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Abstract

Predicting molecular conformations (or 3D struc-

tures) from molecular graphs is a fundamental

problem in many applications. Most existing ap-

proaches are usually divided into two steps by

first predicting the distances between atoms and

then generating a 3D structure through optimizing

a distance geometry problem. However, the dis-

tances predicted with such two-stage approaches

may not be able to consistently preserve the ge-

ometry of local atomic neighborhoods, making

the generated structures unsatisfying. In this pa-

per, we propose an end-to-end solution for molec-

ular conformation prediction called ConfVAE

based on the conditional variational autoencoder

framework. Specifically, the molecular graph is

first encoded in a latent space, and then the 3D

structures are generated by solving a principled

bilevel optimization program. Extensive experi-

ments on several benchmark data sets prove the

effectiveness of our proposed approach over ex-

isting state-of-the-art approaches. Code is avail-

able at https://github.com/MinkaiXu/

ConfVAE-ICML21.

1. Introduction

Recently we have witnessed much success of deep learning

for molecule modeling in a variety of applications ranging

from molecule property prediction (Gilmer et al., 2017) and

molecule generation (You et al., 2018; Shi et al., 2020b) to

retrosynthesis planning (Shi et al., 2020a). In these applica-

tions, molecules are generally represented as graphs with

atoms as nodes and covalent chemical bonds as edges. Al-
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though this is empirically effective, in reality molecules are

better represented as 3D structures (also known as confor-

mations), where each atom is characterized by 3D Cartesian

coordinates. Such 3D structures are also more intrinsic

and informative, determining many chemical and biolog-

ical properties such as chemical sensing and therapeutic

interactions with proteins.

However, determining the 3D structures from experiments is

challenging and costly. Effectively predicting valid and low-

energy conformations has been a very important and active

topic in computational chemistry. Traditional computational

approaches are typically based on Markov chain Monte

Carlo (MCMC) or molecular dynamics (MD) (De Vivo et al.,

2016) to propose conformations combined with simulations

to assign energies through cheap empirical potentials or

expensive quantum chemical simulations (Ballard et al.,

2015). Recently, there is growing interest in developing

machine learning approaches (Mansimov et al., 2019; Simm

& Hernández-Lobato, 2020; Xu et al., 2021) to model the

conditional distribution p(R|G) of stable conformations R

given the molecular graph G by training on a collection of

molecules with available stable conformations. Specifically,

two recent works (Simm & Hernández-Lobato, 2020; Xu

et al., 2021) propose to first predict the distances between

atoms and then generate molecular conformations based

on the predicted distances by solving a distance geometry

problem (Liberti et al., 2014). Such approaches based on

distance geometry effectively take into account the rotation

and translation invariance of molecular conformations and

have hence achieved very promising performance.

However, there is still a significant limitation for these two-

stage approaches, which predict the distances and confor-

mations separately: the predicted distances might not be

able to properly preserve the 3D geometry of local atomic

neighborhoods. Some invalid combinations of distances

could be assigned a high likelihood according to the distance

prediction model. The errors in these distances could be sig-

nificantly exaggerated by the distance geometry program of

the second stage, yielding unrealistic outlier samples of 3D

structures. This is not surprising as the distance prediction

model is trained by maximizing the factorized likelihood

https://github.com/MinkaiXu/ConfVAE-ICML21
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of distances while our end goal is to predict valid and sta-

ble conformations. We propose to effectively address this

issue with an end-to-end solution which directly predicts

the conformation given the molecular graph. Indeed, in

a related problem of predicting 3D structures of proteins

(a.k.a. protein structure prediction) based on amino-acid

sequences, the recent huge success of the AlphaFold2 algo-

rithm shows the importance and effectiveness of developing

an end-to-end solution compared to the previous AlphaFold

algorithm (though exact details of AlphaFold2 algorithm

are still lacking) (Senior et al., 2020a; Jumper et al., 2020).

In this paper, we propose such an end-to-end solution called

ConfVAE for molecular conformation generation, based on

bilevel programming. To model the rotational and transla-

tional invariance of conformations, we still take the pairwise

distances among atoms as intermediate variables. However,

instead of learning to predict distances by minimizing er-

rors in the space of distance, we formulate the whole prob-

lem as bilevel programming (Franceschi et al., 2018), with

the distance prediction problem and the distance geometry

problem for conformation generation being simultaneously

optimized. The whole framework is built on the condi-

tional variational autoencoder (VAE) framework (Kingma

& Welling, 2013), in which the molecular graph is first en-

coded into the VAE latent space, and the conformations

are generated based on the latent variable and molecular

graph. During training, we iteratively sample a set of dis-

tances from the distance prediction model, generate the 3D

structures by minimizing an inner objective (defined by the

distance geometry problem), and then update the distance

prediction model by optimizing the outer objective, i.e., the

likelihood directly defined on the conformations.

