
An End-to-End Approach to
Globally Scalable Network Storage
Micah Beck Terry Moore James S. Plank

Logistical Computing and Internetworking Laboratory
Computer Science Department

University of Tennessee
1 865 974 3548

{mbeck, tmoore, plank}@cs.utk.edu

ABSTRACT
This paper discusses the application of end-to-end design
principles, which are characteristic of the architecture of the
Internet, to network storage. While putting storage into the
network fabric may seem to contradict end-to-end arguments, we
try to show not only that there is no contradiction, but also that
adherence to such an approach is the key to achieving true
scalability of shared network storage. After discussing end-to-end
arguments with respect to several properties of network storage,
we describe the Internet Backplane Protocol and the exNode,
which are tools that have been designed to create a network
storage substrate that adheres to these principles. The name for
this approach is Logistical Networking, and we believe its use is
fundamental to the future of truly scalable communication.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design — distributed networks, network
communications, store and forward networks

General Terms
Design

Keywords
Logistical Networking, store and forward network, asynchronous
communications, network storage, end-to-end design, scalability,
wide area storage, Internet Backplane Protocol, IBP, exNode.

1. INTRODUCTION
Logistical Networking seeks to model communication in

both its synchronous and asynchronous aspects. One of its
essential goals, therefore, is to create a resource fabric that unifies
the co-management and co-scheduling of data transport and data
storage, much as military or industrial logistics treat
transportation lines and storage depots as coordinate elements of
one infrastructure. To address the needs of a the Internet
community, however, it must also achieve this goal in a way that

can scale up in terms of the number of users and nodes it supports,
the range of geographic, network and administrative boundaries it
spans, and the level of provisioning it accommodates. Our view
is that if end-to-end design principles are applied to network
storage, then a scalably sharable communicative infrastructure
with persistence can be created that will increase the efficiency,
performance, and functionality of distributed applications of all
types.

Our position is that introducing such a standard, flexible,
exposed buffer service, which is based on the application of end-
to-end principles to storage resources, will change the way that
networking is done.

2. NETWORKING, STORAGE, AND END-
TO-END ARGUMENTS

Consider a generalized scenario in which a quantum of data
originates from a node Ns at time ts and either does or does not
arrive at a destination at a node Nr at time tr, and if it does arrive it
may be corrupted.

If Ns and Nr can be members of a globally scalable network,
and tr-ts is a delay that the delivery mechanism seeks in general to
minimize, then this scenario fits the characteristics of layers 1
through 3 of the network stack. Under these conditions,
minimizing both the delay and the probability of corruption, while
at the same time maximizing the probability of delivery, is
understood to be problematic. Sometimes one of these properties
has to be compromised for the others.

If Ns and Nr are either identical or members of a small,
closed network and there is no a priori bound on tr-ts, then this
scenario fits the conventional characterization of a storage device
connected directly to a node or a storage area network. It is
traditionally understood that for closely coupled storage, delay
and probability of corruption can be very low while availability is
very high.

The characterization of data delivery in the network has led
to the adoption of the end-to-end approach (also known as “end-
to-end arguments” or “principles” [16, 17]) to network services.
One simple formulation of the end-to-end principle is that any
guarantees in a communication over and above a bare minimum
of functionality ought to be applied at the endpoints. Although
greater complexity and functionality in the middle of the network
may enhance performance or reliability, the ultimate
responsibility for ensuring that communications have the required
properties, which may vary with the application, rests on the
endpoints. The charm of the end-to-end approach stems from the
fact that it does not rely on the network to be timely or accurate in
the delivery of any particular packet, only that high delay and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCOMM’02, August 19-23, 2002, Pittsburgh, Pennsylvania, USA
Copyright 2002 ACM 1-58113-570-X/02/0008…$5.00

corruption be of sufficiently low probability and be inflicted fairly
on competing network participants. This allows for a high degree
of autonomy and faulty behavior in the operation of the network,
and leads to the ultimate goal of global network architecture:
scalability!

But application programmers have a difficult time using
services that are unpredictable in every dimension, which means
that the end-to-end approach requires that higher software layers
be developed in order to implement more predictable services on
top of the unpredictable lower layers. TCP achieves this by
requiring the sender Ns to maintain a copy of all data until its
receipt is corroborated by the receiver Nr. Of course the
construction of new services that are predictable in one dimension
tends to burden the resources of the endpoints or to worsen
unpredictability in other dimensions. TCP, for instance, achieves
a high probability of accuracy at the cost of increased variation in
delay and lowered availability.

The conventional characterization of closely coupled storage
given above makes it clear that the end-to-end approach is not
relevant in that case. If a storage device can be relied upon to
operate with predictable delay, high accuracy and high
availability, then it can be used without the burden of
implementing layered end-to-end services. As long as the storage
device can be relied upon, the writer Ns and reader Nr can be kept
simple.

