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ABSTRACT 
This paper discusses the application of end-to-end design 
principles, which are characteristic of the architecture of the 
Internet, to network storage.  While putting storage into the 
network fabric may seem to contradict end-to-end arguments, we 
try to show not only that there is no contradiction, but also that 
adherence to such an approach is the key to achieving true 
scalability of shared network storage.  After discussing end-to-end 
arguments with respect to several properties of network storage, 
we describe the Internet Backplane Protocol and the exNode, 
which are tools that have been designed to create a network 
storage substrate that adheres to these principles.  The name for 
this approach is Logistical Networking, and we believe its use is 
fundamental to the future of truly scalable communication. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design — distributed networks, network 
communications, store and forward networks 

General Terms 
Design 

Keywords 
Logistical Networking, store and forward network, asynchronous 
communications, network storage, end-to-end design, scalability, 
wide area storage, Internet Backplane Protocol, IBP, exNode. 

1. INTRODUCTION 
Logistical Networking seeks to model communication in 

both its synchronous and asynchronous aspects. One of its 
essential goals, therefore, is to create a resource fabric that unifies 
the co-management and co-scheduling of data transport and data 
storage, much as military or industrial logistics treat 
transportation lines and storage depots as coordinate elements of 
one infrastructure.  To address the needs of a the Internet 
community, however, it must also achieve this goal in a way that 

can scale up in terms of the number of users and nodes it supports, 
the range of geographic, network and administrative boundaries it 
spans, and the level of provisioning it accommodates.  Our view 
is that if end-to-end design principles are applied to network 
storage, then a scalably sharable communicative infrastructure 
with persistence can be created that will increase the efficiency, 
performance, and functionality of distributed applications of all 
types.  

Our position is that introducing such a standard, flexible, 
exposed buffer service, which is based on the application of end-
to-end principles to storage resources, will change the way that 
networking is done. 

2.  NETWORKING, STORAGE, AND END-
TO-END ARGUMENTS 

Consider a generalized scenario in which a quantum of data 
originates from a node Ns at time ts and either does or does not 
arrive at a destination at a node Nr at time tr, and if it does arrive it 
may be corrupted.  

If Ns and Nr can be members of a globally scalable network, 
and tr-ts is a delay that the delivery mechanism seeks in general to 
minimize, then this scenario fits the characteristics of layers 1 
through 3 of the network stack.  Under these conditions, 
minimizing both the delay and the probability of corruption, while 
at the same time maximizing the probability of delivery, is 
understood to be problematic. Sometimes one of these properties 
has to be compromised for the others.  

If Ns and Nr are either identical or members of a small, 
closed network and there is no a priori bound on tr-ts, then this 
scenario fits the conventional characterization of a storage device 
connected directly to a node or a storage area network.  It is 
traditionally understood that for closely coupled storage, delay 
and probability of corruption can be very low while availability is 
very high. 

The characterization of data delivery in the network has led 
to the adoption of the end-to-end approach (also known as “end-
to-end arguments” or “principles” [16, 17]) to network services.  
One simple formulation of the end-to-end principle is that any 
guarantees in a communication over and above a bare minimum 
of functionality ought to be applied at the endpoints. Although 
greater complexity and functionality in the middle of the network 
may enhance performance or reliability, the ultimate 
responsibility for ensuring that communications have the required 
properties, which may vary with the application, rests on the 
endpoints.  The charm of the end-to-end approach stems from the 
fact that it does not rely on the network to be timely or accurate in 
the delivery of any particular packet, only that high delay and 
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corruption be of sufficiently low probability and be inflicted fairly 
on competing network participants.  This allows for a high degree 
of autonomy and faulty behavior in the operation of the network, 
and leads to the ultimate goal of global network architecture: 
scalability! 

But application programmers have a difficult time using 
services that are unpredictable in every dimension, which means 
that the end-to-end approach requires that higher software layers 
be developed in order to implement more predictable services on 
top of the unpredictable lower layers. TCP achieves this by 
requiring the sender Ns to maintain a copy of all data until its 
receipt is corroborated by the receiver Nr.  Of course the 
construction of new services that are predictable in one dimension 
tends to burden the resources of the endpoints or to worsen 
unpredictability in other dimensions.  TCP, for instance, achieves 
a high probability of accuracy at the cost of increased variation in 
delay and lowered availability. 

The conventional characterization of closely coupled storage 
given above makes it clear that the end-to-end approach is not 
relevant in that case.  If a storage device can be relied upon to 
operate with predictable delay, high accuracy and high 
availability, then it can be used without the burden of 
implementing layered end-to-end services.  As long as the storage 
device can be relied upon, the writer Ns and reader Nr can be kept 
simple. 