To the best of our knowledge, ConfVAE is the first method

for molecular conformation generation which can be trained

in an end-to-end fashion and at the same time keep the

property of rotational and translational invariance. Extensive

experiments demonstrate the superior performance of the

proposed method over existing state-of-the-art approaches

on several widely used benchmarks including conformation

generation and distance distribution modeling. We also

verify that the end-to-end objective is of vital importance

for generating realistic and meaningful conformations.

2. Background

2.1. Problem Definition

Notations. Following existing work (Simm & Hernández-

Lobato, 2020; Xu et al., 2021), each molecule is represented

as an attributed atom-bond graph G = 〈V, E〉, where V
is the set of vertices representing atoms and E is the set

of edges representing inter-atomic bonds. Each node v in

V describes the chosen atomic features such as element

type. Each edge euv in E describes the corresponding chem-

ical bond connecting u and v, and is labeled with its bond

type. Since the distances of bonds existing in the molecular

graph are not sufficient to determine an unique conformation

(e.g.due to so-called internal rotations around the axis of the

bond), we adopt the common pre-processing methodology

in existing works (Simm & Hernández-Lobato, 2020; Xu

et al., 2021) to expand the graphs by incorporating auxiliary

edges, which force multi-hop distance constraint eliminat-

ing some ambiguities in the 3D conformation, as elaborated

in Appendix A.

For the geometry R, each atom in V is represented by a

3D coordinate vector r ∈ R
3, and the full set of positions

{rv}v∈V is represented by the matrix R ∈ R
|V|×3. Let

duv denote the Euclidean distance ‖ru − rv‖2 between the

uth and vth atom, then all the distances between connected

nodes {duv}euv∈E can be summarized as a vector d ∈ R
|E|.

Problem Definition. The problem of molecular conforma-

tion generation is a conditional generation process, where

the goal is to model the conditional distribution of molecular

conformations R given the graph G, i.e., p(R|G).

2.2. Bilevel Optimization

Bilevel programs are defined as optimization problems

where a set of variables involved in the (outer) objective

function are obtained by solving another (inner) optimiza-

tion problem (Colson et al., 2007). Formally, given the outer

objective function F and the inner objective H , and the cor-

responding outer and inner variables θ and w, a bilevel

program can be formulated by

min
θ
F (wθ) such that wθ ∈ argmin

w
H(w, θ). (1)

Bilevel programs have shown effectiveness in a variety of

situations such as hyperparameter optimization, adversarial

and multi-task learning, as well as meta-learning (Maclaurin

et al., 2015; Bengio, 2000; Bennett et al., 2006; Flamary

et al., 2014; Muñoz-González et al., 2017; Franceschi et al.,

2018).

Typically solving equation 1 is intractable since the solu-

tion sets of wθ may not be available in closed form (Ben-

gio, 2000). A common approach is to replace the exact

minimizer of the inner object H with an approximation

solution, which can be obtained through an iterative opti-

mization dynamics Φ such as stochastic gradient descent

(SGD) (Domke, 2012; Maclaurin et al., 2015; Franceschi

et al., 2017). Starting from the initial parameter w0, we

can get the approximate solution wθ,T by running T iter-

ations of the inner optimization dynamics Φ, i.e., wθ,T =
Φ(wθ,T−1, θ) = Φ(Φ(wθ,T−2, θ), θ), and so on. In the gen-

eral case where θ and w are real-valued and the objectives

and optimization dynamics is smooth, the gradient of the
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object F (wθ,T ) w.r.t. θ, named hypergradient ∇θF (wθ,T ),
can be computed by:

∇θF (wθ,T ) = ∂wF (wθ,T )∇θwθ,T (2)

where ∂ denotes the partial derivative to compute the Jaco-

bian on immediate variables while ∇ denotes a total deriva-

tive taking into account the recursive calls to F . The above

gradient can be efficiently calculated by unrolling the op-

timization dynamics with back-propagation, i.e., reverse-

mode automatic differentiation (Griewank & Walther, 2008),

where we repeatedly substitute wΦ,t = Φ(wθ,t−1, θ) and

apply the chain rule.

3. Implicit Distance Geometry

In this section we elaborate on the proposed end-to-end

framework. We first present a high-level description of our

bilevel formulation in Sec. 3.1. Then we present the model

schematic and training objectives in Sec. 3.2. Finally we

show how to learn the model via hypergradient descent in

Sec. 3.3 and how to draw samples in Sec. 3.4.

