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Abstract: Job shop scheduling problem (JSSP) is essential in the production, which can significantly
improve production efficiency. Dynamic events such as machine breakdown and job rework fre-
quently occur in smart manufacturing, making the dynamic job shop scheduling problem (DJSSP)
methods urgently needed. Existing rule-based and meta-heuristic methods cannot cope with dynamic
events in DJSSPs of different sizes in real time. This paper proposes an end-to-end transformer-based
deep learning method named spatial pyramid pooling-based transformer (SPP-Transformer), which
shows strong generalizability and can be applied to different-sized DJSSPs. The feature extraction
module extracts the production environment features that are further compressed into fixed-length
vectors by the feature compression module. Then, the action selection module selects the simple
priority rule in real time. The experimental results show that the makespan of SPP-Transformer
is 11.67% smaller than the average makespan of dispatching rules, meta-heuristic methods, and
RL methods, proving that SPP-Transformer realizes effective dynamic scheduling without training
different models for different DJSSPs. To the best of our knowledge, SPP-Transformer is the first
application of an end-to-end transformer in DJSSP, which not only improves the productivity of
industrial scheduling but also provides a paradigm for future research on deep learning in DJSSP.

Keywords: smart manufacturing; dynamic job shop scheduling problem; deep learning; transformer;
spatial pyramid pooling; generalization

1. Introduction

Smart manufacturing is an emerging concept with the development of Internet of
Things technology [1], and scheduling plays a vital role in smart manufacturing since effec-
tive scheduling can improve profitability and resource utilization in the production [2]. Job
shop scheduling problem (JSSP) is a classical scheduling problem in manufacturing, which
is an NP-hard combinatorial optimization problem [3] that aims to find the optimal solution
to production scheduling given a set of jobs, each with multiple operations processed by
different machines. Most JSSP methods assume that the production environment is static,
and the states of the production environment are known in advance. However, these JSSP
methods have to reschedule the jobs when dynamic events such as machine breakdown
and the insertion of new jobs occur in the production environment, causing the initial
scheduling plans to be invalid. The extension of JSSP considering such dynamic events is
called dynamic job shop scheduling problem (DJSSP), which effectively solved can better
boost the productivity in the actual manufacturing.

DJSSP has been widely studied, and various methods are proposed. Dispatching
rules are preferred in the production due to their simpler, easier implementation, and
low computational complexity [4]. However, real-time selection of dispatching rules for
scheduling is crucial because performances of different dispatching rules vary significantly
in different DJSSPs. Simple priority rules are a kind of dispatching rule that uses a single job
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or shop feature to prioritise jobs and process the job with the highest priority first. Human
operators select simple priority rules based on their own experience in the production,
which does not guarantee that the rules are optimal at each step. Moreover, selecting simple
priority rules is intractable for human operators, failing to realize real-time scheduling. And
using only one simple priority rule to schedule the jobs at each step is irrational since DJSSP
often requires considering multi objects that cannot be achieved using a simple priority
rule. Thus, two types of composite dispatching rules are proposed, which combine good
features of different simple priority rules [5]. One is to deploy different simple priority
rules on different machines; the other is to combine different simple priority rules to form a
new dispatching rule using some operators such as addition, subtraction, multiplication,
and division. But designing a stable composite dispatching rule is hard since different ways
to combine the simple priority rules significantly affect the performance of the composite
dispatching rule [6].

Meta-heuristic algorithm has been proven competitive in solving DJSSP. The most
used ones in DJSSP are evolutionary algorithms (EAs) and swarm-based algorithms. EAs
are algorithms inspired by biological evolution, which mimic the mechanism of biological
evolution to generate better solutions, such as genetic algorithm (GA) [7] and differential
evolutionary (DE) algorithm [8]. Whereas swarm-based algorithms mimic the behaviour
of animal groups such as fish, birds, and wolf packs in nature and use the information
exchange between groups to achieve optimization through simple and limited interactions
between individuals, such as grey wolf optimizer (GWO) [9], ant colony optimization [10],
and particle swarm optimization [11]. Although meta-heuristic algorithms can yield
high-quality solutions, they often require massive iterations to get the optimal or near-
optimal solution, and the parameters of the meta-heuristic algorithms are set empirically.
Furthermore, meta-heuristic algorithms need to reschedule the jobs when dynamic events
occur in the production environment, but rescheduling the jobs is impractical.

Reinforcement learning (RL) has been considered a powerful method for solving
combinatorial optimization problems [12] and has been successfully used in various fields
like AlphaGo wins the go game against one of the top human players [13], and AlphaFold
predicts the protein structure with great accuracy [14]. The main component in RL is called
agent, which takes actions to obtain maximum cumulative reward through interactions
with the environment like a human being. Since the fast computation and ability to
cope with dynamic events of RL [15], RL has achieved outstanding success in solving
DJSSP. Q-learning is a classic algorithm of RL which chooses the action with the highest
Q-value stored in the Q table. Q-learning not only improves multi-objective performance
in JSSP but also effectively responds to dynamic events [16]. Considering that the Q
table may become too large as the DJSSP size increases, causing the massive memory
occupied and long computation time, deep reinforcement learning has been proposed.
Deep reinforcement learning is also known as Deep Q-Network (DQN) and outperforms
the popular dispatching rules in solving DJSSP [17]. Other RL methods such as proximal
policy optimization (PPO) [18] and deep deterministic policy gradient [19] are also used in
solving DJSSP and achieve great success. However, researchers have experimentally found
that the optimal policy obtained by the RL agent is deterministic, but the observability of
the unseen instance is partial. Thus RL models tend to generalize poorly [20], resulting in
the models trained on a fixed-size instance can not cope with instances of different sizes.

Deep learning is a kind of representation-learning method in artificial intelligence,
which contains a deeper network structure, helping it extract more accurate feature rep-
resentation and map the feature representation with a particular output. Deep learning
methods can generalize well on the unseen problem, and some researchers have success-
fully used deep learning to solve DJSSP. Weckman et al. [21] combine a multi-layer artificial
neural network (ANN) with Giffler–Thomson (GT) algorithm to build a neural network
scheduler, which can schedule the operations in real time. The ANN takes the real-time
features related to the production environment as input and output the priorities of each
operation. The priorities of each operation are further processed using GT algorithm to
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get a scheduling plan that can deal with dynamic events. Sim et al. [22] further optimize
the neural network scheduler, and they consider that the priorities of different operations
output by the ANN might be the same for the same machine, causing the operations with
the same priorities to be arbitrarily scheduled, so they propose to use dispatching rules to
schedule the operations with the same priorities, but the GT algorithm is still needed to
process the priorities of other operations to get a scheduling plan, failing to realize an end-
to-end scheduling method. Zang et al. [23] design a hybrid deep neural network scheduler
(HDNNS) combined with the two-dimensional convolution neural network (CNN), which
can also extract the features of the production environment and output the priorities of
each operation. But the ability to cope with dynamic events of HDNNS is not tested, and
the CNN overlooks some critical features with time steps in the environment, which makes
the performance of HDNNS still not satisfactory. Tian et al. [24] use the long short-term
memory network (LSTM) that can retain the features with time steps to predict the produc-
tion information and use the improved GA to achieve the scheduling. Shao et al. [25] also
build a model based on LSTM named self-supervised long-short term memory (SS-LSTM),
which can deal with dynamic events effectively, but the hyperparameters in SS-LSTM are
difficult to determine. All the above-mentioned deep learning models either need one
module to preprocess the input of the neural network or use other modules to process the
output of the neural network to get the final scheduling plan, which may aggravate the
errors between each module and lead to the suboptimal scheduling plan.

