under the same size of convolution kernel, the receiving
field of the convolution kernel can be increased by increasing
the input stripe, as shown in Figure 3.

FCNs is a kind of deep convolution neural network,
which has achieved good performance in pixel-level recogni-
tion tasks, but it still faces challenges in this changing and
complex world. FCN is not a fully connected layer. The orig-
inal method is to use the same size convolution layer stack as
a way of mapping the input image to the output image. It
produced strong results, but it was very expensive, because
they cannot utilize any subsampling or pooling layers,
because this will screw up the location of the instance. As a
way of maintaining the resolution of the image, they must
add many layers in a way that learns the low-level and
high-level features. That means it is inefficient. For address-
ing this problem, they presented an encoder-decoder archi-
tecture. The encoder is a typical pretraining convolution
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Figure 1: A simple method of constructing a neural network structure.
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network while a decoder consists of a deconvolutional layer
and an upper sampling layer. Down sampling is aimed at
capturing semantic or context information, while up sam-
pling is aimed at recovering spatial information. Because
the encoder lessens the image resolution, the segmentation
has too few well-defined edges, meaning that the boundaries
between the images are not clearly defined.

In [8], the final image prediction is usually reduced by 32
times in several stages of stride convolution and spatial pool,
resulting in the loss of fine image structure information and
inaccurate prediction, especially at the object boundary. Dee-
pLab [12, 14–16] uses atrous (also names dilation) convolu-
tion to expand the receptive field while maintaining the
high-resolution feature map, or use the encoder-decoder

architecture to solve this problem. It regards the backbone
network as an encoder and is responsible for encoding the
original input image as a low-resolution feature map.

2.4. Atrous Spatial Pyramid Pooling (ASPP). The ASPP mod-
ule was first proposed in [17] and further revised in [12]. In
ASPP module, as shown in Figure 4, different atrous rates
are used to extract multiple scale information. In conclusion,
one 1 × 1 convolution block and three 3 × 3 convolution
blocks have different shrinkage rates (6, 12, and 18, respec-
tively), and one GAP block is employed in parallel. ASPP
with different sampling rates and multiple views can capture
objects at multiple scales.

It can be found that the receptive field has changed from
3 to 5, approximately doubled; the convolution kernel size is
still 3 × 3, and the input stripe is 2, which is now called dilate
rate [12, 14].

3. Our Approach

In this part, we introduce our presented network architecture
and then explain the formation of each module in detail. We
also propose a loss function as a way of further improving the
performance of semantic segmentation.

1-dilated

(a) 1-dilated

2-dilated

(b) 2-dilated

3-dilated

(c) 3-dilated

Figure 2: 3 × 3 expansion convolution, the expansion rate is different: 1, 2, and 3.

Figure 3: Illustration of the hole algorithm. 3 × 3 dilated
convolutions with rate = 2).
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3.1. Network Architecture. Figure 5 shows the network archi-
tecture including two parts: the encoder is used to extract the
feature map and the decoder is used for recovering the reso-
lution of the channel. The amount of parameters in the
ASPP part and the decoder part are also huge. Therefore,
all the ordinary convolutions are replaced by the depthwise
separable convolution. At the same time, the number of
channels in ASPP and decoder is also decreased. The back-
bone network and the ASPP module together constitute
the encode module of the network. Input any size of image
to obtain the corresponding high-level feature map. Then,
through the bilinear up sampling and the low-level feature
map of one layer of the encode module, the decode module
of the network is formed. Finally, the up sampling is back to
the original map size, and the corresponding segmentation
map is obtained through the softmax classification layer.
This is to decouple spatial information and depth informa-

tion. It is found that the effect of detail set 1/2 of the size
of the feature map and the decoder feature are fused, and
finally good results are achieved.

3.2. Backbone Network. Over the past few years, some back-
bone networks of CNN have achieved great progress in visual
missions, showing the most advanced level. It is stacked in
the order of convolutional layer, pooling layer, activation
function layer, and a fully connected layer. CNN can output
the classification score corresponding to the image by input-
ting the image. In 2012, AlexNet [18] won the title of ILSVRC
[19]. AlexNet addresses the problem of image classification
and creates a new situation of computer vision. Then, top
competitors put forward various CNN architectures, Goo-
gLeNet [8], ResNet [20], DenseNet [21], etc [22]. These
network structures can well extract the feature mapping of
an image, which lays a solid foundation for semantic

(a) (b)

Figure 4: (a) The standard convolution of 3 × 3 kernel. (b) Expansion convolution of 3 × 3 kernel (expansion rate = 2).
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Figure 5: An image segmentation network architecture based on encoder-decoder structure.
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segmentation [23, 24]. Our network architecture uses Xcep-
tion to be the feature extractor. Some common classification
networks are shown in Table 1 [25]. We came to a conclu-
sion in the experiment. With high calculation complexity,
recognition accuracy is allowed to be low; with many
parameters, recognition accuracy is allowed to be low. A
good network structure design is very important. Different
models have different parameter utilization efficiencies.