3.1. Overview

Since a molecule can have multiple stable conformations,

we model the distribution of conformations R condition-

ing on molecular graph G (i.e. p(R|G)) with a conditional

variational autoencoder (CVAE) (Kingma & Welling, 2013),

in which a latent variable z is introduced to model the un-

certainty in molecule conformation generation. The CVAE

model includes a prior distribution of latent variable pψ(z|G)
and a decoder pθ(R|z,G) to capture the conditional dis-

tribution of R given z. During training, we also involve

an additional inference model (encoder) qφ(z|R,G). The

encoder and decoder are jointly trained to maximize the

evidence lower bound (ELBO) of the data log-likelihood:

logP (R|G) ≥Ez∼qφ(z|R,G) [log pθ(R|z,G)]

−DKL [qφ(z|R,G)‖pψ(z|G)]

,LELBO(θ, φ, ψ),

(3)

The ELBO can be interpreted as the sum of the negative

reconstruction error Lrecon (the first term) and a latent

space prior regularizer Lprior (the second term). In practice,

qφ(z|R,G) and pψ(z|G) are all modeled as diagonal Gaus-

sians N(z|µφ(R,G), σφ(R,G)) and N(z|µψ(G), σψ(G)),
whose mean and standard deviation are predicted by graph

neural networks. To efficiently optimize the ELBO during

training, sampling from qφ(z|R,G) is done by reparametriz-

ing z as zφ = µφ(R,G)+σφ(R,G) ·ǫ, where ǫ ∼ N (0, I).

With similar encoder and prior models, the key differences

among different methods lie in the architecture and learning

method of the decoder (generator) model pθ(R|z,G), i.e.,

how to parameterize the decoder and train it with respect

to the reconstruction loss Lrecon. Let Dθ(z,G) denote the

decoder function taking prior z and graph G to obtain a

distance vector, we now elaborate how we formulate the

optimization problem of the decoder as a bilevel program:

Inner objective: Directly generating conformations as

Cartesian coordinates heavily depends on the arbitrary ro-

tation and translation. Therefore, previous effective ap-

proaches (Simm & Hernández-Lobato, 2020; Xu et al.,

2021) instead make the decoder generate inter-atomic dis-

tances d, i.e., dθ,φ = Dθ(zφ,G). The distances d are taken

as intermediate variables to generate conformations, which

are invariant to rotation and translation. To generate a con-

formation R, one needs to first generate the set of distances

d, and then post-process d to obtain the 3D positions R, by

solving a distance geometry optimization problem:

Rθ,φ = argmin
R

H(R, Dθ(zφ,G))

= argmin
R

H(R,dθ,φ)

= argmin
R

{

∑

euv∈E

(

‖ru − rv‖2 − duv
)2
}

,

(4)

which we take as the inner loop objective.

Outer objective: Ultimately, we are interested in di-

rectly minimizing the generalization error on 3D struc-

tures to make the generated conformation consistent with

the ground-truth up to rotation and translation. The

post-alignment Root-Mean-Square Deviation (RMSD) is

a widely used metric for this purpose. To calculate this

metric, another conformation R̂ is first obtained by an align-

ment function R̂ = A(R,R∗), which rotates and translates

the reference conformation R
∗ to have the smallest distance

to the generated one R according to the RMSD metric:

RMSD(R, R̂) =
( 1

n

n
∑

i=1

‖Ri − R̂i‖
2
)

1
2

. (5)

where n is the number of atoms. Then the reconstruction

objective Lrecon can be written as:

F (Rθ,φ) = log pθ(R|z,G)

= −
n
∑

i=1

3
∑

j=1

(Rij −A(R,R∗)ij)
2
,

(6)

which is the outer loop objective for computing the recon-

struction loss and maximize the log-likelihood.

Bilevel program: Now we can consider equation 4 and

equation 6 as the inner and outer objectives of a bilevel pro-

gramming problem. In this formulation, the outer objective

aims to model the true conditional distribution p(R|G), and

the inner objective solves for the conformation given a set
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Figure 1. The overall framework of ConfVAE. At training time, given the graph G and conformation R, we: 1) compute the distributions

of qφ(z|G,R) and pψ(z|G), and calculate Lprior; 2) sample z from qφ by reparameterization, and feed it into the decoder (generator) pθ
to generate inter-atomic distances d, after which we can obtain an auxiliary objective Laux from the true distances d̂ derived from R; 3)

run the inner loop (distance geometry) to recover the 3D structure from d, and compute the reconstruction RMSD loss Lrecon. The model

is trained end-to-end by optimizing the sum of three object components Lprior , Laux and Lrecon.

of predicted distances. By taking the expectation over latent

variable z, the resulting bilevel program for calculating the

reconstruction term Lreconin equation 3 can be written as:

max
θ,φ

Ez∼qφ(z|R,G) [F (Rθ,φ, θ)] (7)

such that Rθ,φ = argmin
R

H(R, Dθ(zφ,G)). (8)

The derived bilevel problem is still challenging because: 1)

the solution of conformation structure in the inner problem is

not available in closed form; 2) computing this expectation

exactly over the continuous latent space is intractable. Thus,

in practice we compute an empirical estimation of the output

with a variational inference model and the reparametrization

trick. We elaborate on how we address these issues in the

following parts.