DJSSP can be viewed as a time series forecasting problem [26], and transformer is a
deep learning-based method that is widely used for time-series forecasting [27]. Moreover,
transformer with attention mechanism is a frontier model and some studies successfully
use attention mechanism to solve JSSP. For example, Magalhães et al. [28] build a neural
network with attention mechanism to solve dual resource constrained flexible job shop
scheduling problem, Yang [29] utilizes attention mechanism to extract the representation
of the production environment, and Chen et al. [30] use attention mechanism to allocate
the processing resources to the more significant parts when solving the JSSP of large size.
Most JSSP methods based on attention mechanism use attention mechanism to extract
the features of the production environment, but there is no work to use the transformer
based on attention mechanism to solve JSSP directly. In this paper, we build an end-
to-end transformer-based deep learning model named spatial pyramid pooling-based
transformer (SPP-Transformer) to solve different-sized DJSSPs. The disjunctive graph,
which can represent the production environment features with time information [31], is
adopted as the input of SPP-Transformer. SPP-Transformer utilizes a feature extraction
module to extract the features in the disjunctive graph [32] and transforms them into
vectors of different sizes. Then, a feature compression module compresses the different-
sized feature vectors into fixed-length vectors. The fixed-length vectors are further input to
the action selection module to select a simple priority rule. To the best of our knowledge,
SPP-Transformer is the first work purely using a transformer-based model to solve DJSSP
and achieve satisfactory results, providing a paradigm for further studies on deep learning
in DJSSP. The contributions of this work are as follows:

1. An end-to-end transformer-based method is proposed, which takes the disjunctive
graph as input and outputs the simple priority rule that can directly be applied in the
production, providing a total data-driven method to solve DJSSP.

2. A feature compression module that contains a spatial pyramid pooling (SPP) [33]
layer is presented to enhance the generalizability of the proposed model. The feature
compression module enables the proposed model to be applied to DJSSP instances
of different sizes and be trained on the various-sized instances represented by the
disjunctive graph. Thus, there is no need to train the model instance-by-instance.

3. A sequence-to-action model that effectively deal with dynamic events is presented.
Different from the conventional sequence-to-sequence deep learning models, the
proposed sequence-to-action deep learning model reacts to the environment at each
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step according to the real-time states of the production environment. Thus, dynamic
events that happen at an uncertain step can be well tackled without extra measures.

The rest of this paper is organized as follows: Section 2 introduces the DJSSP with
dynamic events such as machine breakdown and job rework, including the mathematical
model and constraint conditions. Section 3 presents the whole structure of SPP-Transformer
and gives the training details. Section 4 compares the performance of SPP-Transformer
with exiting methods. Section 5 draws the conclusions finally.

2. Materials and Methods
2.1. Problem Description

The JSSP refers to allocating n jobs on m machines in a limited number of resources
to optimize one or more objects, such as minimizing the makespan or achieving lower
production costs. And DJSSP is an extension of JSSP, which considers the dynamic events
that occur unexpectedly in the production and is more common than JSSP in the actual
production. DJSSP can be described as follows: There are n jobs J = {J1, J2, . . . , Jn} arrive
at the shop successively, which will be processed on m machines M = {M1, M2, . . . , Mm}.
Each job Ji consists of multiple operations O =

{
Oi1, Oi2, . . . , Oij, . . .

}
. Oij is the jth opera-

tion of job Ji, and it can only be processed on a specific machine. The dynamic events that
may happen in the production are various, including machine breakdown, the insertion of
new jobs, the change of the delivery dates and the processing time and job rework, etc. [34].
And DJSSP should satisfy the assumptions followed:

(1) Each machine can only process one operation at the same time;
(2) An operation is processed by only one machine at a time;
(3) All jobs and machines are available at time 0;
(4) An operation can not be interrupted if it has started unless machine breakdown;
(5) The processing time of each operation may change during machining;
(6) An operation cannot be processed until its preceding operations are completed.

In this paper, the dynamic events we considered include machine breakdown and
job rework. We change the processing time and the machine order of job J1 randomly
to simulate machine breakdown or job rework. However, the number of machines and
operations needed by J1 are immutable. For simplicity, we only increase the processing
time of the operation to represent machine breakdown and switch the machine order of the
job to represent job rework. We use the parameter Switch to disorder the machine order
to represent job rework. If Switch is “True”, the machine order of the job is disordered.
Moreover, we set a random rate f to represent the probability of machine breakdown, and
the new processing time p′ij of operation Oij caused by machine breakdown is calculated
as follows:

p′ij =
{

pij + min(1, max(−1,N (0, 0.1))) · pij, r < f
pij, r > f

(1)

where pij is the original processing time of operation Oij, r ∈ [0, 1] is a random number,
and f ∈ [0, 1] is a hyperparameter. N (0, 0.1) is a normal distribution with mean 3 and
variance 1.

SPP-Transformer is a sequence-to-action model and schedules the jobs at each step
using the feature sequences from the disjunctive graph, which will change according
to the production environment. And SPP-Transformer deals with dynamic events by
taking actions depending on the input disjunctive graph without changing the scheduling
procedure when dynamic events occur.

2.2. Mathematical Model

This study aims to minimize the makespan with the dynamic events, including ma-
chine breakdown and job rework that happened in the production. A mathematical model
of DJSSP is formulated as follows with the notations listed in Table 1.
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min Cmax = min

{
max

n

∑
i=1

h

∑
j=1

(
sij + pij

)}
s.t.C1: pij > 0

C2 : sij + pij 6 si(j+1)

C3 : eij − sij = pij

C4 : eij 6= ei′ j′

C5 : T = n×m

(2)

where the objective is minimizing the makespan as shown in Equation (2). C1 indicates
that the processing time of all operations is positive. C2 shows that an operation can not be
processed if its preceding operations are not completed. C3 represents that an operation
cannot be interrupted while it is being processed since the operation Oij and the operation
Oi′ j′ may be processed on the same machine. C4 is built to make sure that each machine can
only process one operation at a time by ensuring the end time of Oij and Oi′ j′ is different.
C5 makes sure that each operation is processed by only one machine at a time.

Table 1. DJSSP specific parameters table.

Parameters Description

i index of jobs, i = 1, 2, . . . , n
j index of operations of a job, j = 1, 2, . . . , h

m the number of machines
Cmax the maximum completion time of all jobs

sij the start time of operation Oij
eij the end time of operation Oij
ei′ j′ the end time of operation Oi′ j′

pij the processing time of operation Oij
T the maximum total number of all planned operations at the current time

3. Proposed Method
3.1. Input and Output Representation
3.1.1. Input Representation

Considering the disjunctive graph can represent both the global and local features
of the production and divide discrete-time steps in terms of operation assignment, it is
adopted as the input of our model to help collect more features with time information.
Disjunctive graph G = (V, C ∪ D) is a kind of directed graph, and is also used to represent
the JSSP popularly. All operations of all jobs construct the set V, and these operations are
represented as vertices. However, V includes two more dummy vertices called source
and sink, representing the start and the end of the scheduling, respectively. Moreover, the
processing time of the two dummy vertices is zero. The precedence constraints initially
between every two consecutive operations are reflected by the directed conjunctive edges
that construct the set C. Unordered operations that can be processed on the same machine
are linked to each other with the undirected disjunctive edges, which construct the set
D [35]. Thus, solving a JSSP means turning a disjunctive edge into a directed edge to get a
directed acyclic graph and determine the operation sequences on each machine. A simple
JSSP instance and its solution represented by the disjunctive graphs are shown in Figure 1.