However, assuming that storage is reliable can impose a cost
if the storage fails. Until the advent of cheap, unreliable disks for
personal computers, the only approach to mitigating this cost was
redundant storage of data on highly reliable storage systems. Of
course, reliability comes at a price, and the price of reliable
storage is quite high – redundant storage on reliable disks was
reserved for mission-critical systems.

The advent of cheap, disks led to the realization that cheap
and highly reliable storage can be implemented by using storage
devices that are, in aggregate, less reliable. By weakening their
assumptions about the high availability of storage, the designers
of RAID storage can indeed make use of cheaper and less reliable
disks [6]. However, high reliability has to be regained by
layering algorithms for redundantly encoded storage of data on
multiple disks and, in the face of failure, active reconstruction of
the missing data. While these algorithms are often implemented
in hardware, they unmistakably form a layer that is above the
physical storage and provides greater predictability.

It is interesting to note that the developers of RAID decided
to weaken their assumptions about storage in only one dimension:
availability. Classical RAID algorithms rely strongly on the
assumption that if data is retrieved from a storage device it is
retrieved accurately, and these algorithms will fail if this
assumption is violated. Weakening the assumption of accuracy
leads to imposing the burden of checksum calculation on higher
layers, which the developers of RAID sought to avoid. This
decision has in fact caused problems due to the use of very
inexpensive disks in RAID systems that not only display low
availability but also can be inaccurate [Network Appliance,
personal communication, 2001]

Globally scalable network storage, meaning storage systems
attached to the global data transmission network and accessed
from arbitrary endpoints, presents a problem because it does not
fit the conventional characterization of closely coupled storage.
As in data transmission, Ns and Nr can be different members of
the network, but as in storage there is no a priori bound on tr-ts.

Because it relies on the network, delay, accuracy and availability
cannot be controlled. In other words, the shortcuts that are
available to closely coupled storage do not apply to network
storage. The solution is to embrace the end-to-end approach.

The end-to-end approach to network storage is an extension
of the design approach of RAID, but taken to the extreme,
abandoning strong assumptions of predictable delay and high
accuracy along with high availability. In the world of scalably
sharable storage, data written/sent to storage may or may not be
accurately retrievable by the reader/receiver. While some basic
guarantees may be provided by network storage, we accept that
the stronger they are the more likely they are to be violated,
resulting in failure of the network storage service as perceived by
the endpoint.

The rest of this paper considers a number of formulations of
the possible properties of network storage, the implications of
those properties in the implementation and robustness of network
storage services, and the impact on the service provided to
endpoints. We will discuss the Internet Backplane Protocol, an
experimental end-to-end storage service that is being deployed
internationally and compare it to other network storage
approaches. Finally we will discuss a unified approach to
networked information resources that is based in the principles of
the end-to-end approach.

3. NETWORK STORAGE ASSUMPTIONS
3.1 Availability

In any network setting, availability of stored data is
contingent on both the availability of the storage system(s) upon
which it is stored and the connectivity to those systems. On
simple attached disk systems, both of these factors are of high
enough reliability that users typically deal with issue of
availability only in an ad hoc fashion – they make periodic
backups. RAID systems lower the probability of disk failures to
another degree, but do nothing to address the issue of
communication failures. This is because catastrophic
communication failures typically do not happen between a disk
and the processor to which it is attached.

Storage Area Networks (SANs) have embraced the model of
the directly-attached disk, inheriting the assumption that
connectivity will not fail unless the entire system fails
catastrophically. This assumption clearly invites questions about
the viability of SANs in the wide area.

In a scalable Wide Area Network (WAN), storage resources
can be intermittently unavailable (or available only with
inadequate quality of service) due to a number of conditions in the
network, including traffic congestion, routing problems, topology
changes and malicious interference. These conditions are
resolved in time frames ranging from less than a second to longer
than days. As such, a variety of end-to-end strategies should exist
for ensuring availability. These range from simple retry, to
redundant data accesses spread across the network (augmented
with RAID-like error correction to reduce data redundancy), to
maintaining high-latency archival backups. Obviously, these
algorithms must be implemented at the end-points, both in order
to ensure delivery to the end-point and to achieve the necessary
level of sensitivity to the requirements of the end-point operating
systems, applications or users. We believe the design of Venti
[13], where storage blocks are indexed by 160-bit hashes of their
data, may be the right approach to unifying the various end-to-end
strategies for ensuring availability.

3.2 Correctness
Assumptions about the accuracy of storage systems have

changed over time. At one time, tape was considered unreliable
due to environmental factors, while fixed disk was considered
reliable. Therefore, data stored on tape was verified using
checksums while data on disk was not. This assumption underlies
the simplifying assumption in classical RAID systems, that disk
storage fails only through corruption of entire sectors, which is
easily detected by the hardware controller. However, the advent
of cheap, mass-produced disks for personal computers has given
rise to disk subsystems that have a wider variety of complex
failure modes, including the undetected delivery of incorrect data
[Quantum, personal communication 2001].