3.2. Generative Model

We now have the tools needed to define our conditional gen-

erative model of molecular conformation. The cornerstone

of all modules (encoder, prior and decoder) is message-

passing neural networks (MPNNs) (Gilmer et al., 2017),

which is a variant of graph neural networks that achieves

state-of-the-art performance in representation learning for

molecules (Scarselli et al., 2008; Bruna et al., 2013; Du-

venaud et al., 2015; Kipf & Welling, 2016; Kearnes et al.,

2016; Schütt et al., 2017). The MPNN directly operates

on the graph representation G and is invariant to graph iso-

morphism. In each convolutional (message passing) layer,

atomic embeddings are updated by aggregating the informa-

tion from neighboring nodes.

For the encoder qφ(z|R,G) and prior pψ(z|G), we use the

same MPNN architecture as Mansimov et al. (2019); Simm

& Hernández-Lobato (2020). Since bilevel optimization

has a relatively high memory cost, we use an ordinary

differential equation (ODE)-based continuous normalizing

flow (Chen et al., 2018) (CNF) for the decoder pθ(R|z,G),
which has constant memory cost. We describe the details of

our decoder model below.

Decoder Architecture. As illustrated in Sec. 3.1, our de-

coder is composed of two cascaded levels: a distance pre-

diction model Dθ(z,G) that decodes z back into a set of

distances d, and a differentiable distance geometry proce-

dure to recover geometry R from distances d. The model

Dθ(z,G) is implemented as a conditional extension of the

CNF which transforms noise variables d(t0) (also the initial

distances in the CNF ODE trajectory) sampled from the

prior distribution N (0, I) to final distances d = d(t1). The

transformation is conditioned on the latent variable z as well

as the graph G:

d = Dθ(z,G)

= d(t0) +

∫ t1

t0

gθ(d(t), t,G, z)dt,
(9)

where gθ is an MPNN that defines the continuous-time dy-

namics of the flow Dθ conditioned on z and G. Note that,

given the true distances d(t1) = d, d(t0) can also be eas-

ily computed by reversing the continuous dynamics Dθ:

D−1
θ (z,G) = d(t1) +

∫ t0

t1
gθ(d(t), t, z,G)dt. And thus the

exact conditional log-likelihood of distances given G can be

computed by:

Laux = log pθ(d|z,G)

= log p(d(t0))−

∫ t1

t0

Tr

(

∂gθ

∂d(t)

)

dt.
(10)

An ODE solver can then be applied to estimate the gradi-

ents on parameters for optimization. In practice, Laux can

be taken as an auxiliary objective defined on distances to

supervise the training. In summary, the training objective

can be interpreted as the sum of three parts:

L(θ, φ, ψ) = Lrecon + λLprior + αLaux, (11)
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Figure 2. Schematic illustration of the forward and backward computational graph through the inner loop (distance geometry optimization).

We repeatedly update R with the gradient ∇RH during the forward computation, and accumulate hypergradients ∇θ,φR to update

parameters θ and φ from backward computation.

where λ and α are hyperparameters to reweight each com-

ponent. The overall framework is illustrated in Fig. 1.

3.3. End-to-end Learning via Hypergradient Descent

We now discuss how to optimize the bilevel problem de-

fined by equation 8 and equation 7 through a practical al-

gorithm. The inner problem in equation 8 is a classic dis-

tance geometry problem about how to infer 3D coordinates

from pairwise distances (Anand & Huang, 2018; Simm &

Hernández-Lobato, 2020; Xu et al., 2021). Others have

used a semi-definite program (SDP) to infer protein struc-

ture from nuclear magnetic resonance data (Alipanahi et al.,

2013), or an Alternating Direction Method of Multipliers

(ADMM) algorithm to fold the protein into the 3D Cartesian

coordinates (Anand & Huang, 2018). In this initial work

we choose gradient descent (GD), with tractable learning

dynamics Φ, to approximately solve for the geometry:

Rθ,φ,t+1 = Φ(Rθ,φ,t,dθ,φ) = Rθ,φ,t−η∇H(Rθ,φ,t,dθ,φ),
(12)

where η is the learning rate and dθ,φ is the distance set

generated from the distance prediction model. Under ap-

propriate assumptions and for a number of updates t→ ∞,

GD can converge to a proper geometry Rθ,φ that depends

on the predicted pairwise distances (Bottou, 2010).

Now we consider how to calculate the hypergradient

∇θ,φEz∼qφ(z|R,G) [F (Rθ,φ)] from the outer loop recon-

struction objective (equation 7) to train the model. Let

Rθ,φ,T denote the conformation generated by approxi-

mately solving for the distance geometry with T steps gra-

dient descent. Now we can write the hypergradient as:

∇θ,φEz∼qφ(z|R,G) [F (Rθ,φ,T )] (13)

= Ez∼qφ(z|R,G)∂R [F (Rθ,φ,T )]∇θ,φRθ,φ,T ,

where the gradient ∇θ,φRθ,φ,T can be computed by fully

unrolling the dynamics of inner loop from RT to R0.