Machines 2022, 10, 573 6 of 24

M4

O24

M4

O24

O33O31

M1

M2

M3

Start End

O12 O13

O21 O22 O23

O32 O34 O35

0

0

0

O11
10 15

5

20

25

15 2530 10

20 10 35

M1

M2

M3

Start End

O12 O13

O21 O22 O23

O32 O34 O35

0

0

0

O11
10 15

5

20

25

15 2530 10

20 10 35

(a) The JSSP instance example (b) The solution of the (a) JSSP example 
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Figure 1. An example of JSSP intance and its solution representing by the disjunctive graphs.

Each vertex denotes an operation of a job, and the content Oij in it denotes the jth
operation of job i. The solid lines denote the conjunctive edges, while the dotted lines denote
the disjunctive edges. The numbers near the edges denote the processing time needed for
the operations where the edges begin. Furthermore, the vertices of the same colour mean
that the operations represented by these vertices are processed on the same machine.

However, the disjunctive graphs only reflect the static features in JSSP, failing to
represent the dynamic features in DJSSP. Therefore, several following attributes are added
to the vertices in the disjunctive graph to represent the dynamic features [36]:

(1) Operation identified number: The corresponding serial number of this operation in
the job is added to the vertex;

(2) Job identified number: If a job includes the operation, its serial number is added to
the vertex;

(3) Machine identified number: If a machine can process this operation, its serial number
is added to the vertex. And 0 is added if there are no machines that can process
this operation;

(4) Node situation: 1, 0, and −1 represent that the operation is finished, being processed,
and unfinished, respectively;

(5) Completion rate: When this operation is finished, the completion rate of the entire job;
(6) Number of subsequent operations: The number of remaining operations to be finished;
(7) Time for waiting: The amount of time that has elapsed since the start before this

operation can be processed;
(8) Processing time: The time required to process the operation;
(9) Remaining time: The remaining processing time of the operation (0 for unprocessed);
(10) Doable: It is “True” if the operation is doable.

3.1.2. Output Representation

Because of the black-box nature of the neural network, a detailed scheduling operation
output by a neural network may be unsafe. Therefore, dispatching rules, which are widely
used in JSSP since they are easy to implement and compute fast, are adopted as the output
of our model. Dispatching rules prioritise the jobs waiting to be processed according to
shop features (e.g., machine utilization) or job features, and the machine will first process
the job with the highest priority [37]. Simple priority rule is a kind of dispatching rule and
some typical simple priority rules have shown their effectiveness in DJSSP. In our work,
SPP-Transformer takes the following 8 simple priority rules as output:

(1) First In First Out (FIFO): The machine will first process the job that first arrived at the
queue of the machine;

(2) Last In Last Out (LIFO): The machine will first process the job that last arrived at the
queue of the machine;

(3) Most Operations Remaining (MOR): The machine will first process the job that has
the most remaining operations;

(4) Least Operations Remaining (LOR): The machine will first process the job that has the
least remaining operations;
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(5) Longest Processing Time (LPT): The machine will first process the job that has the
longest processing time;

(6) Shortest Processing Time (SPT): The machine will first process the job that has the
shortest processing time;

(7) Longest Total Processing Time (LTPT): The machine will first process the job that has
the longest total processing time;

(8) Shortest Total Processing Time (STPT): The machine will first process the job that has
the shortest total processing time.

3.2. Transformer Layer
3.2.1. Feature Extraction Module

The feature extraction module of SPP-Transformer consists of 6 encoder layers, and
each encoder layer contains stacked self-attention, a fully connected feed-forward net-
work (FFN), residual connection [38], and layer normalization (LN) [39]. All operations
O =

{
Oi1, Oi2, . . . , Oij, . . .

}
corresponding with the vertices in the disjunctive graph con-

struct a feature sequence X =
{

xi1, xi2, . . . , xij, . . .
}

, which can be viewed as a vector with
10 dimensions because 10 attributes are added to each vertex. And the feature sequence is
input to the feature extraction module and processed by the feature extraction module to
get a feature vector so that the features of the production can be better extracted.

Self-attention computes the attention distribution over the input feature sequence [40]
and maps the query and the set of key-value pairs to an output. Three different linear
transformations are learned and performed on the input feature sequence to obtain the
queries, keys, and values of all the operations. The query of an operation represents the
type of the operation it concerns. The key of an operation represents its type, and the
value of an operation contains the information about itself. Furthermore, the queries, keys,
and values of all the operations construct the query matrix Q, the key matrix K, and the
value matrix V, respectively. And Q, K, V ∈ RdL×dF , where dL represents the number of
total operations while dF represents the number of the attributes of each operation. Firstly,
the dot products of the queries of each operation and the keys of the other operations are
computed to obtain the matching scores over all operations, and the matching scores are
further divided by

√
dF to avoid the attention over-focusing on the high-scores operations.

Then, a softmax function is applied on the matching scores for obtaining the attention
weights of the values, and we compute the output ∈ RdL×dF of a single attention function
by finally conducting the matrix multiplication of the attention weights and values. And
the attention function is shown in Equation (3). It is worth mentioning that such a process
can be executed in parallel. Thus, high computational efficiency can be achieved.

Attention(Q, K, V) = softmax
(

QK′√
dF

)
V (3)

Further, self-attention is often combined with multi-head attention and the outputs of
multiple attention functions are concatenated to obtain more information with different
query weight matrices WQ

t , key weight matrices WK
t , value weight matrices WV

t , as shown
in Equation (4):

MultiHead(Q, K, V) = Concat (head1, . . . , head H)Wmulti

where headt = Attention
(

QWQ
t , KWK

t , VWV
t

) (4)

where H represents the number of self-attention heads that are applied on the input

sequence, WQ
t , WK

t , WV
t ∈ RdF×

dF
H and Wmulti ∈ RdF×dF represent the parameter matrices.

By concatenating the outputs of different attention functions, we obtain a vector which
contains more information about the input feature sequence.
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Besides the multi-head attention sub-layer, a fully connected FFN is included in both
the feature extraction module and the action selection module, which consists of a nonlinear
activation function and two linear transformations in between to transform the input from
a dInput dimensions vector to a dOutput dimensions vector with the parameter W1, W2, b1,
and b2 as shown in Equation (5).

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

Moreover, residual connections are applied around FFN sub-layer and every multi-
head attention, which helps prevent the gradient disappearance. We use LN after the
residual connection to prevent internal covariate shifts since a single batch may contain
several examples.

3.2.2. Feature Compression Module

Various-sized feature vectors are obtained after using the feature extraction module to
process the different disjunctive graphs. And the feature compression module is proposed
to compress these various-sized feature vectors into fixed-length. Various-sized feature
vectors are input to the feature compression module, and the feature compression module
outputs fixed-length feature vectors. The feature compression module is the SPP layer that
is typically used in computer vision to aggregate the convolutional features of images by
splitting images into a range of grids at each level in the pyramid and aggregating local
features. Images can also be viewed as vectors with multiple dimensions, so the vectors
output by the feature extraction module can be compressed into fixed-length vectors by the
SPP layer in the feature compression module.