3.3. Cross-Entropy Loss and Focal Loss. The common loss
function of classification problem is cross-entropy loss. It
shows the distance between two probability distributions.
The closer they are to the cross-entropy, the closer they are.
The cross-entropy approach is a novel general method for
combinatorial optimization, multipole optimization, and
rare event simulation. The standard loss of binary classifica-
tion is cross-entropy.

Sometimes we will meet the task of image segmentation,
which is that the background accounts for a large propor-
tion, but the object accounts for a small proportion of the
seriously imbalanced dataset. At this time, we need to care-
fully use the loss function. The most commonly used loss
functions are as follows:

CE p, yð Þ = −y log pð Þ − 1 − yð Þ log 1 − pð Þ, ð1Þ

where y=ytruth, p=ypred

CE p, yð Þ =
−log pð Þ y = 1,

−log 1 − pð Þ otherwise:

(

ð2Þ

From the above formula, we can draw a conclusion:

when y = 1, the larger y′ is, the closer it is to y, that is, the
more accurate the prediction is, the smaller the loss is. When

y = 0, the smaller y′ is, the closer it is to y, that is, the more
accurate the prediction is, the smaller the loss is. The final
loss is the sum of y = 0 and y = 1. This method has one obvi-
ous drawback. While the number of positive samples is far
less than the negative samples, that is to say, the number
of y = 0 is far greater than the number of y = 1, and its com-
ponents will dominate the loss function. The model is
heavily biased towards the background.

FL ptð Þ = − 1 − ptð Þγ log ptð Þ: ð3Þ

We define pt :

pt =
y′ y = 1,

1 − y′ otherwise,

(

ð4Þ

and rewrite CEðp, yÞ = CEðptÞ = −log ðptÞ:
First of all, the proportion of positive and negative sam-

ples should be balanced without using negative sample min-
ing and other means. In this paper, we directly multiply a
parameter α in front of the CE loss, so that we can easily con-
trol the proportion of negative and positive samples.

We get the balanced cross-entropy loss as

CE ptð Þ = −α log ptð Þ: ð5Þ

In practice, α is a decimal between [0, 1]; it is a fixed value
and does not participate in training.

Although the above formula can control the weight of
positive and negative samples, it cannot control the weight
of easy samples and hard samples.

The γ here is called a focusing parameter, γ > = 0: A
modulating factor ð1 − ptÞ

γ is called the modulating factor.
In practice, we usually add a parameter α in front of the focal
loss:

FL ptð Þ = −α 1 − ptð Þγ log ptð Þ: ð6Þ

In the process of semantic segmentation, there are more
categories corresponding to semantic segmentation than
the two classification problem in target detection. If the
selected parameters λ and γ are not suitable, the cross-
entropy loss weight of these pixels will be reduced. Combined
with the above analysis, we propose to increase the weight of
difficult samples and keep the weight of simple samples
almost unchanged. We find that the best results can be
obtained by setting α = 0:5 and γ = 2 in our experimental
network.

Focal loss was first proposed in the RetinaNet model [26]
to solve the imbalance and difficulty of classification in the
training process. In practical application, the combination
of focal loss and dice loss usually needs to scale them to the
same order of magnitude. Use -log to enlarge dice loss and
use alpha to reduce focal loss.

4. Experiments and Results

As a way of proving the effectiveness of our presented frame-
work, we evaluated it on the basis of the benchmark dataset
(PASCAL VOC 2012) and the latest methods. In the paper,

Table 1: Common image classification network infomation summary.

Name AlexNet VGG GoogLeNet ResNet Inception Xception EfficientNet

Year 2012 2014 2014 2015 2015 2016 2019

Layer 8 19 22 152 / / /

Conv 5 16 21 151 / / /

Top 5 (error)% 16.4 7.32 6.67 3.57 3.5 5.5 2.9

5Wireless Communications and Mobile Computing



we report the experimental outcomes of three mainstream
semantic segmentation datasets: PASCAL VOC2012, Cam-
Vid [27], and Cityscapes [28].

The mean intersection on union (MIoU) is the standard
measure of semantic segmentation. The intersection and
union ratio of two sets is calculated. In semantic segmenta-
tion, the two sets are base truth value and prediction segmen-
tation. This proportion can be morphed to TP (intersection
set) over TP, FP, and FN (union set). Calculate the IoU of
each class and take the average.

MIoU =
1

k + 1
〠
k

i=0

pii

∑k
j pij +∑k

j pij − pji
, ð7Þ

is equivalent to

MIoU =
1

k + 1
〠
k

i=0

TP

FN + FP + TP
, ð8Þ

First, calculate the intersection and union ratio of each
category, and then get the average. TP is the positive sample
that has a correct sort, TN is the positive sample that has a
wrong sort. FP is the negative sample of sort error. TP can
be understood as the intersection of prediction results and
labels, while TP + TN + FP is preunion of test results and
labels. The closer the intersection is to the union, the more
accurate the segmentation is.