Specifically, in the forward computation, successive geome-

tries R0,··· ,T resulting from the optimization dynamics are

cached. In the backward call, the cached geometries are used

to compute gradients in a series of Vector-Jacobian Products

(VJPs). During the reverse computation, the gradient start-

ing from the ∂RT
F can be propagated to the intermediate

geometries Rt through ∇Rt
Rt+1:

∇Rt
Rt+1 = ∇Rt

(

Rt − η∇Rt
H(dφ,θ,Rt)

)

= 1− η∇2
Rt
H(dφ,θ,Rt)

(14)

where ∇2
Rt

denotes the Hessian w.r.t. Rt. With iteratively

computed derivatives ∇Rt
RT , the adjoints on dφ,θ can be

computed in forms of VJPs and further backpropagated to

the parameters of encoder qφ and decoder pθ. Formally,

∇dRT is computed by:

∇dθ,ψ
RT =

0
∑

t=T−1

[∇Rt+1
RT ]∇dRt+1

= −η
0

∑

t=T−1

[∇Rt+1
RT ]∇d

(

∇Rt
H(dφ,θ,Rt)

)

,

(15)

where ∇Rt+1
RT can be substituted by equation 14. The

computation can be done efficiently with reverse-mode au-

tomatic differentiation software such as PyTorch (Paszke

et al., 2019). A schematic illustration of the forward and

backward computational graph through distance geometry

is presented in Fig. 2. We provide a detailed algorithm of

the training procedure in Appendix. B.

3.4. Sampling

Given the graph G, to generate a conformation R, we

first draw the latent variable z̃ from the prior distribution

pψ(z|G). Then we sample the random initial distances d(t0)

from a Gaussian distribution, then pass d̃(t0) through the

invertible Neural ODE Gθ conditioned on z̃ and G to obtain

the distance set d̃ = Gθ(d̃(t0); z,G). Then we produce the

conformation R by solving the distance geometry optimiza-

tion problem argminRH(R,dθ,φ) as defined in equation 4.
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Table 1. Comparison of different methods on the conformation generation task. Top 5 rows: deep generative models for molecular

conformation generation. Bottom 6 rows: different methods with an additional rule-based force field to further optimize the generated

structures. We report the COV and MAT scores, where Mean and Median are calculated over different molecular graphs in the test set of

GEOM. In practice, the size of the generated set is sampled as two times of the reference set following Xu et al. (2021).

Dataset GEOM-QM9 GEOM-Drugs

Metric
COV∗ (%) MAT (Å) COV∗ (%) MAT (Å)

Mean Median Mean Median Mean Median Mean Median

CVGAE 8.52 5.62 0.7810 0.7811 0.00 0.00 2.5225 2.4680

GraphDG 55.09 56.47 0.4649 0.4298 7.76 0.00 1.9840 2.0108

CGCF 69.60 70.64 0.3915 0.3986 49.92 41.07 1.2698 1.3064

ConfVAE- 75.57 80.76 0.3873 0.3850 51.24 46.36 1.2487 1.2609

ConfVAE 77.98 82.82 0.3778 0.3770 52.59 56.41 1.2330 1.2270

RDKit 79.94 87.20 0.3238 0.3195 65.43 70.00 1.0962 1.0877

CVGAE + FF 63.10 60.95 0.3939 0.4297 83.08 95.21 0.9829 0.9177

GraphDG + FF 70.67 70.82 0.4168 0.3609 84.68 93.94 0.9129 0.9090

CGCF + FF 73.52 72.75 0.3131 0.3251 92.28 98.15 0.7740 0.7338

ConfVAE- + FF 77.95 79.14 0.2851 0.2817 91.48 99.21 0.7743 0.7436

ConfVAE + FF 81.46 83.80 0.2702 0.2709 91.88 100.00 0.7634 0.7312

* For COV, the threshold δ is set as 0.5Å for QM9 and 1.25Å for Drugs following Xu et al. (2021).

4. Experiments

4.1. Experiment Setup

Evaluation Tasks. Following previous work on conforma-

tion generation (Mansimov et al., 2019; Simm & Hernández-

Lobato, 2020; Xu et al., 2021), we conduct extensive exper-

iments by comparing our method with the state-of-the-art

baseline models on several standard tasks. Conformation

Generation is formulated by Xu et al. (2021), who con-

centrate on the models’ capacity to generate realistic and

diverse molecular conformations. Distance distribution

modeling is first proposed by Simm & Hernández-Lobato

(2020), who evaluate whether the methods can model the

underlying distribution of distances.

Baselines. We compared our proposed model with the fol-

lowing state-of-the-art conformation generation methods.