In a SAN, the assumption is that RAID storage systems have
sufficient internal checking to provide essentially perfect
accuracy and the storage network itself uses highly reliable
protocols. The fact that SAN is deployed in highly controlled
environments leads to the assumption that the composition of
reliable components will be reliable. Whether or not this is a
reasonable assumption in the SAN, an end-to-end approach to the
WAN requires that data accuracy be checked by the end-systems,
meaning the ultimate writers and readers of the data. This yields
protection not only against errors in the composition of reliable
disk and network components, but also against unreliable or
malicious components that might be introduced undetectably in
the Wide Area Network. Once again, the design of Venti may
prove beneficial here, since the handle to data is a checksum of
the data itself.

3.3 Security
Directly attached storage and physically localized SAN

solutions have an assumed level of physical security that can be
breached only by highly intrusive means (although in the case of
SANs, eavesdropping is easier to imagine). However, once SAN
is extended to campus or metropolitan area networks, and
certainly if it is tunneled across the WAN, this assumption of
security is lost. In IP networking, there is no assumption that
intermediate nodes are trusted and so security must be
implemented through end-to-end application of cryptographic
techniques.

The element of security that cannot be adequately handled
by use of end-to-end techniques alone is Denial of Service (DoS),
and for this reason the security mechanisms implemented in the
network must be used to control the right to allocate storage.
However, it must be understood that these security mechanisms
are best effort, and cannot be relied upon; the endpoint must be
prepared to be affected by Denial of Service (DoS) attacks that
make allocation at particular locations with the WAN impossible
or to have stored data overwritten or corrupted due to breaches in
security at intermediate nodes. Of these concerns, techniques for
preventing or detecting DoS attacks are the only ones that cannot
be addressed in a strictly end-to-end manner; techniques for
handling DoS in IP networks hold promise in the analogous
storage scenario.

3.4 Unbounded Size
While every data management system has capacity limits,

they are often assumed to be large enough to be ignored by
applications and to be manageable, through administrative
mechanisms such as rearrangement of file systems on multiple
disk volumes, in the time-frame of months or even years. The
assumption that an application can make unbounded allocations

thus rests on assumptions that do not hold in the WAN: that the
use of the storage system is limited to a single administrative
domain, and that it is within the power of the administrators of
that domain to control provisioning as required.

In the WAN, the application must assume that any particular
storage resource may be used by other administrative domains
and so may not be able to fulfill a given request for storage
resources. What this means is that the end-system must take
responsibility for anticipating or arranging for the availability of
resources, potentially distributed across the network in order to
accommodate a request of a particular size.

3.5 Unbounded Duration
Persistence, taken to mean unbounded duration, is often

taken to be the defining characteristic of storage. However, the
implication of assuming unbounded duration for every allocation
of storage resources is that it is impossible for a storage resource
manager to make an allocation for any user other than those for
whom that manager is willing to commit those storage resources
indefinitely. Thus, for applications where allocations can be
useful even if they only last a limited time, and for which it is
valuable to be able to make allocations for unknown users, the
assumption of unbounded allocation makes the sharing of storage
impossible. The result is that in the context of public networking,
end-to-end delivery of datagrams is the only allowable instance of
resource sharing.

Thus, bounds on the duration of allocation are necessary in
order to allow scalable sharing of storage resources, but it only
enables applications in which allocations of limited duration can
be used. Since unbounded duration is the normal assumption in
applications that make use of storage, it is worth asking whether
limited-duration storage allocations are even useful.

We have two answers to this question:
1. There are many natural uses of storage of limited duration.

Two simple examples are checkpointing and caching. In
checkpointing, a snapshot of a computation state is stored, so
that the computation may be restored from the snapshot in
the event of a failure. Typically, once a new checkpoint has
been taken, the old one may be discarded. Since checkpoints
are often taken at fixed intervals, checkpoint files are
inherently of limited duration. In content delivery, data is
often cached near anticipated receivers for performance
enhancement. However, if the cached data is not there, the
data may be retrieved from a faraway source. Thus, limited-
duration storage fits caching applications naturally.

2. All physical storage is inherently limited in duration, albeit
on the scale of years. The assumption of permanence
requires a correlative assumption of active management by
administrative means. The problem with such active
management is that it interferes with the predictable and
correct functioning of the storage system, often requiring
periods of unavailability. The disruptions of service caused
by changes in generation of media can be severe enough to
require that end-users be notified and take account of them.
When data must be managed over periods of time that are

longer than can be arranged in a single allocation (either because
the resource manager is unwilling to grant a long enough
allocation to the user in question, or because the physical medium
cannot support an allocation for a sufficiently long period of
time), end-to-end principles must be used.