However, assuming that storage is reliable can impose a cost 
if the storage fails.  Until the advent of cheap, unreliable disks for 
personal computers, the only approach to mitigating this cost was 
redundant storage of data on highly reliable storage systems.  Of 
course, reliability comes at a price, and the price of reliable 
storage is quite high – redundant storage on reliable disks was 
reserved for mission-critical systems.  

The advent of cheap, disks led to the realization that cheap 
and highly reliable storage can be implemented by using storage 
devices that are, in aggregate, less  reliable.  By weakening their 
assumptions about the high availability of storage, the designers 
of RAID storage can indeed make use of cheaper and less reliable 
disks [6].  However, high reliability has to be regained by 
layering algorithms for redundantly encoded storage of data on 
multiple disks and, in the face of failure, active reconstruction of 
the missing data.  While these algorithms are often implemented 
in hardware, they unmistakably form a layer that is above the 
physical storage and provides greater predictability. 

It is interesting to note that the developers of RAID decided 
to weaken their assumptions about storage in only one dimension: 
availability.  Classical RAID algorithms rely strongly on the 
assumption that if data is retrieved from a storage device it is 
retrieved accurately, and these algorithms will fail if this 
assumption is violated.  Weakening the assumption of accuracy 
leads to imposing the burden of checksum calculation on higher 
layers, which the developers of RAID sought to avoid.  This 
decision has in fact caused problems due to the use of very 
inexpensive disks in RAID systems that not only display low 
availability but also can be inaccurate [Network Appliance, 
personal communication, 2001] 

Globally scalable network storage, meaning storage systems 
attached to the global data transmission network and accessed 
from arbitrary endpoints, presents a problem because it does not 
fit the conventional characterization of closely coupled storage.  
As in data transmission, Ns and Nr can be different members of 
the network, but as in storage there is no a priori bound on tr-ts.  

Because it relies on the network, delay, accuracy and availability 
cannot be controlled.  In other words, the shortcuts that are 
available to closely coupled storage do not apply to network 
storage.  The solution is to embrace the end-to-end approach. 

The end-to-end approach to network storage is an extension 
of the design approach of RAID, but taken to the extreme, 
abandoning strong assumptions of predictable delay and high 
accuracy along with high availability.  In the world of scalably 
sharable storage, data written/sent to storage may or may not be 
accurately retrievable by the reader/receiver.  While some basic 
guarantees may be provided by network storage, we accept that 
the stronger they are the more likely they are to be violated, 
resulting in failure of the network storage service as perceived by 
the endpoint. 

The rest of this paper considers a number of formulations of 
the possible properties of network storage, the implications of 
those properties in the implementation and robustness of network 
storage services, and the impact on the service provided to 
endpoints.  We will discuss the Internet Backplane Protocol, an 
experimental end-to-end storage service that is being deployed 
internationally and compare it to other network storage 
approaches.  Finally we will discuss a unified approach to 
networked information resources that is based in the principles of 
the end-to-end approach. 

3.  NETWORK STORAGE ASSUMPTIONS 
3.1 Availability 

In any network setting, availability of stored data is 
contingent on both the availability of the storage system(s) upon 
which it is stored and the connectivity to those systems.  On 
simple attached disk systems, both of these factors are of high 
enough reliability that users typically deal with issue of 
availability only in an ad hoc fashion – they make periodic 
backups.  RAID systems lower the probability of disk failures to 
another degree, but do nothing to address the issue of 
communication failures.  This is because catastrophic 
communication failures typically do not happen between a disk 
and the processor to which it is attached. 

Storage Area Networks (SANs) have embraced the model of 
the directly-attached disk, inheriting the assumption that 
connectivity will not fail unless the entire system fails 
catastrophically.  This assumption clearly invites questions about 
the viability of SANs in the wide area. 

In a scalable Wide Area Network (WAN), storage resources 
can be intermittently unavailable (or available only with 
inadequate quality of service) due to a number of conditions in the 
network, including traffic congestion, routing problems, topology 
changes and malicious interference.  These conditions are 
resolved in time frames ranging from less than a second to longer 
than days.  As such, a variety of end-to-end strategies should exist 
for ensuring availability.  These range from simple retry, to 
redundant data accesses spread across the network (augmented 
with RAID-like error correction to reduce data redundancy), to 
maintaining high-latency archival backups.  Obviously, these 
algorithms must be implemented at the end-points, both in order 
to ensure delivery to the end-point and to achieve the necessary 
level of sensitivity to the requirements of the end-point operating 
systems, applications or users.  We believe the design of Venti 
[13], where storage blocks are indexed by 160-bit hashes of their 
data, may be the right approach to unifying the various end-to-end 
strategies for ensuring availability. 