To sample the extracted features at different scales from the disjunctive graph, four
different bins are used for adaptive pooling in the SPP layer. After various-sized feature
vectors are input to the feature compression module, the four different-sized bins in the SPP
layer pool the feature vectors to get four fixed-length vectors and all the four vectors are 64
dimensions. The sliding windows and the strides of the four bins are changing adaptively
according to the input various-sized vectors. For a bin, the size and the stride of its sliding
window are determined using Equations (6) and (7), respectively.

win = ceil
(

dIn

dOut

)
(6)

str = floor
(

dIn

dOut

)
(7)

where the “win” and the “str” represent the size and the stride of the sliding window,
respectively. The “ceil(·)” and the “floor(·)” represent rounding up and rounding down,
respectively. dIn and dOut represent the sizes of the input vectors and the sizes of the output
vectors, respectively. It is worth mentioning that the sizes of the input vectors are the same
with the sizes of the vectors output by the feature extraction module.

Finally, four fixed-length vectors whose sizes are 64 × 1, 32 × 2, 16 × 4, and 8 × 8,
respectively, are output by the four bins. Next, each vector is reshaped to 64 × 1 and
connected to construct the final fixed-length feature vector of 256 dimensions. With the
fixed-length feature vector, the generalizability of SPP-Transformer is achieved, enabling
SPP-Transformer to be trained once using existing instances but be applied on different-
sized DJSSPs instead of being trained instance-by-instance. The framework of the feature
compression module in our work is shown in Figure 2.
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... ... ...

...

Multiple disjunctive graphs

Spatial Pyramid Pooling

Fixed dimension feature vetcor

Feature extraction module

...

Figure 2. The framework of the feature compression module.

3.2.3. Action Selection Module

The fixed-length vectors of 256 dimensions output by the feature compression module
are further input to the action selection module, and the action selection module outputs
the simple priority rules using the input fixed-length vectors. The action selection module
of SPP-Transformer consists of 6 decoder layers, a linear transformation and a softmax
function. And each decoder layer is similar to the encoder layer in the feature extraction
module, but contains a third sub-layer to perform multi-head attention over the output of
the feature compression module. Moreover, masking is added to the self-attention sub-layer
combined with the fact that the output of the feature compression module is offset by one
position to avoid paying attention to the subsequent position [41].

And we utilize the linear transformation and softmax function to convert the output
of the final decoder layer to predicted next-token probabilities. The linear transformation is
a single layer composed of 16 neurons, which is used to transform the vectors of 256 di-
mensions to the vectors of 8 dimensions since there are 8 candidate simple priority rules
to be selected. And each dimension of the vector represents each simple priority rules,
respectively. Moreover, the specific expression of the softmax function used in this paper is
shown in Equation (8) below.

Softmax(zv) =
ezv

∑8
v=1 ezv

(8)

where v = 1, 2, ..., 8, and zv represents the value of each dimension of the 8 dimensions
vectors, corresponding to one of the eight simple priority rules. The probability of being
selected of each simple priority rule is calculated using Equation (8).

3.3. Training Procedure

SPP-Transformer is built with the feature extraction module, the feature compression
module and the action selection module, and its framework is shown in Figure 3. A DJSSP
instance represented by the disjunctive graph is input to SPP-Transformer, and the feature
extraction module extracts the initial features in the disjunctive graph and turns them
into feature vectors of different sizes. Then, the feature compression module compresses
the different-sized feature vectors into fixed-length vectors, which are 256 dimensions.
Finally, the action selection module further transforms the 256 dimensions vectors to
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8 dimensions vectors using the linear transformation and selects a simple priority rule from
eight candidate simple priority rules at each step using a softmax function.
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Figure 3. The whole framework of SPP-Transormer.

DJSSP in this paper can be modelled as a multi-classification problem since a specific
instance represented by the disjunctive graph is related to one of the eight simple priority
rules. The softmax function shown in Equation (8) is used as the output unit. And the
cross-entropy loss function as shown in Equation (9) is used to calculate the cross-entropy
loss between the simple priority rule output by our model and the ground truth from the
expert to train SPP-Transformer.

L = − 1
N ∑

c

8

∑
v=1

ycv log(pcv) (9)

where N represents the number of the total disjunctive graphs in the training dataset,
v represents one of the eight simple priority rules, c represents each disjunctive graph,
ycv ∈ {0, 1} is the label representing whether the disjunctive graph c is related to the simple
priority rule v, and pcv represents the probability that the disjunctive graph c is related to
the simple priory rule v.

4. Numerical Experiments
4.1. Experimental Setup

We conduct the experiment based on the gymjsp, a benchmark whose data is from the
OR-Library. And OR-Library is a dataset of various Operational Research (OR) problems,
including JSSP [42]. Moreover, we test SPP-Transoformer on the JSSP instances FT06, FT10,
FT20, and LA01-20. The FT and LA instances are from different distributions, and the FT
instances are proposed by Fisher and Henry [43], while the LA instances are proposed by
Lawrence [44]. The FT and LA instances used in this paper are of different sizes, helping
test if SPP-Transformer generalizes well on different-sized instances. The performance of
SPP-Transformer significantly relies on the training samples. Therefore, the high-quality
training samples from the expert whose solutions are viewed as optimal are required. The
RL method named TOFA is the state-of-the-art method recently in solving DJSSP [45].
And the action selected by the TOFA agent at each step is one of the 8 simple priority
rules, including FIFO, LIFO, MOR, LOR, LPT, SPT, LTPT, and STPT. We use the trained
optimal TOFA agent to interact with the production environment and record the disjunctive
graphs and the actions taken by the agent at each step. The collected disjunctive graphs
are used as the original training data, and the collected actions are used as the training
labels to obtain 100,000 training samples. To verify the generalizability of SPP-Transformer,



Machines 2022, 10, 573 11 of 24

we test SPP-Transformer on the different-sized instances without further training. And
we randomly change the machine order and the processing time of a job to represent
job rework or machine breakdown when testing the ability of SPP-Transformer to tackle
dynamic events. Moreover, SPP-Transformer is a sequence-to-action model and deals with
dynamic events by taking actions according to the current environment without extra
measures. The hyperparameters used in this paper are shown in Table 2, and we test
our model on the machine with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz and a single
NVIDIA GeForce RTX 3090 GPU.

Table 2. List of hyperparameters and their values.

Hyperparameter Value

Number of encoder layers 6
Number of decoder layers 6

Number of feed-forward network layers 1
Random rate f 0.1

Switch True
Number of heads 8

Number of training epochs 10,000
Number of test epochs 100

Optimizer Adam
Mini-batch size 128

Dropout rate 0.1

4.2. Performance Analysis

In this subsection, we compare SPP-transformer with simple priority rules, composite
dispatching rules, meta-heuristic methods, and RL methods. The results are obtained and
shown in Table 3.

We use “the number of machines × the number of jobs” to represent the size of
each instance. Makespan is an important indicator in the production, which means the
processing completion time, and the smaller makespan means better method performance.
The “Opt” represents the optimal value obtained by TOFA. The best results obtained among
these methods for comparison are highlighted in bold font. Further, the relative percentage
deviation (RPD) of each method is calculated using Equation (10).