A common objection to the applying the end-to-end
approach to the duration of storage allocations is that it requires
active management of storage by the end-point. It is commonly
viewed as a positive aspect of unbounded storage allocations that
a client can fail, go off-line, or for other reasons fail to interact
with a storage allocation, but it will continue to hold their data
until they return. Storage with bounded allocation cannot be used
for the maintenance of state in case of failure of the end-point for
unbounded periods of time. However, if there is a bound on the
longest failure, then the duration of allocation can be adjusted to
allow for it. In the case where the end-point can fail indefinitely,
it will be necessary to employ storage that can be permanently
allocated, and this will generally require that the end-user is
known to the storage resource manager. We do not rule out
unbounded allocations in these cases, but point out that the
solution does not scale, which is fine: typically one uses directly
connected or closely coupled storage for such core state.

4. IBP AND THE EXNODE
4.1 The Network Layer of the Storage Stack

In the context of Storage Networking, “IP/Storage
integration” means putting IP networking into the interconnection
fabric (i.e. into the data transmission substrate) that underlies the
storage pool. For Logistical Networking, on the other hand,
IP/Storage integration means putting storage into the network
infrastructure itself, creating a shared resource fabric that
exposes storage resources for general use in the same way that the
Internet now exposes transmission bandwidth for shared use. To
create a resource fabric of this kind that can also scale, we set out
to define a new storage stack using a bottom-up and layered
design approach that adheres to the same end-to-end principles
that have guided Internet engineering for two decades [17].
According to this philosophy, the key to achieving flexibility and
scalability lies in defining the right basic abstraction of the
physical resource to be shared at the lowest levels of the stack.
For Logistical Networking the Internet Backplane Protocol (IBP)
plays this role.

IBP is the
lowest layer of the
storage stack that is
globally accessible
from the network
(Figure 1). To
provide an ideal
resource fabric for
Logistical
Networking, it must
supply an abstraction
of access layer
resources (i.e. file or
block storage
services at the local
level) that has
“network
transparency”[16].
This means it must
satisfy the following
two requirements:

Expose underlying storage resources in order to maximize
freedom at higher levels — The abstraction should create
a mechanism that implements only the most indispensable
and common functions necessary to make the storage
usable per se, leaving it otherwise as primitive as it can
be; all stronger functions must be built on top of this
primitive layer. The goal of providing essential
functionality while keeping the semantics of this layer as
weak as possible is to expose the underlying resources to
the broadest range of purposes at higher layers, and
thereby foster ubiquitous deployment and free developers
to innovate.
Enable scalable Internet-style resource sharing — The
abstraction must mask enough of the peculiarities of the
access layer resource (e.g. fixed block size, differing
failure modes, and local addressing schemes) to enable
lightweight allocations of those resources to be made by
any participant in the network for their limited use and
regardless of who owns them.

To implement this strategy we followed the IP paradigm and
modeled the design of IBP on the design of IP datagram delivery.
IP datagram service is based on packet delivery at the link level,
but with more powerful and abstract features that allow it to scale
globally. Its leading feature is the independence of IP datagrams
from the attributes of the particular link layer, which is
established as follows:
� Aggregation of link layer packets masks its limits on packet

size;
� Fault detection with a single, simple failure model (faulty

datagrams are dropped) masks the variety of different failure
modes;

� Global addressing masks the difference between local area
network addressing schemes and masks the local network's
reconfiguration.

This higher level of abstraction allows a uniform IP model to
be applied to network resources globally, which is crucial to
creating the most important difference between link layer packet
delivery and IP datagram service: any participant in a routed IP
network can make use of any link layer connection in the network
regardless of who owns it. Routers aggregate individual link layer
connections to create a global communication service. This IP-
based aggregation of locally provisioned, link layer resources for
the common purpose of universal connectivity constitutes the
form of sharing that has made the Internet the foundation for a
global information infrastructure.

IBP is designed to enable the scalable, relatively unbrokered
sharing of storage resources within a community in much the
same manner. Just as IP is a more abstract service based on link-
layer datagram delivery, IBP is a more abstract service based on
blocks of data (on disk, tape or other media) that are managed as
"byte arrays." The independence of IBP byte arrays from the
attributes of the particular access layer (which is our term for
storage service at the local level) is established as follows:
� Aggregation of access layer blocks masks the fixed block

size;
� Fault detection with a very simple failure model (faulty byte

arrays are discarded) masks the variety of different failure
modes;

Figure 1: The network storage stack
for Logistical Networking.

� Global addressing based on global IP addresses masks the
difference between access layer addressing schemes.

This higher level byte array abstraction allows a uniform IBP
model to be applied to storage resources globally, which is
essential to creating the most important difference between access
layer block storage and IBP byte array service: Any participant in
an IBP network can make use of any access layer storage
resource in the network regardless of who owns it. The use of IP
networking to access IBP storage resources creates a global
storage service.