3.2 Correctness 
Assumptions about the accuracy of storage systems have 

changed over time.  At one time, tape was considered unreliable 
due to environmental factors, while fixed disk was considered 
reliable. Therefore, data stored on tape was verified using 
checksums while data on disk was not.  This assumption underlies 
the simplifying assumption in classical RAID systems, that disk 
storage fails only through corruption of entire sectors, which is 
easily detected by the hardware controller.  However, the advent 
of cheap, mass-produced disks for personal computers has given 
rise to disk subsystems that have a wider variety of complex 
failure modes, including the undetected delivery of incorrect data 
[Quantum, personal communication 2001]. 

In a SAN, the assumption is that RAID storage systems have 
sufficient internal checking to provide essentially perfect 
accuracy and the storage network itself uses highly reliable 
protocols.  The fact that SAN is deployed in highly controlled 
environments leads to the assumption that the composition of 
reliable components will be reliable.  Whether or not this is a 
reasonable assumption in the SAN, an end-to-end approach to the 
WAN requires that data accuracy be checked by the end-systems, 
meaning the ultimate writers and readers of the data.  This yields 
protection not only against errors in the composition of reliable 
disk and network components, but also against unreliable or 
malicious components that might be introduced undetectably in 
the Wide Area Network.  Once again, the design of Venti may 
prove beneficial here, since the handle to data is a checksum of 
the data itself. 

3.3 Security 
Directly attached storage and physically localized SAN 

solutions have an assumed level of physical security that can be 
breached only by highly intrusive means (although in the case of 
SANs, eavesdropping is easier to imagine).  However, once SAN 
is extended to campus or metropolitan area networks, and 
certainly if it is tunneled across the WAN, this assumption of 
security is lost.  In IP networking, there is no assumption that 
intermediate nodes are trusted and so security must be 
implemented through end-to-end application of cryptographic 
techniques. 

The element of security that cannot be adequately handled 
by use of end-to-end  techniques alone is Denial of Service (DoS), 
and for this reason the security mechanisms implemented in the 
network must be used to control the right to allocate storage.  
However, it must be understood that these security mechanisms 
are best effort, and cannot be relied upon; the endpoint must be 
prepared to be affected by Denial of Service (DoS) attacks that 
make allocation at particular locations with the WAN impossible 
or to have stored data overwritten or corrupted due to breaches in 
security at intermediate nodes.  Of these concerns, techniques for 
preventing or detecting DoS attacks are the only ones that cannot 
be addressed in a strictly end-to-end  manner; techniques for 
handling DoS in IP networks hold promise in the analogous 
storage scenario. 

3.4 Unbounded Size 
While every data management system has capacity limits, 

they are often assumed to be large enough to be ignored by 
applications and to be manageable, through administrative 
mechanisms such as rearrangement of file systems on multiple 
disk volumes, in the time-frame of months or even years.  The 
assumption that an application can make unbounded allocations 

thus rests on assumptions that do not hold in the WAN: that the 
use of the storage system is limited to a single administrative 
domain, and that it is within the power of the administrators of 
that domain to control provisioning as required. 

In the WAN, the application must assume that any particular 
storage resource may be used by other administrative domains 
and so may not be able to fulfill a given request for storage 
resources.  What this means is that the end-system must take 
responsibility for anticipating or arranging for the availability of 
resources, potentially distributed across the network in order to 
accommodate a request of a particular size. 

3.5 Unbounded Duration 
Persistence, taken to mean unbounded duration, is often 

taken to be the defining characteristic of storage.  However, the 
implication of assuming unbounded duration for every allocation 
of storage resources is that it is impossible for a storage resource 
manager to make an allocation for any user other than those for 
whom that manager is willing to commit those storage resources 
indefinitely.  Thus, for applications where allocations can be 
useful even if they only last a limited time, and for which it is 
valuable to be able to make allocations for unknown users, the 
assumption of unbounded allocation makes the sharing of storage 
impossible.  The result is that in the context of public networking, 
end-to-end delivery of datagrams is the only allowable instance of 
resource sharing. 