RPD =
Alg−Opt

Opt
× 100% (10)
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Table 3. The comparison between each method on makespan and RPD (%).

Instance Size Opt

Methods

Simple Priority Rules Composite Dispatching Rules Meta-Heuristic Methods RL Methods SPP-Transformer

Makespan RPD Makespan RPD Makespan RPD Makespan RPD Makespan RPD

FT06 6 × 6 59 72 22.46 79 33.47 59 0 65 10.17 59 0
FT10 10 × 10 1002 1221 21.84 1169 16.62 1287 28.48 1288 28.57 1180 17.76
FT20 5 × 20 1205 1469 21.91 1383 14.79 1611 33.69 1440 19.5 1231 2.16
LA01 5 × 10 666 833 25.09 806 20.98 759 14.02 826 24.07 699 4.95
LA02 5 × 10 684 858 25.49 825 20.58 798 16.67 821 20.08 716 4.68
LA03 5 × 10 615 748 21.69 758 23.29 721 17.29 735 19.51 651 5.85
LA04 5 × 10 615 788 28.15 747 21.47 715 16.26 758 23.31 670 8.94
LA05 5 × 10 593 651 9.8 634 6.83 616 3.88 629 6.01 593 0
LA06 5 × 15 926 1090 17.66 1124 21.41 1016 9.68 1004 8.46 926 0
LA07 5 × 15 920 1079 17.28 1053 14.49 1056 14.75 1020 10.87 956 3.91
LA08 5 × 15 866 991 14.42 976 12.73 1014 17.13 1034 19.44 863 −0.35
LA09 5 × 15 952 1119 17.54 1094 14.89 1059 11.28 1039 9.17 951 −0.11
LA10 5 × 15 958 1085 13.3 1081 12.84 1018 6.23 1015 5.92 958 0
LA11 5 × 20 1222 1416 15.87 1430 16.98 1367 11.87 1359 11.21 1222 0
LA12 5 × 20 1039 1204 15.84 1214 16.8 1170 12.61 1149 10.62 1039 0
LA13 5 × 20 1151 1272 10.48 1285 11.62 1303 13.18 1247 8.34 1150 −0.09
LA14 5 × 20 1292 1451 12.34 1453 12.46 1350 4.49 1299 0.54 1292 0
LA15 5 × 20 1336 1500 12.29 1437 7.54 1491 11.63 1433 7.26 1321 −1.12
LA16 10 × 10 1108 1206 8.84 1200 8.28 1194 7.76 1155 4.21 1074 −3.07
LA17 10 × 10 844 976 15.61 994 17.74 1017 20.49 927 9.83 812 −3.79
LA18 10 × 10 942 1092 15.91 1031 9.45 1099 16.7 1088 15.46 942 0
LA19 10 × 10 952 1017 6.79 985 3.42 1130 18.7 1022 7.39 935 −1.79
LA20 10 × 10 1026 1154 12.47 1120 9.11 1179 14.95 1136 10.72 979 −4.58

Average 912 1056 16.66 1038 15.12 1045 13.99 1021 12.64 923 1.45
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The “Alg” is the makespan obtained by each method on each instance. RPD reflects the
distances between each method and the optimal method, and the smaller RPD means better
method performance. Moreover, it can be seen from Equation (10) that the RPD is a negative
value when the makespan obtained by the method is smaller than that obtained by TOFA,
representing that this method even outperforms the state-of-the-art method. The average
makespan and RPD of each method are shown in Table 3. Specifically, the “Makespan”
and the “RPD” of the simple priority rules on each instance are, respectively, the average
makespan and the average RPD of eight simple priority rules, including FIFO, LIFO,
MOR, LOR, LPT, SPT, LTPT, and STPT. The “Makespan” and the “RPD” of the composite
dispatching rules on each instance are, respectively, the average makespan and the average
RPD of four composite dispatching rules, including MOR+LPT, LOR+SPT, FCFS∗S, and
SI/Q. The “Makespan” and the “RPD” of meta-heuristic methods on each instance are,
respectively, the average makespan and the average RPD of three meta-heuristic methods,
including GA, DE, and GWO. The “Makespan” and the “RPD” of RL methods on each
instance are, respectively, the average makespan and the average RPD of three RL methods,
including DQN, Rainbow, and PPO. MOR+LPT means processing the job with the most
remaining operations and the longest processing time first, but LOR+SPT means processing
the job with the least remaining operations and the shortest processing time first. FCFS∗S
means setting a specific value in advance, and if the number of waiting jobs is more than
this value, using SPT; otherwise, using FIFO. SI/Q means using SPT mainly, but if the job
in the queue is joining the queue of the next machine and the queue it will join beyond
a specific length, this job is selected first. GA is a traditional meta-heuristic method to
solve JSSP, while DE and GWO are relatively novel meta-heuristic methods. Rainbow is
an extension of traditional DQN and performs well on atari games [46], and PPO is an
effective policy gradient RL method [47]. The detailed results of each simple priority rule,
each composite dispatching rule, each meta-heuristic method, and each RL method are
listed in Appendix A.

And we depict the average RPD of each method to clearly show the differences
between them. The result is shown in Figure 4.

FIFO LIFO LOR LPT LTPT MOR SPT STPT LOR+SPT MOR+LPT FCFS*S SI/Q GA DE GWO DQN Rainbow PPO SPP-Transformer
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Figure 4. The average PRD(%) of each method on each instance.

The red dotted line represents the average RPD of SPP-Transformer and it can be found
that the average RPDs of the other 18 methods are above the red dotted line, representing
that the average RPDs of the other 18 methods are larger than that of SPP-Transformer
and SPP-Transformer outperforms the other 18 methods. Moreover, it can be found from
Table 3 that the RPDs of SPP-Transformer on LA08-09, LA13, LA15-17, LA19-20 are nega-
tive, representing that SPP-Transformer even gets better results than the optimal solutions
on these instances. The makespan of SPP-Transformer is 11.67% smaller than the average
makespan of the other 18 methods. Specifically, the makespan of SPP-Transformer is 14.30%
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smaller than the average makespan of all dispatching rules, including simple priority rules
and composite dispatching rules, representing that SPP-Transformer can select the effective
dispatching rule at different steps according to the current environment. Moreover, MOR
outperforms the other 17 methods except SPP-Transformer. The performances of other
dispatching rules vary widely on different instances, reflecting that there is no dispatching
rule that can always perform well under any situation. Thus, the dynamic selection of
dispatching rules is needed. The composite dispatching rules do not achieve the best result
among all dispatching rules, which shows that combining different simple priority rules to
construct an effective composite dispatching rule is not easy and requires domain knowl-
edge. The makespan of SPP-Transformer is 16.99% smaller than the average makespan
of meta-heuristic methods, representing that SPP-Transformer can effectively deal with
the dynamic events without extra measures while meta-heuristic methods always need to
reschedule the jobs when dynamic events occur. Both SPP-Transformer and RL methods
select dispatching rules at different steps, but the makespan of SPP-Transformer is 13.82%
smaller than the average makespan of RL methods, representing that SPP-Transformer can
select the more effective dispatching rules than RL methods.