Whatever the strengths of this application of the IP
paradigm, however, it leads directly to two problems. First, in the
case of storage, the chronic vulnerability of IP networks to Denial
of Service (DoS) attacks is greatly amplified. The free sharing of
communication within a routed IP network leaves every local
network open to being overwhelmed by traffic from the wide area
network, and consequently open to the unfortunate possibility of
DoS from the network. While DoS attacks in the Internet can be
detected and corrected, they cannot be effectively avoided. Yet
this problem is not debilitating for two reasons: on the one hand,
each datagram sent over a link uses only a tiny portion of the
capacity of that link, so that DoS attacks require constant sending
from multiple sources; on the other hand, monopolizing remote
communication resources cannot profit the attacker in any way, it
can only harm the victim. Unfortunately neither of these factors
hold true for access layer storage resources. Once a data block is
written to a storage medium, it occupies that portion of the
medium until it is deallocated, so no constant sending is required.
Moreover it is clear that monopolizing remote storage resources
can be very profitable for an attacker and his applications.

The second problem with sharing storage network-style is
that the classic definition of a storage service is based on
processor-attached storage, so it includes strong semantics (near-
perfect reliability and availability) that are difficult to implement
in the wide area network. Even with Storage Networking
technologies, which are used in "storage area" or local area
networks, these strong semantics can be difficult to implement
and are a common cause of error conditions. When extended to
the wide area, it has so far proved impossible to support such
strong guarantees for storage access, but then problems with
strong service semantics in the wide area are not unique to storage
systems [20]. Whether or not integrated IP and Storage
Networking technologies can make progress on this front remains
to be seen. Logistical Networking takes a different approach.

We address both of these issues through special
characteristics of the way IBP allocates storage:
� Allocations of storage in IBP can be time limited. When the

lease on an allocation expires, the storage resource can be
reused and all data structures associated with it can be deleted.
An IBP allocation can be refused by a storage resource in
response to over-allocation, much as routers can drop packets,
and such "admission decisions" can be based on both size and
duration. Forcing time limits puts transience into storage
allocation, giving it some of the fluidity of datagram delivery.

� The semantics of IBP storage allocation are weaker than the
typical storage service. Chosen to model storage accessed over
the network, it is assumed that an IBP storage resource can be
transiently unavailable. Since the user of remote storage
resources is depending on so many uncontrolled remote
variables, it may be necessary to assume that storage can be

permanently lost. Thus, IBP is a "best effort" storage service.
To encourage the sharing of idle resources, IBP even supports
"soft" storage allocation semantics, where allocated storage can
be revoked at any time. In all cases such weak semantics mean
that the level of service must be characterized statistically.

IBP storage resources are managed by “depots,” which are
servers on which clients perform remote storage operations. As
shown in the Table 1 below, the IBP client calls fall into three
different groups:

Table 1: IBP API calls

Storage
Management Data Transfer Depot

Management

IBP_allocate,
IBP_manage

IBP_store,
IBP_load
IBP_copy,
IBP_mcopy

IBP_status

The IBP_allocate function is the most important
element. IBP_allocate is used to allocate a byte array at an
IBP depot, specifying the size, duration (permanent or time
limited) and other attributes. A chief design feature is the use of
capabilities (cryptographically secure passwords) [7]. A
successful IBP_allocate call returns a set of three
capabilities: one for reading, one for writing, and one for
management of the allocated byte array. A more detailed account
of the API and its other functions is available [12] online at
(http://loci.cs.utk.edu/ibp/documents/). A description of the status
of the current software that implements the IBP client, servers,
and protocol is available at (http://loci.cs.utk.edu/ibp/software).

4.2 A Data Structure for the Flexible
Aggregation of Network Storage

From the point of view of the Storage Networking
community, it is likely that one of the most striking (not to say
shocking) features of the Logistical Networking storage stack is
the way it appears to simply jettison the well known methods of
usage for local area storage, viz. files systems, databases, and VM
mapping. These familiar abstractions can be supported in the
logistical paradigm, but that support must conform to its
“exposed-resource” design principles. According to these
principles, implementing abstractions with strong properties —
reliability, fast access, unbounded allocation, unbounded duration,
etc.— involves creating a construct at a higher layer that
aggregates more primitive IBP byte-arrays below it, where these
byte arrays are often distributed at multiple locations. For
example, caching requires that data be held in a home site, but
temporary copies be made at various remote sites. Similarly,
replication requires that multiple copies of data exist in various
locations for purposes of performance and fault-tolerance. More
advanced logistical applications require that data be explicitly
routed through the network, and thus may have many “homes”
throughout their lifetime.

To apply the
principle of
aggregation to
exposed storage
services, however, it
is necessary to
maintain state that
represents such an
aggregation of
storage allocations,
just as sequence
numbers and timers
are maintained to
keep track of the state
of a TCP session.
Fortunately there is a
traditional, well-
understood model to
follow in representing
the state of aggregate
storage allocations. In
the Unix file system,
the data structure used to implement aggregation of underlying
disk blocks is the inode (intermediate node). Under Unix, a file is
implemented as a tree of disk blocks with data blocks at the
leaves. The intermediate nodes of this tree are the inodes, which
are themselves stored on disk. The Unix inode implements only
the aggregation of disk blocks within a single disk volume to
create large files; other strong properties are sometimes
implemented through aggregation at a lower level [6] or through
modifications to the file system or additional software layers that
make redundant allocations and maintain additional state [10, 21].