Thus, bounds on the duration of allocation are necessary in 
order to allow scalable sharing of storage resources, but it only 
enables applications in which allocations of limited duration can 
be used.  Since unbounded duration is the normal assumption in 
applications that make use of storage, it is worth asking whether 
limited-duration storage allocations are even useful. 

We have two answers to this question:  
1. There are many natural uses of storage of limited duration.  

Two simple examples are checkpointing and caching.  In 
checkpointing, a snapshot of a computation state is stored, so 
that the computation may be restored from the snapshot in 
the event of a failure.  Typically, once a new checkpoint has 
been taken, the old one may be discarded.  Since checkpoints 
are often taken at fixed intervals, checkpoint files are 
inherently of limited duration.  In content delivery, data is 
often cached near anticipated receivers for performance 
enhancement.  However, if the cached data is not there, the 
data may be retrieved from a faraway source.  Thus, limited-
duration storage fits caching applications naturally. 

2. All physical storage is inherently limited in duration, albeit 
on the scale of years. The assumption of permanence 
requires a correlative assumption of active management by 
administrative means.  The problem with such active 
management is that it interferes with the predictable and 
correct functioning of the storage system, often requiring 
periods of unavailability.  The disruptions of service caused 
by changes in generation of media can be severe enough to 
require that end-users be notified and take account of them. 
When data must be managed over periods of time that are 

longer than can be arranged in a single allocation (either because 
the resource manager is unwilling to grant a long enough 
allocation to the user in question, or because the physical medium 
cannot support an allocation for a sufficiently long period of 
time), end-to-end principles must be used. 



A common objection to the applying the end-to-end 
approach to the duration of storage allocations is that it requires 
active management of storage by the end-point.  It is commonly 
viewed as a positive aspect of unbounded storage allocations that 
a client can fail, go off-line, or for other reasons fail to interact 
with a storage allocation, but it will continue to hold their data 
until they return.  Storage with bounded allocation cannot be used 
for the maintenance of state in case of failure of the end-point for 
unbounded periods of time.  However, if there is a bound on the 
longest failure, then the duration of allocation can be adjusted to 
allow for it.  In the case where the end-point can fail indefinitely, 
it will be necessary to employ storage that can be permanently 
allocated, and this will generally require that the end-user is 
known to the storage resource manager.  We do not rule out 
unbounded allocations in these cases, but point out that the 
solution does not scale, which is fine: typically one uses directly 
connected or closely coupled storage for such core state. 

4. IBP AND THE EXNODE 
4.1 The Network Layer of the Storage Stack  

In the context of Storage Networking, “IP/Storage 
integration” means putting IP networking into the interconnection 
fabric (i.e. into the data transmission substrate) that underlies the 
storage pool. For Logistical Networking, on the other hand, 
IP/Storage integration means putting storage into the network 
infrastructure itself, creating a shared resource fabric that 
exposes storage resources for general use in the same way that the 
Internet now exposes transmission bandwidth for shared use. To 
create a resource fabric of this kind that can also scale, we set out 
to define a new storage stack using a bottom-up and layered 
design approach that adheres to the same end-to-end principles 
that have guided Internet engineering for two decades [17]. 
According to this philosophy, the key to achieving flexibility and 
scalability lies in defining the right basic abstraction of the 
physical resource to be shared at the lowest levels of the stack. 
For Logistical Networking the Internet Backplane Protocol (IBP) 
plays this role. 

IBP is the 
lowest layer of the 
storage stack that is 
globally accessible 
from the network 
(Figure 1). To 
provide an ideal 
resource fabric for 
Logistical 
Networking, it must 
supply an abstraction 
of access layer 
resources (i.e. file or 
block storage 
services at the local 
level) that has 
“network 
transparency”[16]. 
This means it must 
satisfy the following 
two requirements: 

Expose underlying storage resources in order to maximize 
freedom at higher levels — The abstraction should create 
a mechanism that implements only the most indispensable 
and common functions necessary to make the storage 
usable per se, leaving it otherwise as primitive as it can 
be; all stronger functions must be built on top of this 
primitive layer. The goal of providing essential 
functionality while keeping the semantics of this layer as 
weak as possible is to expose the underlying resources to 
the broadest range of purposes at higher layers, and 
thereby foster ubiquitous deployment and free developers 
to innovate. 
Enable scalable Internet-style resource sharing — The 
abstraction must mask enough of the peculiarities of the 
access layer resource (e.g. fixed block size, differing 
failure modes, and local addressing schemes) to enable 
lightweight allocations of those resources to be made by 
any participant in the network for their limited use and 
regardless of who owns them. 