And Figures 5–7 are the Gantt charts that represent the scheduling schemes obtained
by SPP-Transformer to solve FT06, LA01, and LA20, respectively.
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Figure 5. The Gantt chart of FT06.
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Figure 6. The Gantt chart of LA01.
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Figure 7. The Gantt chart of LA20.

The rectangles with different colours represent the different jobs, the horizontal axis
represents the processing time, the vertical axis represents the different machines, and
the Cmax is related to the minimum makespan. The closer the rectangular areas are, the
more balanced the load of the machine and the better the scheduling effect [48]. It can be
found that the rectangles in the three Gantt charts are relatively close, reflecting that our
model realizes satisfactory scheduling. The above analyses prove that using an end-to-end
transformer to solve DJSSP is feasible and rather effective.

4.3. Data Ablation

Transformer-based models are known to require large amounts of data for training [49]
and we verify the dependence of SPP-Transformer on the scale of datasets by doing the
experiment that trains SPP-Transformer on different scale datasets. We randomly sample
1000 and 10,000 samples from the original dataset containing 100,000 samples to build two
new subsets. For simplicity, other hyperparameters are kept fixed except for the scales of
the training datasets. The line chart is depicted to show the RPD of each SPP-Transformer
on each instance more clearly, as shown in Figure 8. And “ours-100000”, “ours-10000”, and
“ours-1000” represent the SPP-Transformer trained on the 100,000, 10,000, and 1000 samples
datasets, respectively. The detailed results of each model are listed in Appendix B.
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Figure 8. The RPD of each SPP-Transformer on each instance.
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It can be found that except for the RPD on LA04, LA05, LA07, and LA14 being
relatively closer, the performances of the three SPP-Transformers on other instances are still
significantly different. Moreover, “ours-100000” performs best among the three models
and its performance is even better than the optimal solutions on some instances, reflecting
that a larger dataset helps improve the performance of SPP-Transformer. The fact that
the improvement between “ours-100000” and “ours-10000” is more significant than that
between “ours-10000” and “ours-1000” reasonably explains that the larger dataset can
better improve the performance of the model, which provides a gist for us to further
improve the performance of SPP-Transformer.

5. Conclusions

This paper introduces an end-to-end transformer-based deep learning model called
SPP-Transformer to solve DJSSP of different sizes. SPP-Transformer is constructed by a
feature extraction module, a feature compression module, and an action selection module.
Firstly, a DJSSP instance represented by the disjunctive graph is input to the feature ex-
traction module, and the feature extraction module extracts the features in the disjunctive
graph and transforms them into various-sized feature vectors. Then, the feature compres-
sion module compresses the various-sized feature vectors into the fixed-length vectors.
Finally, the action selection module selects the simple priority rule to schedule the job at
each step to complete the scheduling. The experimental results show that the makespan
of SPP-Transformer is 11.67% smaller than the average makespan of dispatching rules,
meta-heuristic methods, and RL methods. Specifically, the makespan of SPP-Transformer is
14.30% smaller than the average makespan of dispatching rules, 16.99% smaller than the av-
erage makespan of meta-heuristic methods, and 13.82% smaller than the average makespan
of RL methods. The experimental results prove that SPP-Transformer can generalize well
on different-sized JSSP instances and effectively deal with dynamic events. Moreover, it is
also proved that a larger training dataset improves the performance of SPP-Transformer.
However, the training time of SPP-Transformer is relatively long since there are lots of
parameters in SPP-Transformer and collecting enough data is not easy since it needs a large
dataset, which should be further solved. And the dynamic events considered in this paper
are limited, which can be further improved. To the best of our knowledge, this is the first
study of an end-to-end transformer in DJSSP, providing a paradigm for future research
on deep learning in DJSSP. Using the disjunctive graphs as input and dispatching rules as
output, further research can be conducted to explore other end-to-end deep learning-based
methods besides the transformer-based methods to solve DJSSP.
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Appendix A

Table A1. The comparison between simple priority rules and SPP-Transformer on makespan.

Instance Size Opt
Methods

FIFO LIFO LOR LPT LTPT MOR SPT STPT SPP-Transformer

FT06 6 × 6 59 65 70 68 77 68 59 88 83 59
FT10 10× 10 1002 1230 1201 1352 1295 1190 1163 1074 1262 1180
FT20 5 × 20 1205 1658 1304 1487 1631 1495 1601 1267 1309 1231
LA01 5 × 10 666 848 772 941 822 835 763 751 933 699
LA02 5 × 10 684 821 799 982 990 881 812 821 761 716
LA03 5 × 10 615 734 765 758 825 696 726 672 811 651
LA04 5 × 10 615 737 827 745 818 887 706 711 874 670
LA05 5 × 10 593 593 681 704 693 658 593 610 677 593
LA06 5 × 15 926 1014 1246 1095 1125 1098 926 1200 1012 926
LA07 5 × 15 920 1105 1156 1137 1069 1025 1001 1034 1105 956
LA08 5 × 15 866 982 1101 995 1035 952 925 942 995 863
LA09 5 × 15 952 1011 1089 1149 1183 1304 951 1045 1220 951
LA10 5 × 15 958 1035 1132 1032 1132 1033 958 1049 1312 958
LA11 5 × 20 1222 1229 1488 1586 1467 1416 1222 1473 1446 1222
LA12 5 × 20 1039 1039 1329 1295 1240 1126 1039 1203 1358 1039
LA13 5 × 20 1151 1160 1519 1320 1230 1252 1150 1275 1267 1150
LA14 5 × 20 1292 1321 1505 1567 1434 1419 1292 1427 1646 1292
LA15 5 × 20 1336 1471 1519 1598 1612 1394 1436 1339 1632 1321
LA16 10× 10 1108 1297 1306 1119 1229 1165 1108 1156 1268 1074
LA17 10× 10 844 908 987 948 1082 993 844 924 1120 812
LA18 10× 10 942 1057 1178 1154 1114 1198 942 981 1111 942
LA19 10× 10 952 1062 992 1004 1062 1004 1088 940 981 935
LA20 10× 10 1026 1243 1092 1207 1272 1086 1130 1000 1201 979

Average 912 1027 1089 1098 1106 1051 975 999 1104 923

Table A2. The comparison between simple priority rules and SPP-Transformer on RPD (%).

Instance Size
Methods

FIFO LIFO LOR LPT LTPT MOR SPT STPT SPP-Transformer

FT06 6 × 6 10.17 18.64 15.25 30.51 15.25 0 49.15 40.68 0
FT10 10 × 10 22.75 19.86 34.93 29.24 18.76 16.07 7.19 25.95 17.76
FT20 5 × 20 37.59 8.22 23.4 35.35 24.07 32.86 5.15 8.63 2.16
LA01 5 × 10 27.33 15.92 41.29 23.42 25.38 14.56 12.76 40.09 4.95
LA02 5 × 10 20.03 16.81 43.57 44.74 28.8 18.71 20.03 11.26 4.68
LA03 5 × 10 19.35 24.39 23.25 34.15 13.17 18.05 9.27 31.87 5.85
LA04 5 × 10 19.84 34.47 21.14 33.01 44.23 14.8 15.61 42.11 8.94
LA05 5 × 10 0 14.84 18.72 16.86 10.96 0 2.87 14.17 0
LA06 5 × 15 9.5 34.56 18.25 21.49 18.57 0 29.59 9.29 0
LA07 5 × 15 20.11 25.65 23.59 16.2 11.41 8.8 12.39 20.11 3.91
LA08 5 × 15 13.39 27.14 14.9 19.52 9.93 6.81 8.78 14.9 −0.35
LA09 5 × 15 6.2 14.39 20.69 24.26 36.97 −0.11 9.77 28.15 −0.11
LA10 5 × 15 8.04 18.16 7.72 18.16 7.83 0 9.5 36.95 0
LA11 5 × 20 0.57 21.77 29.79 20.05 15.88 0 20.54 18.33 0

https://github.com/Yunhui1998/Gymjsp
https://github.com/Yunhui1998/Gymjsp
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Table A2. Cont.