Following the example of the inode, we have chosen to
implement a single generalized data structure, which we call an
external node, or exNode, to manage aggregate allocations that
can be used in implementing network storage with many different
strong semantic properties [3]. Rather than aggregating blocks on
a single disk volume, the exNode aggregates byte arrays in IBP
depots to form something like a file, with the byte arrays acting
as disk blocks. We say “something like a file” because when an
exNode uses IBP storage allocations, the time-limited or soft
nature of those allocations gives it a transient quality that files
normally should not have. Two major differences between
exNodes and inodes are that the IBP buffers may be of any size,
and the extents may overlap and be replicated. But the key point
about the design of the exNode is that it has allowed us to create
storage abstractions with stronger properties, such as a network
file, which can be layered over IBP-based storage in a way that is
completely consistent with the exposed resource approach.

The exNode can used to implement replication for fault-
tolerance, storing files in multiple locations so that the act of
downloading may succeed even if many of the copies are
unavailable; by breaking the file up into blocks and storing error
correcting blocks calculated from the original blocks (based on
parity as in RAID systems [6]or on Reed-Solomon coding [11],
downloads can be robust to even more complex failure scenarios.

4.3 End-to-End Services for Storage
While the exNode defines a framework for aggregation of

IBP capabilities, it also provides a framework for the addition of
metadata that describes the encoding of data in the file or byte

array, enabling a variety of end-to-end services. These services
range from the low level, such as the implementation of
redundancy through error correcting codes, to higher level
services such as the framing of data into TCP-like segments and
the insertion of checksums on a per-segment basis, or application
of strong end-to-end authentication and encryption of data. These
higher-level services allow these end-to-end services to inform the
process of, for instance, obtaining a correct copy of the datain the
face of temporary unavailability or permanent loss of data,
whatever the cause. In this way, the exNode is analogous to the
state of a TCP connection, and the data stored on disk is an
analogous to a TCP stream.

In fact, the alternations in the resemblance of the exNode,
between a file descriptor on the one hand, and the state of a
network connection on the other, depends on how much control
information is encoded in the exNode rather than in the data
stream. If control information is mostly in the exNode itself, then
the use of the exNode is most like a file descriptor; but if the
exNode merely specifies how control information is encoded in
the data stream, then it is like the state of a network connection.
Our implementation of the exNode allows the flexibility for either
style of use..

5. OTHER APPROACHES TO
SCALALBLE NETWORK STORAGE
5.1 FTP mirroring, Web Caching and
Content Distribution

From the earliest days of the Internet, the traffic and load
caused by downloading of popular content from FTP (and later
HTTP) servers led to the widespread use of manual mirroring,
which uses redundant storage at multiple locations in the network
topology to localize traffic, spread server load and accelerate
downloads. Because storage was a relatively scarce resource,
policy was required to determine which content would be
mirrored at each site, how often updates would be made to ensure
consistency and when a mirror would be removed. Choice of
mirror sites was a manual process, requiring an evaluation of the
competence and reliability of the server by the end user. Web
caching automated this process and made policy a simple function
of content size and popularity [14]. However, when caching is
implemented without the cooperation of the server there is still a
question of consistency that sometimes requires user intervention
to force a download from the origin server. Content Distribution
takes the process a step further, deploying caches that are
extensions of the origin server [19]. However, all of this
elaborate, special purpose storage infrastructure is available only
to specific application protocols (FTP, HTTP, streaming media)
and sometimes (e.g. Content Distribution) only to paying
customers.

5.2 Peer-to-Peer Storage
Peer-to-peer systems such as Napster [2] and Gnutella [1],

and experimental approaches, such as Chord [18] and CANs [15]
use shared storage resources provisioned at end-points to
implement distributed content delivery. In such systems,
allocations are made by the owner of the end-point and are
maintained and made available at their discretion. A broad
community of peers who have no control over availability or
duration uses these allocations. The result is a system in which
access to any one allocation is unreliable but adequate reliability
is gained through the aggregation of a large number of replicas of

Figure 2: The exNode compared to a
Unix inode.

popular content. The application, free recreational use of rich
media content, is also one that can withstand low reliability.

The fact that all storage allocations are made at end-points
means that a large amount of data transfer between end-points is
required in these peer-to-peer architectures, causing a flood of
traffic. The use of servers or caches owned by the content
distribution system is ruled out due by the need to decentralize
control in peer-to-peer systems (either in an attempt to evade
responsibility for redistribution of copyrighted material or
because of a desire to build scalable ad-hoc communities without
central administration). However, if storage can be shared within
a community in a scalable, ad-hoc manner, and without assigning
responsibility for the stored data to the operator of the resource,
then peer-to-peer architectures can use such storage to optimize
their performance and efficiency without compromising their
goals.