We also used several widely used data augmentation
strategies in our training, including 50% probability of hori-
zontal flipping and random scaling of images, scale factor
between 0.5 and 2.0 in steps of 0.25, fill and randomly crop
the scaled image to 513 × 513. Finally, with a fine tuning
learning rate of 2e-4 is implemented in the model. When
we segment some small target parts, we find that the effect
of detail segmentation is very poor. To improve the details,
1/2 of the size of the feature map and the decoder feature
are fused, and good results are obtained. In the training, the
loss function used is an improved version, focal loss. The
results show that the improved focal loss can improve seman-
tic scores. The accuracy of the segmentation and the non-
equilibrium of the sample are alleviated.

4.1. PASCAL VOC 2012. PASCAL VOC 2012 includes 20
foreground object classes and one background class, includ-
ing photos from private collections. There are six indoor clas-
ses, seven cars, and seven creatures. The dataset contains
1464 columns, 1449 validation, and 1456 variable size test
images. We use 512 × 512 crops as a way of dividing the
learning rate of pretraining weight by 8. All other superpara-
meters are the same as those in [16] experiment. Table 2
shows the performance of our algorithm on VOC 2012, and
the detailed results comparison with other methods are dis-
played in Table 3.

According to the evaluation samples on the test set of
PASCAL VOC2012 validation set dataset, we can see that
the proposed method is applicable to animals, people, and
objects. The edge of equal targets can be segmented carefully,
which improves the classification accuracy of the stool, ani-

mal, bicycle, and so on. The evaluation of the abovemen-
tioned classification index shows that its effect is better than
many segmentation methods, as shown in Figure 6. Please
note that we do not use CRFs for postprocessing, which can
smooth the output, but it is too slow in practice, especially
for large-scale images.

4.2. Cityscapes. The Cityscapes dataset is a very large image
dataset, which focuses on the semantic understanding of
street scene. It contains the road driving images of 50 cities
in spring, summer, and autumn. There are 19 classes in the
dataset, including good weather and moderate weather,
many dynamic objects, different scene layouts, and different
backgrounds. We have carried out experiments on 5000
fine-labeled images, which are divided into 2975 training
images, 500 verification images, and 1525 test images. The
resolving power of all images is 1024 × 2048. It contains
5000 high-quality pixel level annotations of size 1024 ×
2048 (2975, 500, and 1525 for training, verification, and test
sets, respectively) and 2975, 500, and 1525 (training, verifica-
tion, and test sets separately).

As shown in Figure 7, finally, the method achieves
81.79% MIoU precision on Cityscapes test set on 1024 ×
2048 image. Table 4 shows the performance of our algorithm
on Cityscapes 2012 test set.

4.3. CamVid. As a way of further proving the effectiveness
and robustness of this method, we also assess its performance
on the CamVid dataset. The Cambridge-driving Labeled
Video Database (CamVid) is the first video collection with
object l class semantic tags. The ground truth labels provided
by the database associated each pixel with one of the 32
semantic classes. The CamVid dataset contains images of city
road driving scenes. We use 11 classes, including 367 train-
ing, 101 verification, and 233 test images. The resolution of
all images is 720 × 960.

We train all models from random initialization and fine
tune the pretrained parameters on ImageNet. In the training
process, the size of random clipping is 512 × 512, and the
batch size is 16. All other superparameters are the same as
PASCAL VOC 2012 experiment. After 30000 iterations on
the training set, the model in this paper achieves 77.61%
MIoU on the validation set and 69.39% MIoU on the test set.

We can see that the models in this paper can get very
accurate semantic segmentation results. Whether it is a small
target, or some targets with occlusion and overlap, the
method in this paper can accurately segment them.

Table 2: Performance on PASCAL VOC2012 test set.

Method MIoU

FCN-8s 62.2

ResSegNet 80.4.7%

RefineNet 84.2%

PSPNet 85.4%

DeepLabv3+ 87.8%

Ours 85.6%
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Image Ours Ground truth Image Ours Ground truth

Figure 6: The visualization results on the PASCAL VOC2012 validation set using our methods.

Table 3: Our highest scoring entry in each column is shown in italic. Results in a performance of 85.6% on PASCAL VOC 2012 test set.

Category FCN-8s ResSegNet RefineNet PSPNet DeepLabv3+ Ours

Bicycle 34.2 65.2 73.2 72.7 77.1 78.2

Chair 21.4 37.4 43.7 43.1 56.9 57.1

Sheep 72.4 85.9 92.9 94.4 92.9 94.4

Mean 62.2 80.4 84.2 85.4 87.8 85.6

7Wireless Communications and Mobile Computing



5. Conclusion

We introduce a simpler yet robust network for improving
semantic segmentation tasks. Combining ASPP and a classi-
cal encoder-decoder structure, an improved loss function
more suitable for the application is proposed. The experi-
mental outcomes show the superiority of this method. It
not only effectively improves the segmentation performance
but also significantly improves the imbalance of training
data. As a way of improving the learning ability of this
method, we will focus more on weak supervised learning
and metalearning down the road. We believe that semantic
segmentation can provide a good practice for future smart
city construction.
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