Instance Size
Methods

FIFO LIFO LOR LPT LTPT MOR SPT STPT SPP-Transformer

LA12 5 × 20 0 27.91 24.64 19.35 8.37 0 15.78 30.7 0
LA13 5 × 20 0.78 31.97 14.68 6.86 8.77 −0.09 10.77 10.08 −0.09
LA14 5 × 20 2.24 16.49 21.28 10.99 9.83 0 10.45 27.4 0
LA15 5 × 20 10.1 13.7 19.61 20.66 4.34 7.49 0.22 22.16 −1.12
LA16 10 × 10 17.06 17.87 0.99 10.92 5.14 0 4.33 14.44 −3.07
LA17 10 × 10 7.58 16.94 12.32 28.2 17.65 0 9.48 32.7 −3.79
LA18 10 × 10 12.21 25.05 22.51 18.26 27.18 0 4.14 17.94 0
LA19 10 × 10 11.55 4.2 5.46 11.55 5.46 14.29 −1.26 3.05 −1.79
LA20 10 × 10 21.15 6.43 17.64 23.98 5.85 10.14 −2.53 17.06 −4.58

Average 12.94 19.8 20.68 22.51 16.25 7.06 11.48 22.52 1.45

Table A3. The comparison between composite dispatching rules and SPP-Transformer on makespan.

Instance Size Opt
Methods

LOR+SPT MOR+LPT FCFS∗S SI/Q SPP-Transformer

FT06 6 × 6 59 85 68 78 84 59
FT10 10× 10 1002 1100 1284 1176 1114 1180
FT20 5 × 20 1205 1280 1616 1358 1279 1231
LA01 5 × 10 666 761 818 869 775 699
LA02 5 × 10 684 796 952 773 778 716
LA03 5 × 10 615 745 807 770 711 651
LA04 5 × 10 615 703 865 722 698 670
LA05 5 × 10 593 620 668 623 623 593
LA06 5 × 15 926 1182 1122 1022 1171 926
LA07 5 × 15 920 1021 1087 1082 1023 956
LA08 5 × 15 866 959 1086 902 958 863
LA09 5 × 15 952 1122 1178 1015 1060 951
LA10 5 × 15 958 1090 1116 1041 1077 958
LA11 5 × 20 1222 1494 1471 1318 1435 1222
LA12 5 × 20 1039 1214 1245 1168 1227 1039
LA13 5 × 20 1151 1338 1278 1234 1289 1150
LA14 5 × 20 1292 1518 1405 1426 1463 1292
LA15 5 × 20 1336 1356 1596 1429 1366 1321
LA16 10× 10 1108 1255 1219 1144 1181 1074
LA17 10× 10 844 956 1074 1001 944 812
LA18 10× 10 942 998 1099 1029 998 942
LA19 10× 10 952 950 1068 963 957 935
LA20 10× 10 1026 1022 1210 1223 1023 979

Average 912 1025 1101 1016 1010 923

Table A4. The comparison between composite dispatching rules and SPP-Transformer on RPD (%).

Instance Size
Methods

LOR+SPT MOR+LPT FCFS∗S SI/Q SPP-Transformer

FT06 6 × 6 44.07 15.25 32.2 42.37 0
FT10 10 × 10 9.78 28.14 17.37 11.18 17.76
FT20 5 × 20 6.22 34.11 12.7 6.14 2.16
LA11 5 × 10 14.26 22.82 30.48 16.37 4.95
LA12 5 × 10 16.37 39.18 13.01 13.74 4.68
LA13 5 × 10 21.14 31.22 25.2 15.61 5.85
LA14 5 × 10 14.31 40.65 17.4 13.5 8.94
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Table A4. Cont.

Instance Size
Methods

LOR+SPT MOR+LPT FCFS∗S SI/Q SPP-Transformer

LA15 5 × 10 4.55 12.65 5.06 5.06 0
LA16 5 × 15 27.65 21.17 10.37 26.46 0
LA17 5 × 15 10.98 18.15 17.61 11.2 3.91
LA18 5 × 15 10.74 25.4 4.16 10.62 −0.35
LA19 5 × 15 17.86 23.74 6.62 11.34 −0.11
LA10 5 × 15 13.78 16.49 8.66 12.42 0
LA11 5 × 20 22.26 20.38 7.86 17.43 0
LA12 5 × 20 16.84 19.83 12.42 18.09 0
LA13 5 × 20 16.25 11.03 7.21 11.99 −0.09
LA14 5 × 20 17.49 8.75 10.37 13.24 0
LA15 5 × 20 1.5 19.46 6.96 2.25 −1.12
LA16 10 × 10 13.27 10.02 3.25 6.59 −3.07
LA17 10 × 10 13.27 27.25 18.6 11.85 −3.79
LA18 10 × 10 5.94 16.67 9.24 5.94 0
LA19 10 × 10 −0.21 12.18 1.16 0.53 −1.79
LA20 10 × 10 −0.39 17.93 19.2 −0.29 −4.58

Average 13.82 21.41 12.92 12.33 1.45

Table A5. The comparison between meta-heuristic methods and SPP-Transformer on makespan.

Instance Size Opt
Methods

GA DE GWO SPP-Transformer

FT06 6 × 6 59 58 60 59 59
FT10 10 × 10 1002 1331 1312 1219 1180
FT20 5 × 20 1205 1634 1635 1564 1231
LA01 5 × 10 666 782 769 727 699
LA02 5 × 10 684 821 805 768 716
LA03 5 × 10 615 737 731 696 651
LA04 5 × 10 615 736 728 681 670
LA05 5 × 10 593 633 616 599 593
LA06 5 × 15 926 1040 1025 982 926
LA07 5 × 15 920 1085 1068 1014 956
LA08 5 × 15 866 1045 1024 974 863
LA09 5 × 15 952 1094 1063 1021 951
LA10 5 × 15 958 1048 1020 985 958
LA11 5 × 20 1222 1400 1371 1330 1222
LA12 5 × 20 1039 1195 1182 1133 1039
LA13 5 × 20 1151 1335 1312 1261 1150
LA14 5 × 20 1292 1377 1352 1321 1292
LA15 5 × 20 1336 1527 1498 1449 1321
LA16 10 × 10 1108 1238 1206 1138 1074
LA17 10 × 10 844 1072 1032 947 812
LA18 10 × 10 942 1149 1109 1040 942
LA19 10 × 10 952 1182 1142 1066 935
LA20 10 × 10 1026 1235 1185 1118 979

Average 912 1076 1054 1004 923
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Table A6. The comparison between meta-heuristic methods and SPP-Transformer on RPD (%).