CVGAE (Mansimov et al., 2019) is a conditional VAE-

based model, which applied a few layers of graph neural

networks to learn the atom representation from the molec-

ular graph, and then directly predicts the 3D coordinates.

GraphDG (Simm & Hernández-Lobato, 2020) also em-

ploys the conditional VAE framework. Instead of directly

generating the conformations in 3D coordinates, they in-

stead learn the distribution over distances. Then the dis-

tances are converted into conformations with a distance

geometry algorithm. CGCF (Xu et al., 2021), another two-

stage method, uses continuous normalizing flows to predict

the atomic pairwise distances. Following the baselines, we

also compare our model with RDKit (Riniker & Landrum,

2015), a classical distance geometry approach built upon an

extensive calculation collection of edge lengths by compu-

tational chemistry.

Featurization and Implementation. The MPNNs used for

the encoder, prior and decoder are all implemented as Graph

Isomorphism Networks (Xu et al., 2018; Hu et al., 2019).

For the input features of the graph representation, we only

derive the atom and bond types from molecular graphs. As a

default setup, the MPNNs are all implemented with 3 layers,

and the hidden embedding dimension is set as 256. For the

training of ConfVAE, we train the model on a single Tesla

V100 GPU with a batch size of 128 and a learning rate of

0.001 until convergence, with Adam (Kingma & Welling,

2013) as the optimizer.

4.2. Conformation Generation

Datasets. Following Xu et al. (2021), we use the recent

proposed GEOM-Drugs and GEOM-Drugs (Axelrod &

Gomez-Bombarelli, 2020) datasets for the conformation

generation task. The Geometric Ensemble Of Molecules

(GEOM) dataset contains millions of high-quality stable

conformations, which is suitable for the conformation gener-

ation task. The GEOM-Drugs dataset consists of generally

medium-sized organic compounds, containing an average

of 44.2 atoms. We follow the setting from Xu et al. (2021)

to randomly take 50000 conformation-molecule pairs as the

training set, and another 9161 conformations (covering 100

molecular graphs) as the test split. By contrast, GEOM-

QM9 is a much smaller dataset limited to small molecules

with 9 heavy atoms. Similarly, we randomly draw 50000

conformation-molecule pairs to constitute the training set,
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Figure 3. Visualization of generated conformations from state-of-the-art baselines, our method and the reference set, where four molecular

graphs are randomly taken from the test set of GEOM-Drugs. C, O, H, S and Cl are colored gray, red, white, yellow and green respectively.

and another 17813 conformations covering 150 molecular

graphs as the test set.

Evaluation metrics. In this task we hope the generated

samples to be of both high quality and diversity. We follow

previous work (Hawkins, 2017; Mansimov et al., 2019; Xu

et al., 2021) to calculate the RMSD of the heavy atoms

between generated samples and reference ones. Given

the generated conformation R and the reference R
∗, we

take the same alignment function A(R,R∗) defined in

equation 5 to obtain the aligned conformation R̂, and

then calculate the evaluation metric by RMSD(R, R̂) =
(

1
n

∑n

i=1 ‖Ri − R̂i‖
2
)

1
2

, where n is the number of heavy

atoms. Built upon the RMSD metric, Xu et al. (2021) de-

fined Coverage (COV) and Matching (MAT) scores to mea-

sure the diversity and quality respectively. COV counts

the fraction of conformations in the reference set that are

covered by at least one conformation in the generated set:

COV(Sg(G), Sr(G)) =

1

|Sr|

∣

∣

∣

{

R ∈ Sr

∣

∣RMSD(R,R′) < δ, ∃R′ ∈ Sg

}
∣

∣

∣
.

(16)

where Sg(G) and Sr(G) denote the generated and the ref-

erence conformations set respectively. Typically, a higher

COV score indicates a better diversity performance to cover

the complex true distribution.

While COV is able to detect mode-collapse, there is no guar-

antee for the quality of generated samples. Thus, the MAT

score is defined as a complement metric that concentrates

on the quality (Xu et al., 2021):

MAT(Sg(G), Sr(G)) =
1

|Sr|

∑

R′∈Sr

min
R∈Sg

RMSD(R,R′).

(17)

Generally, more realistic generated samples lead to a lower

MAT score.

Results. We calculate the COV and MAT evaluations on

both GEOM-QM9 and GEOM-Drugs datasets for all base-

lines, and summarize the results in Tab. 1. We visualize

several representative examples in Fig. 3. Our ConfVAE out-

performs all existing strong baselines with an obvious mar-

gin (top 5 rows). By incorporating an end-to-end training

objective via bilevel optimization, we consistently achieved

a better result on all four metrics. By contrast, current state-

of-the-art models GraphDG and CGCF suffer much worse

performance due to the two-stage generation process, where

the extra error caused by the distance geometry cannot be

taken into account during training. CVGAE enjoys the same

training and testing objective, but still shows inferior perfor-

mance since it fails to keep the vital translation and rotation

invariant property.