To implement this strategy we followed the IP paradigm and 
modeled the design of IBP on the design of IP datagram delivery. 
IP datagram service is based on packet delivery at the link level, 
but with more powerful and abstract features that allow it to scale 
globally. Its leading feature is the independence of IP datagrams 
from the attributes of the particular link layer, which is 
established as follows: 
� Aggregation of link layer packets masks its limits on packet 

size;  
� Fault detection with a single, simple failure model (faulty 

datagrams are dropped) masks the variety of different failure 
modes;  

� Global addressing masks the difference between local area 
network addressing schemes and masks the local network's 
reconfiguration. 

This higher level of abstraction allows a uniform IP model to 
be applied to network resources globally, which is crucial to 
creating the most important difference between link layer packet 
delivery and IP datagram service: any participant in a routed IP 
network can make use of any link layer connection in the network 
regardless of who owns it. Routers aggregate individual link layer 
connections to create a global communication service.  This IP-
based aggregation of locally provisioned, link layer resources for 
the common purpose of universal connectivity constitutes the 
form of sharing that has made the Internet the foundation for a 
global information infrastructure. 

IBP is designed to enable the scalable, relatively unbrokered 
sharing of storage resources within a community in much the 
same manner. Just as IP is a more abstract service based on link-
layer datagram delivery, IBP is a more abstract service based on 
blocks of data (on disk, tape or other media) that are managed as 
"byte arrays." The independence of IBP byte arrays from the 
attributes of the particular access layer (which is our term for 
storage service at the local level) is established as follows: 
� Aggregation of access layer blocks masks the fixed block 

size; 
� Fault detection with a very simple failure model (faulty byte 

arrays are discarded) masks the variety of different failure 
modes; 

Figure 1: The network storage stack 
for Logistical Networking.  



� Global addressing based on global IP addresses masks the 
difference between access layer addressing schemes. 

This higher level byte array abstraction allows a uniform IBP 
model to be applied to storage resources globally, which is 
essential to creating the most important difference between access 
layer block storage and IBP byte array service: Any participant in 
an IBP network can make use of any access layer storage 
resource in the network regardless of who owns it. The use of IP 
networking to access IBP storage resources creates a global 
storage service. 

Whatever the strengths of this application of the IP 
paradigm, however, it leads directly to two problems. First, in the 
case of storage, the chronic vulnerability of IP networks to Denial 
of Service (DoS) attacks is greatly amplified. The free sharing of 
communication within a routed IP network leaves every local 
network open to being overwhelmed by traffic from the wide area 
network, and consequently open to the unfortunate possibility of 
DoS from the network. While DoS attacks in the Internet can be 
detected and corrected, they cannot be effectively avoided. Yet 
this problem is not debilitating for two reasons: on the one hand, 
each datagram sent over a link uses only a tiny portion of the 
capacity of that link, so that DoS attacks require constant sending 
from multiple sources; on the other hand, monopolizing remote 
communication resources cannot profit the attacker in any way, it 
can only harm the victim. Unfortunately neither of these factors 
hold true for access layer storage resources. Once a data block is 
written to a storage medium, it occupies that portion of the 
medium until it is deallocated, so no constant sending is required.  
Moreover it is clear that monopolizing remote storage resources 
can be very profitable for an attacker and his applications. 

The second problem with sharing storage network-style is 
that the classic definition of a storage service is based on 
processor-attached storage, so it includes strong semantics (near-
perfect reliability and availability) that are difficult to implement 
in the wide area network.  Even with Storage Networking 
technologies, which are used in "storage area" or local area 
networks, these strong semantics can be difficult to implement 
and are a common cause of error conditions. When extended to 
the wide area, it has so far proved impossible to support such 
strong guarantees for storage access, but then problems with 
strong service semantics in the wide area are not unique to storage 
systems [20].  Whether or not integrated IP and Storage 
Networking technologies can make progress on this front remains 
to be seen. Logistical Networking takes a different approach. 

We address both of these issues through special 
characteristics of the way IBP allocates storage: 
� Allocations of storage in IBP can be time limited.  When the 

lease on an allocation expires, the storage resource can be 
reused and all data structures associated with it can be deleted.  
An IBP allocation can be refused by a storage resource in 
response to over-allocation, much as routers can drop packets, 
and such "admission decisions" can be based on both size and 
duration.  Forcing time limits puts transience into storage 
allocation, giving it some of the fluidity of datagram delivery.  