5.3 Multipath Connectivity
The model of storage connectivity defined by Storage Area

Networking (SAN) makes assumptions about the reliability of the
network that simply do not scale to the global Internet. In order
to leverage the enormous investment made in SAN, major storage
vendors are seeking to deploy SAN tunneled over IP in networks
that are over provisioned with capacity and implement multiple
paths between endpoints to the degree that their strong
assumptions can be maintained [D. Black (EMC), personal
communication, 2002]. The result is equivalent to building a
private IP network for the purpose of connecting storage systems.
While this approach may work in restricted cases, it sacrifices the
scalability of the global Internet.

5.4 Interplanetary Networking
A fundamental assumption of networking based on datagram

delivery is that data links are sufficiently available to allow end-
to-end delivery paths to be present. In cases where connectivity is
intermittent, as is often the case when satellite links are used, an
end-to-end path must include storage of data at intermediate
nodes. Terrestrial examples of intermittent connectivity are often
thought to be uninteresting, as they tend to occur in situations
where telecommunications infrastructure is inadequate, and the
dogma of the day says that the natural state of man is to be
connected and that all of humanity will eventually be. However,
when man takes to space, and communication requires the use of
satellite relays, then even Buck Rodgers will have a problem with
end-to-end delivery of datagrams. The answer to this problem, as
formulated by Vint Cerf and the IRTF Interplanetary Networking
Working Group [5] is to use storage-and-forward techniques to
relay data asynchronously. End-to-end paths then consist of file
delivery in the style of e-mail. However, this group has not
considered making the storage resource available for sharing by
other interplanetary applications that might require management
of state [V. Cerf (WorldCom), personal communication, 2002].

6. CONCLUSION
The end-to-end argument was formulated in the context of IP

network architecture, which has as its defining service the end-to-
end delivery of datagrams from sender to receiver. However, as
its progenitors knew, the argument applies more generally to
scalable information systems and so, as we have demonstrated in
this paper, a globally scalable service with the sharing of storage
can be designed according to end-to-end principles. The resulting
architecture provides a model for extending storage networking to

the wide area and may have a profound impact on the
development of that niche of storage technology. It is our belief
that it also provides a model of scalable data networking that
offers many advantages over end-to-end delivery of datagrams
while still adhering to end-to-end principles.

Data cannot be communicated within an asynchronous
system (one in which sender and receiver do not share a clock)
without using buffers. Thus, the delivery of datagrams, which
models the networks as if they were a single wires with no
intermediate storage, inherently hides from users the fact that
every physical layer connection involves send and receive
buffers. This virtualization is achieved by implementing these
buffers in fast memory, managing each one using a FIFO
discipline and adhering to fair queuing. While this simplification
of the network has obviously been sufficient to provide services
adequate to drive global dominance of IP networking, it is
interesting to note that Quality of Service, the most widely
proposed modification of IP datagram routing, is a modification
of fair queuing that takes greater advantage of the power of the
fact that router receive buffers can be used to delay datagrams
differentially and thus implement policy.

Logistical Networking is a model of networking that exposes
the fact that data is buffered and allowed that fact to be used to
implement novel communication strategies. While data flows
between IBP depots using standard IP communication that hides
fast FIFO buffers, the depots themselves implement buffers that
can range from small and fast to huge and slow depending on the
medium and architecture of the depot. Far from being determined
by the depot itself, the regimen for using IBP buffers is specified
by the end-user or an active management element outside of the
depot. In this sense, the buffers implemented by the IBP depot
are dumber and more passive than the send and receive buffers
implemented in IP routers and end-systems.

Today, the IP network is beset by the introduction of active
middleboxes that complicate and in some cases violate the
semantics of datagram delivery. Overlay networks and systems
of proxies introduce storage and buffer management policy that
are balkanized with protocols specific to each application domain,
and so miss out on the commonality of services and sharing of
resources that IP has made possible in datagram delivery. In most
of these cases, the designers are oblivious to end-to-end
considerations or consciously abandon them in the mistaken
belief that this orthodox route to scalability does not apply to
systems that explicitly manage state.

It is our belief that the widespread deployment of storage
Internetworking on the model of IBP will fundamentally increase
the power and flexibility of the network, and will affect the way
that middleware and application developers think about
distributed system architecture and scalable communication.
While we are working most directly with researchers in the areas
of Grid computing, distributed visualization and multimedia
content delivery, we forsee even greater potential in areas which
are currently too reliant on management of state to be spread
across the network. The direction is towards a blurring of the
artificial divide between the processor bus, system local and wide
area networks, between flexible resource scheduling and scalable
services. In this vision, network architecture evolves into a
radically decentralized form of computer architecture, and the
world’s information systems co-manage shared data transport,
storage and computation as a unified fabric of shared resources.