Instance Size
Methods

GA DE GWO SPP-Transformer

FT06 6 × 6 −1.69 1.69 0 0
FT10 10 × 10 32.83 30.94 21.66 17.76
FT20 5 × 20 35.6 35.68 29.79 2.16
LA01 5 × 10 17.42 15.47 9.16 4.95
LA02 5 × 10 20.03 17.69 12.28 4.68
LA03 5 × 10 19.84 18.86 13.17 5.85
LA04 5 × 10 19.67 18.37 10.73 8.94
LA05 5 × 10 6.75 3.88 1.01 0
LA06 5 × 15 12.31 10.69 6.05 0
LA07 5 × 15 17.93 16.09 10.22 3.91
LA08 5 × 15 20.67 18.24 12.47 −0.35
LA09 5 × 15 14.92 11.66 7.25 −0.11
LA10 5 × 15 9.39 6.47 2.82 0
LA11 5 × 20 14.57 12.19 8.84 0
LA12 5 × 20 15.01 13.76 9.05 0
LA13 5 × 20 15.99 13.99 9.56 −0.09
LA14 5 × 20 6.58 4.64 2.24 0
LA15 5 × 20 14.3 12.13 8.46 −1.12
LA16 10 × 10 11.73 8.84 2.71 −3.07
LA17 10 × 10 27.01 22.27 12.2 −3.79
LA18 10 × 10 21.97 17.73 10.4 0
LA19 10 × 10 24.16 19.96 11.97 −1.79
LA20 10 × 10 20.37 15.5 8.97 −4.58

Average 17.28 15.08 9.61 1.45

Table A7. The comparison between RL methods and SPP-Transformer on makespan.

Instance Size Opt
Methods

DQN Rainbow PPO SPP-Transformer

FT06 6 × 6 59 65 63 67 59
FT10 10 × 10 1002 1289 1235 1341 1180
FT20 5 × 20 1205 1463 1378 1479 1231
LA01 5 × 10 666 785 935 759 699
LA02 5 × 10 684 809 804 851 716
LA03 5 × 10 615 750 742 713 651
LA04 5 × 10 615 684 812 779 670
LA05 5 × 10 593 592 660 634 593
LA06 5 × 15 926 984 1066 963 926
LA07 5 × 15 920 1035 991 1034 956
LA08 5 × 15 866 1014 964 1125 863
LA09 5 × 15 952 1010 1121 987 951
LA10 5 × 15 958 978 1045 1021 958
LA11 5 × 20 1222 1283 1480 1314 1222
LA12 5 × 20 1039 1123 1204 1121 1039
LA13 5 × 20 1151 1198 1300 1243 1150
LA14 5 × 20 1292 1283 1290 1324 1292
LA15 5 × 20 1336 1390 1393 1516 1321
LA16 10 × 10 1108 1102 1183 1179 1074
LA17 10 × 10 844 894 900 987 812
LA18 10 × 10 942 993 1147 1123 942
LA19 10 × 10 952 963 958 1146 935
LA20 10 × 10 1026 1047 1183 1178 979

Average 912 988 1037 1038 923
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Table A8. The comparison between RL methods and SPP-Transformer on RPD (%).

Instance Size
Methods

DQN Rainbow PPO SPP-Transformer

FT06 6 × 6 10.17 6.78 13.56 0
FT10 10 × 10 28.64 23.25 33.83 17.76
FT20 5 × 20 21.41 14.36 22.74 2.16
LA01 5 × 10 17.87 40.39 13.96 4.95
LA02 5 × 10 18.27 17.54 24.42 4.68
LA03 5 × 10 21.95 20.65 15.93 5.85
LA04 5 × 10 11.22 32.03 26.67 8.94
LA05 5 × 10 −0.17 11.3 6.91 0
LA06 5 × 15 6.26 15.12 4 0
LA07 5 × 15 12.5 7.72 12.39 3.91
LA08 5 × 15 17.09 11.32 29.91 −0.35
LA09 5 × 15 6.09 17.75 3.68 −0.11
LA10 5 × 15 2.09 9.08 6.58 0
LA11 5 × 20 4.99 21.11 7.53 0
LA12 5 × 20 8.08 15.88 7.89 0
LA13 5 × 20 4.08 12.95 7.99 −0.09
LA14 5 × 20 −0.7 −0.15 2.48 0
LA15 5 × 20 4.04 4.27 13.47 −1.12
LA16 10 × 10 −0.54 6.77 6.41 −3.07
LA17 10 × 10 5.92 6.64 16.94 −3.79
LA18 10 × 10 5.41 21.76 19.21 0
LA19 10 × 10 1.16 0.63 20.38 −1.79
LA20 10 × 10 2.05 15.3 14.81 −4.58

Average 9.04 14.45 14.42 1.45

Appendix B

Table A9. The comparison between different SPP-Transformers on makespan.

Instance Size Opt
Methods

Ours-1000 Ours-10000 Ours-100000

FT06 6 × 6 59 67 59 59
FT10 10 × 10 1002 1347 1206 1180
FT20 5 × 20 1205 1414 1313 1231
LA01 5 × 10 666 787 706 699
LA02 5 × 10 684 755 741 716
LA03 5 × 10 615 688 699 651
LA04 5 × 10 615 688 690 670
LA05 5 × 10 593 602 597 593
LA06 5 × 15 926 988 1005 926
LA07 5 × 15 920 975 978 956
LA08 5 × 15 866 937 883 863
LA09 5 × 15 952 1007 951 951
LA10 5 × 15 958 1033 956 958
LA11 5 × 20 1222 1317 1425 1222
LA12 5 × 20 1039 1180 1055 1039
LA13 5 × 20 1151 1217 1207 1150
LA14 5 × 20 1292 1296 1292 1292
LA15 5 × 20 1336 1374 1355 1321
LA16 10 × 10 1108 1131 1127 1074
LA17 10 × 10 844 904 904 812
LA18 10 × 10 942 996 984 942
LA19 10 × 10 952 969 963 935
LA20 10 × 10 1026 1020 1015 979

Average 912 988 1037 923
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Table A10. The comparison between different SPP-Transformers on RPD (%).

Instance Size
Methods

Ours-1000 Ours-10000 Ours-100000

FT06 6 × 6 13.56 0 0
FT10 10 × 10 34.43 20.36 17.76
FT20 5 × 20 17.34 8.96 2.16
LA01 5 × 10 18.17 6.01 4.95
LA02 5 × 10 10.38 8.33 4.68
LA03 5 × 10 11.87 13.66 5.85
LA04 5 × 10 11.87 12.2 8.94
LA05 5 × 10 1.52 0.67 0
LA06 5 × 15 6.7 8.53 0
LA07 5 × 15 5.98 6.3 3.91
LA08 5 × 15 8.2 1.96 −0.35
LA09 5 × 15 5.78 −0.11 −0.11
LA10 5 × 15 7.83 −0.21 0
LA11 5 × 20 7.77 16.61 0
LA12 5 × 20 13.57 1.54 0
LA13 5 × 20 5.73 4.87 −0.09
LA14 5 × 20 0.31 0 0
LA15 5 × 20 2.84 1.42 −1.12
LA16 10 × 10 2.08 1.71 −3.07
LA17 10 × 10 7.11 7.11 −3.79
LA18 10 × 10 5.73 4.46 0
LA19 10 × 10 1.79 1.16 −1.79
LA20 10 × 10 −0.58 −1.07 −4.58

Average 8.69 5.41 1.45
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