� The semantics of IBP storage allocation are weaker than the 
typical storage service. Chosen to model storage accessed over 
the network, it is assumed that an IBP storage resource can be 
transiently unavailable. Since the user of remote storage 
resources is depending on so many uncontrolled remote 
variables, it may be necessary to assume that storage can be 

permanently lost.  Thus, IBP is a "best effort" storage service.  
To encourage the sharing of idle resources, IBP even supports 
"soft" storage allocation semantics, where allocated storage can 
be revoked at any time. In all cases such weak semantics mean 
that the level of service must be characterized statistically.  

IBP storage resources are managed by “depots,”  which are 
servers on which clients perform remote storage operations.  As 
shown in the Table 1 below, the IBP client calls fall into three 
different groups: 

Table 1: IBP API calls 

Storage 
Management Data Transfer Depot 

Management 

IBP_allocate, 
IBP_manage 

IBP_store, 
IBP_load 
IBP_copy, 
IBP_mcopy 

IBP_status 

The IBP_allocate function is the most important 
element. IBP_allocate is used to allocate a byte array at an 
IBP depot, specifying the size, duration (permanent or time 
limited) and other attributes. A chief design feature is the use of 
capabilities (cryptographically secure passwords) [7]. A 
successful IBP_allocate call returns a set of three 
capabilities: one for reading, one for writing, and one for 
management of the allocated byte array. A more detailed account 
of the API and its other functions is available [12] online at 
(http://loci.cs.utk.edu/ibp/documents/). A description of the status 
of the current software that implements the IBP client, servers, 
and protocol is available at (http://loci.cs.utk.edu/ibp/software). 

4.2 A Data Structure for the Flexible 
Aggregation of Network Storage  

From the point of view of the Storage Networking 
community, it is likely that one of the most striking (not to say 
shocking) features of the Logistical Networking storage stack is 
the way it appears to simply jettison the well known methods of 
usage for local area storage, viz. files systems, databases, and VM 
mapping. These familiar abstractions can be supported in the 
logistical paradigm, but that support must conform to its 
“exposed-resource” design principles. According to these 
principles, implementing abstractions with strong properties — 
reliability, fast access, unbounded allocation, unbounded duration, 
etc.— involves creating a construct at a higher layer that 
aggregates more primitive IBP byte-arrays below it, where these 
byte arrays are often distributed at multiple locations. For 
example, caching requires that data be held in a home site, but 
temporary copies be made at various remote sites.  Similarly, 
replication requires that multiple copies of data exist in various 
locations for purposes of performance and fault-tolerance.  More 
advanced logistical applications require that data be explicitly 
routed through the network, and thus may have many “homes” 
throughout their lifetime.  



To apply the 
principle of 
aggregation to 
exposed storage 
services, however, it 
is necessary to 
maintain state that 
represents such an 
aggregation of 
storage allocations, 
just as sequence 
numbers and timers 
are maintained to 
keep track of the state 
of a TCP session. 
Fortunately there is a 
traditional, well-
understood model to 
follow in representing 
the state of aggregate 
storage allocations. In 
the Unix file system, 
the data structure used to implement aggregation of underlying 
disk blocks is the inode (intermediate node). Under Unix, a file is 
implemented as a tree of disk blocks with data blocks at the 
leaves. The intermediate nodes of this tree are the inodes, which 
are themselves stored on disk. The Unix inode implements only 
the aggregation of disk blocks within a single disk volume to 
create large files; other strong properties are sometimes 
implemented through aggregation at a lower level [6] or through 
modifications to the file system or additional software layers that 
make redundant allocations and maintain additional state [10, 21].  

Following the example of the inode, we have chosen to 
implement a single generalized data structure, which we call an 
external node, or exNode, to manage aggregate allocations that 
can be used in implementing network storage with many different 
strong semantic properties [3].  Rather than aggregating blocks on 
a single disk volume, the exNode aggregates byte arrays in IBP 
depots to form something like a file, with the byte arrays  acting 
as disk blocks. We say “something like a file” because when an 
exNode uses IBP storage allocations, the time-limited or soft 
nature of those allocations gives it a transient quality that files 
normally should not have. Two major differences between 
exNodes and inodes are that the IBP buffers may be of any size, 
and the extents may overlap and be replicated. But the key point 
about the design of the exNode is that it has allowed us to create 
storage abstractions with stronger properties, such as a network 
file, which can be layered over IBP-based storage in a way that is 
completely consistent with the exposed resource approach.   

The exNode can used to implement replication for fault-
tolerance, storing files in multiple locations so that the act of 
downloading may succeed even if many of the copies are 
unavailable; by breaking the file up into blocks and storing error 
correcting blocks calculated from the original blocks (based on 
parity as in RAID systems [6]or on Reed-Solomon coding [11], 
downloads can be robust to even more complex failure scenarios. 