Similar to previous work (Mansimov et al., 2019; Xu et al.,

2021), we also further test all models by incorporating a rule-

based empirical force field (Halgren, 1996b) and compare

the performance with the classic RDKit toolkit. Specifically,

we first generate the conformations with the generative mod-

els as initial structures, and then utilize the force field to

further optimize the generated structures. The additional

results are reported in Tab. 1 (bottom 6 rows). As shown

in the table, ConfVAE still achieves the best results among

all generative models. More importantly, our method out-

performs RDKit on 7 out of 8 evaluations and achieves

competitive results on the other one, making our method

the first generative model that already practically useful for

real-world applications.

Ablation Study. So far we have demonstrated the supe-

rior performance of the proposed method. However, be-

cause we adopt a slightly different architecture, it remains

unclear where the effectiveness comes from. In this part,

we carefully conduct an ablation study by removing the

bilevel component defined in equation 7 during training,

i.e., remove Lrecon and learn the model with only Laux and

Lprior. We denote this variant of ConfVAE as ConfVAE-.

and summarize the additional results in Tab. 1.
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Table 2. Comparison of different models on the distance distribu-

tion modeling task. We compare the marginals (p(duv|G)), pairs

(p(duv, dij |G)) and joint distribution (p(d|G)) of edges connect-

ing C and O atoms. We report the Median and Mean of the MMD

metric. Molecular graphs G are taken from the test set of ISO17.

Single Pair All

Mean Median Mean Median Mean Median

RDKit 3.4513 3.1602 3.8452 3.6287 4.0866 3.7519

CVGAE 4.1789 4.1762 4.9184 5.1856 5.9747 5.9928

GraphDG 0.7645 0.2346 0.8920 0.3287 1.1949 0.5485

CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447

ConfVAE- 0.2551 0.1352 0.2719 0.1742 0.2968 0.2132

ConfVAE 0.1809 0.1153 0.1946 0.1455 0.2113 0.2047

As shown in the table, removing the bilevel component hurts

performance. These results verify that only learning from

distances will introduce an extra bias for the generated con-

formations, and our end-to-end method for directly learning

on the 3D structure helps to overcome this issue. Another

observation is that as a combination of flow-based and VAE-

based model, ConfVAE- still achieves significantly better re-

sults than the Flow-based CGCF and VAE-based GraphDG,

with exactly the same training and sampling process. This

result indicates that incorporating both global (z) and local

d(t0) latent variables will contribute to the generated con-

formations, which can help to capture both the global and

local geometric structure and atomic interactions.

4.3. Distance Distribution Modeling

Dataset. For the distances modeling task, we follow Simm

& Hernández-Lobato (2020); Xu et al. (2021) and use the

ISO17 dataset (Simm & Hernández-Lobato, 2020). ISO17

is constructed from the snapshots of ab initio molecular

dynamics simulations, where the coordinates are not just

equilibrium conformations but are samples that reflect the

underlying density around equilibrium states. We follow

previous work to split ISO17 into a training set with 167

molecules and a test set with the other 30 molecules.

Evaluation metrics. To obtain a distribution over distances

from a distribution over conformations, we sample a set

of conformations R and then calculate the corresponding

atomic lengths between C and O atoms (H atoms are usually

ignored). Let p(duv|G) denote the conditional distribution

of distances on each edge euv given a molecular graph G.

To evaluate the distance distributions, we use the maxi-

mum mean discrepancy (MMD) (Gretton et al., 2012) to the

ground-truth distributions. More specifically, we evaluate

against the ground truth the MMD of marginal distributions

of each individual edge’s distance p(duv|G), pairs of dis-

tances p(duv, dij |G) and the joint distance p(d|G). For this

benchmark, the size of the generated sample set is the same

as the reference set.

Results. The results of MMDs are summarized in Tab. 2.

The statistics show that the generated distance distribution

of ConfVAE is significantly closer to the ground-truth dis-

tribution compared with the baseline models. These results

demonstrate that our method can not only generate realistic

conformations, but also model the density around equilib-

rium states. By contrast, though RDKit shows competi-

tive performance for conformation generation, it seems to

struggle with the distribution modeling benchmark. This

is because RDKit is only designed to find the equilibrium

states by using the empirical force field (Halgren, 1996a),

and thus it lacks the capacity to capture the underlying dis-

tribution. The further ablation study between ConfVAE

and ConfVAE- also verifies the effectiveness of the bilevel

optimization components.