7. ACKNOWLEDGEMENTS
 This work is supported by the National Science Foundation

Next Generation Software Program under grant # EIA-9975015,
the Department of Energy Scientific Discovery through Advanced
Computing Program under grant # DE-FC02-01ER25465, and by
the National Science Foundation Internet Technologies Program
under grant # ANI-9980203. The infrastructure used in this work
was supported by the NSF Computer and Information Science and
Engineering Research Infrastructure program, EIA9972889.

The authors would like to acknowledge the early
contributions of several supporters and collaborators. Work on
Logistical Networking was an outgrowth of the I2-DSI project,
undertaken through the Internet2 project and with the particular
early support of Guy Almes and Ann O'Beay. Jack Dongarra
supported this work within his Innovative Computing Laboratory
even before independent funding was obtained. Discussions
regarding the scalability in the RCDS [9] and Snipe [8] projects of
Keith Moore and Graham Fagg influenced the development of I2-
DSI [4] and the formulation of IBP. Although he was a student,
Martin Swany was also a teacher of network architecture and and
contributed to important early design work. Finally, Rich Wolski
made significant contributions to the formulation of the IBP API
and to the authors’ understanding of the subtleties of network
topology sensing.

8. REFERENCES
[1] Gnutella, 2001. http://gnutella.wego.com/
[2] Napster, 2001. http://www.napster.com
[3] Bassi, A., Beck, M. and Moore, T., Mobile

Management of Network Files. in Third Annual
International Workshop on Active Middleware Services,
(San Franscisco, 2001).

[4] Beck, M. and Moore, T. The Internet2 Distributed
Storage Infrastructure Project: An Architecture for
Internet Content Channels. Computer Networking and
ISDN Systems, 30 (22-23). 2141-2148

[5] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
R., Scott, K., Travis, E. and Weiss, H., Interplanetary
Internet (IPN): Architectural Definition, IETF Internet
Draft, 2001. http://www.ietf.org/internet-drafts/draft-
irtf-ipnrg-arch-00.txt

[6] Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H. and
Patterson, D.A. RAID: High-performance, reliable
secondary storage. ACM Computing Surveys, 26. 145-
185

[7] Dennis, J. and Horn, E.V. Programming semantics for
multiprogrammed computations. Communications of the
ACM, 9 (3). 143-155

[8] Fagg, G.E., Moore, K., Dongarra, J.J. and Geist, A.,
Scalable Network Information Processing Environment
(SNIPE). in Proceedings of SuperComputing '97, (San
Jose, CA, USA, 1997).

[9] Moore, K., Browne, S., Cox, J. and Gettler, J., Resource
Cataloging and Distribution Systemb, University of
Tennessee, UT-CS-97-346.
http://www.netlib.org/utk/projects/rcds/rcds-
tr/main.html.

[10] Morris, J.H., Satyanarayan, M., Conner, M.H., Howard,
J.H., Rosenthal, D.S.H. and Smith, F.D. Andrew: A
Distributed Personal Computing Environment.
Communications of the ACM, 29 (3). 184-201.March

[11] Plank, J.S. A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like Systems. Software --
Practice and Experience, 27 (9). 995-1012.September

[12] Plank, J.S., Bassi, A., Beck, M., Moore, T., Swany, M.
and Wolski, R. Managing Data Storage in the Network.
IEEE Internet Computing, 5 (5). 50-
58.September/October

[13] Quinlan, S. and Dorward, S., Venti: a new approach to
archival storage. in USENIX File and Storage
Technologies (FAST) 2002, (Monterey, CA, 2002).

[14] Rabinovich, M. and Spatscheck, O., Web Caching and
Replication. Addison-Wesley, 2001.

[15] Ratnasamy, S., Francis, P., Handley, M. and Karp, R.,
A Scalable Content-Addressable Network. in ACM
SIGCOMM, (2000).

[16] Reed, D.P., Saltzer, J.H. and Clark, D.D. Comment on
Active Networking and End-to-End Arguments. IEEE
Network, 12 (3). 69-71.May/June

[17] Saltzer, J.H., Reed, D.P. and Clark, D.D. End-to-End
Arguments in System Design. ACM Transactions on
Computer Systems, 2 (4). 277-288.November

[18] Stoica, I., Morris, R., Karger, D., Kaashoek, F. and
(MIT), H.B., Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Applications. in ACM SIGCOMM,
(2001).

[19] Verma, D.C., Content Distribution Networks: An
Engineering Approach. Wiley, 2001.

[20] Waldo, J., Wyant, G., Wollrath, A. and Kendall, S., A
note on distributed computing, Sun Microsystems, TR-
94-29. November.

[21] Watson, R.W. and Coyne, R.A., The Parallel I/O
Architecture of the High-Performance Storage System
(HPSS). in IEEE Mass Storage Systems Symposium,
(1995), IEEE Computer Society Press.