4.3 End-to-End Services for Storage 
While the exNode defines a framework for aggregation of 

IBP capabilities, it also provides a framework for the addition of 
metadata that describes the encoding of data in the file or byte 

array, enabling a variety of end-to-end services.  These services 
range from the low level, such as the implementation of 
redundancy through error correcting codes, to higher level 
services such as the framing of data into TCP-like segments and 
the insertion of checksums on a per-segment basis, or application 
of strong end-to-end authentication and encryption of data.  These 
higher-level services allow these end-to-end services to inform the 
process of, for instance, obtaining a correct copy of the datain the 
face of temporary unavailability or permanent loss of data, 
whatever the cause.  In this way, the exNode is analogous to the 
state of a TCP connection, and the data stored on disk is an 
analogous to a TCP stream. 

In fact, the alternations in the resemblance of the exNode, 
between a file descriptor on the one hand, and the state of a 
network connection on the other, depends on how much control 
information is encoded in the exNode rather than in the data 
stream.  If control information is mostly in the exNode itself, then 
the use of the exNode is most like a file descriptor; but if the 
exNode merely specifies how control information is encoded in 
the data stream, then it is like the state of a network connection.  
Our implementation of the exNode allows the flexibility for either 
style of use.. 

5. OTHER APPROACHES TO 
SCALALBLE NETWORK STORAGE 
5.1 FTP mirroring, Web Caching and 
Content Distribution 

From the earliest days of the Internet, the traffic and load 
caused by downloading of popular content from FTP (and later 
HTTP) servers led to the widespread use of manual mirroring, 
which uses redundant storage at multiple locations in the network 
topology to localize traffic, spread server load and accelerate 
downloads.  Because storage was a relatively scarce resource, 
policy was required to determine which content would be 
mirrored at each site, how often updates would be made to ensure 
consistency and when a mirror would be removed.  Choice of 
mirror sites was a manual process, requiring an evaluation of the 
competence and reliability of the server by the end user.  Web 
caching automated this process and made policy a simple function 
of content size and popularity [14].  However, when caching is 
implemented without the cooperation of the server there is still a 
question of consistency that sometimes requires user intervention 
to force a download from the origin server.  Content Distribution 
takes the process a step further, deploying caches that are 
extensions of the origin server [19].  However, all of this 
elaborate, special purpose storage infrastructure is available only 
to specific application protocols (FTP, HTTP, streaming media) 
and sometimes (e.g. Content Distribution) only to paying 
customers. 

5.2 Peer-to-Peer Storage 
Peer-to-peer systems such as Napster [2] and Gnutella [1], 

and experimental approaches, such as Chord [18] and CANs [15] 
use shared storage resources provisioned at end-points to 
implement distributed content delivery. In such systems, 
allocations are made by the owner of the end-point and are 
maintained and made available at their discretion. A broad 
community of peers who have no control over availability or 
duration uses these allocations.  The result is a system in which 
access to any one allocation is unreliable but adequate reliability 
is gained through the aggregation of a large number of replicas of 

Figure 2: The exNode compared to a 
Unix inode. 



popular content.  The application, free recreational use of rich 
media content, is also one that can withstand low reliability. 

The fact that all storage allocations are made at end-points 
means that a large amount of data transfer between end-points is 
required in these peer-to-peer architectures, causing a flood of 
traffic.  The use of servers or caches owned by the content 
distribution system is ruled out due by the need to decentralize 
control in peer-to-peer systems (either in an attempt to evade 
responsibility for redistribution of copyrighted material or 
because of a desire to build scalable ad-hoc communities without 
central administration).  However, if storage can be shared within 
a community in a scalable, ad-hoc manner, and without assigning 
responsibility for the stored data to the operator of the resource, 
then peer-to-peer architectures can use such storage to optimize 
their performance and efficiency without compromising their 
goals. 

5.3 Multipath Connectivity 
The model of storage connectivity defined by Storage Area 

Networking (SAN) makes assumptions about the reliability of the 
network that simply do not scale to the global Internet.  In order 
to leverage the enormous investment made in SAN, major storage 
vendors are seeking to deploy SAN tunneled over IP in networks 
that are over provisioned with capacity and implement multiple 
paths between endpoints to the degree that their strong 
assumptions can be maintained [D. Black (EMC), personal 
communication, 2002].  The result is equivalent to building a 
private IP network for the purpose of connecting storage systems.  
While this approach may work in restricted cases, it sacrifices the 
scalability of the global Internet. 