5. Related Work

In recent years, deep learning has shown significant progress

for 3D structure generation. There have been works using

neural networks to derive energy prediction models, which

then are taken as faster alternatives to quantum mechanics-

based energy calculations (Schütt et al., 2017; Smith et al.,

2017) for molecular dynamics simulation or molecule op-

timization (Wang et al., 2020). However, though acceler-

ated by neural networks, these approaches are still time-

consuming due to the lengthy sampling process. Recently,

(Gebauer et al., 2019) and (Hoffmann & Noé, 2019) provide

methods to generate new 3D molecules with deep genera-

tive models, while (Simm et al., 2020a) and (Simm et al.,

2020b) employ reinforcement learning to search the vast

geometric space. However, none of these methods is de-

signed to generate the conformations from the molecular

graph structure, making them orthogonal to our framework.

(Gogineni et al., 2020) proposes TorsionNet, which uses

RL for conformation search by determining torsional an-

gles, and takes a classical force field for state transition

and reward evaluation. However, this model is specifically

designed for larger molecules, and incapable of modeling

other complex geometric structures such as bond angles and

lengths. Therefore, it is also not comparable in our setting.

Many other works (Lemke & Peter, 2019; AlQuraishi, 2019;

Ingraham et al., 2019; Noé et al., 2019) also learn to di-

rectly predict 3D structures, but focus on the protein folding

problem. Specifically, Senior et al. (2020b); Jumper et al.

(2020) significantly advance this field with an end-to-end

attention-based model called AlphaFold. Unfortunately, pro-

teins are amino-acid sequences with low chemical diversity,

much larger scale and for which abundant structural exists

while general molecules are highly structured graphs with a

variety of cycles and much broader chemical composition,

making it unclear whether these methods are transferable to

the general conformation generation task.
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6. Conclusion

In this paper, we propose ConfVAE, an end-to-end frame-

work for molecular conformation generation via bilevel pro-

gramming. Our generative model can overcome significant

errors of previous two-stage models, thanks to the end-to-

end training based on bilevel programming, while keeping

the property of rotational and translational invariance. Ex-

perimental results demonstrate the superior performance

of our method over all state-of-the-art baselines on several

standard benchmarks. Future work includes combining our

bilevel optimization framework with other kinds of genera-

tive models, and extending our method to other challenging

structures such as proteins.

Acknowledgments

This project is supported by the Natural Sciences and Engi-

neering Research Council (NSERC) Discovery Grant, the

Canada CIFAR AI Chair Program, collaboration grants be-

tween Microsoft Research and Mila, Samsung Electronics

Co., Ldt., Amazon Faculty Research Award, Tencent AI

Lab Rhino-Bird Gift Fund and a NRC Collaborative R&D

Project (AI4D-CORE-06). This project was also partially

funded by IVADO Fundamental Research Project grant PRF-

2019-3583139727.

References

Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H.,

Donaldson, L., and Li, M. Determining protein structures

from noesy distance constraints by semidefinite program-

ming. Journal of Computational Biology, 20(4):296–310,

2013.

AlQuraishi, M. End-to-end differentiable learning of protein

structure. Cell systems, 8(4):292–301, 2019.

Anand, N. and Huang, P.-S. Generative modeling for pro-

tein structures. In Proceedings of the 32nd International

Conference on Neural Information Processing Systems,

pp. 7505–7516, 2018.

Axelrod, S. and Gomez-Bombarelli, R. Geom: Energy-

annotated molecular conformations for property pre-

diction and molecular generation. arXiv preprint

arXiv:2006.05531, 2020.

Ballard, A. J., Martiniani, S., Stevenson, J. D., Somani, S.,

and Wales, D. J. Exploiting the potential energy landscape

to sample free energy. Wiley Interdisciplinary Reviews:

Computational Molecular Science, 5(3):273–289, 2015.

Bengio, Y. Gradient-based optimization of hyperparameters.

Neural computation, 12(8):1889–1900, 2000.

Bennett, K. P., Hu, J., Ji, X., Kunapuli, G., and Pang, J.-S.

Model selection via bilevel optimization. In The 2006

IEEE International Joint Conference on Neural Network

Proceedings, pp. 1922–1929. IEEE, 2006.

Bottou, L. Large-scale machine learning with stochastic

gradient descent. In Proceedings of COMPSTAT’2010,

pp. 177–186. Springer, 2010.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-

tral networks and locally connected networks on graphs.

arXiv preprint arXiv:1312.6203, 2013.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,

D. K. Neural ordinary differential equations. In Advances

in neural information processing systems, pp. 6571–6583,

2018.

Colson, B., Marcotte, P., and Savard, G. An overview of

bilevel optimization. Annals of operations research, 153

(1):235–256, 2007.

Crippen, G. M., Havel, T. F., et al. Distance geometry and

molecular conformation, volume 74. Research Studies

Press Taunton, 1988.

De Vivo, M., Masetti, M., Bottegoni, G., and Cavalli, A.

Role of molecular dynamics and related methods in drug

discovery. Journal of medicinal chemistry, 59(9):4035–

4061, 2016.

Domke, J. Generic methods for optimization-based model-

ing. In Artificial Intelligence and Statistics, pp. 318–326,

2012.

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J.,
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