5.4 Interplanetary Networking 
A fundamental assumption of networking based on datagram 

delivery is that data links are sufficiently available to allow end-
to-end delivery paths to be present.  In cases where connectivity is 
intermittent, as is often the case when satellite links are used, an 
end-to-end path must include storage of data at intermediate 
nodes.  Terrestrial examples of intermittent connectivity are often 
thought to be uninteresting, as they tend to occur in situations 
where telecommunications infrastructure is inadequate, and the 
dogma of the day says that the natural state of man is to be 
connected and that all of humanity will eventually be.  However, 
when man takes to space, and communication requires the use of 
satellite relays, then even Buck Rodgers will have a problem with 
end-to-end delivery of datagrams.  The answer to this problem, as 
formulated by Vint Cerf and the IRTF Interplanetary Networking 
Working Group [5] is to use storage-and-forward techniques to 
relay data asynchronously.  End-to-end paths then consist of file 
delivery in the style of e-mail.  However, this group has not 
considered making the storage resource available for sharing by 
other interplanetary applications that might require management 
of state [V. Cerf (WorldCom), personal communication, 2002]. 

6. CONCLUSION 
The end-to-end argument was formulated in the context of IP 

network architecture, which has as its defining service the end-to-
end delivery of datagrams from sender to receiver.  However, as 
its progenitors knew, the argument applies more generally to 
scalable information systems and so, as we have demonstrated in 
this paper, a globally scalable service with the sharing of storage 
can be designed according to end-to-end principles.  The resulting 
architecture provides a model for extending storage networking to 

the wide area and may have a profound impact on the 
development of that niche of storage technology.  It is our belief 
that it also provides a model of scalable data networking that 
offers many advantages over end-to-end delivery of datagrams 
while still adhering to end-to-end principles.  

Data cannot be communicated within an asynchronous 
system (one in which sender and receiver do not share a clock) 
without using buffers.  Thus, the delivery of datagrams, which 
models the networks as if they were a single wires with no 
intermediate storage, inherently hides from users the fact that 
every physical layer connection involves send and receive 
buffers.  This virtualization is achieved by implementing these 
buffers in fast memory, managing each one using a FIFO 
discipline and adhering to fair queuing.  While this simplification 
of the network has obviously been sufficient to provide services 
adequate to drive global dominance of IP networking, it is 
interesting to note that Quality of Service, the most widely 
proposed modification of IP datagram routing, is a modification 
of fair queuing that takes greater advantage of the power of the 
fact that router receive buffers can be used to delay datagrams 
differentially and thus implement policy. 

Logistical Networking is a model of networking that exposes 
the fact that data is buffered and allowed that fact to be used to 
implement novel communication strategies.  While data flows 
between IBP depots using standard IP communication that hides 
fast FIFO buffers, the depots themselves implement buffers that 
can range from small and fast to huge and slow depending on the 
medium and architecture of the depot.  Far from being determined 
by the depot itself, the regimen for using IBP buffers is specified 
by the end-user or an active management element outside of the 
depot.  In this sense, the buffers implemented by the IBP depot 
are dumber and more passive than the send and receive buffers 
implemented in IP routers and end-systems. 

Today, the IP network is beset by the introduction of active 
middleboxes that complicate and in some cases violate the 
semantics of datagram delivery.    Overlay networks and systems 
of proxies introduce storage and buffer management policy that 
are balkanized with protocols specific to each application domain, 
and so miss out on the commonality of services and sharing of 
resources that IP has made possible in datagram delivery.  In most 
of these cases, the designers are oblivious to end-to-end 
considerations or consciously abandon them in the mistaken 
belief that this orthodox route to scalability does not apply to 
systems that explicitly manage state. 

It is our belief that the widespread deployment of storage 
Internetworking on the model of IBP will fundamentally increase 
the power and flexibility of the network, and will affect the way 
that middleware and application developers think about 
distributed system architecture and scalable communication.  
While we are working most directly with researchers in the areas 
of Grid computing, distributed visualization and multimedia 
content delivery, we forsee even greater potential in areas which 
are currently too reliant on management of state to be spread 
across the network.  The direction is towards a blurring of the 
artificial divide between the processor bus, system local and wide 
area networks, between flexible resource scheduling and scalable 
services. In this vision, network architecture evolves into a 
radically decentralized form of computer architecture, and the 
world’s information systems co-manage shared data transport, 
storage and computation as a unified fabric of shared resources. 
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