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Abstract

Sleep staging is a fundamental but time consuming process in any sleep laboratory. To greatly speed up sleep staging 

without compromising accuracy, we developed a novel framework for performing real-time automatic sleep stage 

classi�cation. The client–server architecture adopted here provides an end-to-end solution for anonymizing and 

ef�ciently transporting polysomnography data from the client to the server and for receiving sleep stages in an 

interoperable fashion. The framework intelligently partitions the sleep staging task between the client and server in a 

way that multiple low-end clients can work with one server, and can be deployed both locally as well as over the cloud. 

The framework was tested on four datasets comprising ≈ 1700 polysomnography records ( ≈ 12 000 hr of recordings) 

collected from adolescents, young, and old adults, involving healthy persons as well as those with medical conditions. 

We used two independent validation datasets: one comprising patients from a sleep disorders clinic and the other 

incorporating patients with Parkinson’s disease. Using this system, an entire night’s sleep was staged with an accuracy 

on par with expert human scorers but much faster ( ≈ 5 s compared with 30–60 min). To illustrate the utility of such real-

time sleep staging, we used it to facilitate the automatic delivery of acoustic stimuli at targeted phase of slow-sleep 

oscillations to enhance slow-wave sleep.
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Statement of Signi�cance

Sleep comprises different physiological stages, with each stage having a unique neurophysiological signature. 

Traditionally, staging is performed visually by trained sleep technologists. The process is costly and time consuming. In 

the present work, we utilized recent advances in machine learning, to develop a framework that automatically performs 

real-time sleep staging. We tested the framework on ≈ 12 000 hr of polysomnography records. Sleep classi�cation was on 

par with expert scorers across data collected from participants who differed in age and health status. Furthermore, our 

approach opens up new applications that require real-time sleep-stage dependent interventions.
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Introduction

Polysomnography (PSG) is the primary tool used for quantita-

tively assessing sleep and involves concurrent acquisition of 

multiple physiological signals comprising the electroenceph-

alogram (EEG), electrooculogram (EOG), electromyogram (EMG), 

and electrocardiogram (ECG). Standardized rules for sleep sta-

ging using PSG were �rst laid out by Rechtschaffen and Kales [1] 

(R&K) in 1968. In 2007, the American Academy of Sleep Medicine 

(AASM) [2] combined the best available evidence with the con-

sensus of experts in sleep medicine and sleep science to modify 

the R&K rules, resulting in a higher inter-rater reliability (IRR) of 

sleep staging than with the R&K system [3]. Under the modi�ed 

rules, the number of sleep stages was simpli�ed to 5: Wake (W), 

Stage 1 through Stage 3 (N1, N2, and N3), and REM. Stages 3 and 

4 from the R&K rules were collapsed to N3 in the revised scoring 

criteria, and movement time (MT) was no longer considered as 

a separate stage.

Numerous automatic sleep stage classi�cation schemes 

have been proposed and demonstrated, but time consuming 

and resource intensive human expert review remains the main 

method by which sleep staging is performed in most clinical 

and sleep research labs worldwide. Automated systems typically 

incorporate particular carefully engineered features extracted 

from PSG data into a classi�cation algorithm. Features that have 

been extracted from PSG data include spectral power [4–7], band 

power [4–11], wavelet coef�cients [4, 6, 12–14], higher order spec-

tra [15], Hurst exponent [5], auto-regressive model parameters 

[16, 17], fractal dimension [17], entropy [5, 17, 18], Itakura dis-

tance [19], root mean square amplitude [4], peak-to-peak amp-

litude [4, 6], kurtosis [7, 11, 18], zero crossing [7] amongst others. 

Classi�cation algorithms include support vector machine [7], 

Gaussian mixture models [15], arti�cial neural networks [4–6, 13, 

14, 18], learning vector quantization [16], rule and case based 

reasoning [4, 6, 8], neurofuzzy classi�er [19], decision trees [4, 6], 

linear discriminant analysis [4, 6, 17], extreme learning machine 

[11], and hidden Markov models [9]. Some methods apply 

sophisticated artifact correction prior to feature extraction [4, 

6]. The accuracy associated with existing automated methods 

varies from between 75% and 95%. In most instances, the clas-

si�er was validated using samples containing less than 100 hr 

of data [7, 8, 12, 15–18], with some work being supported by as 

little as 10 hr of validation data [9, 13, 14, 19]. The large variety 

of methods used, lack of convenient software for clinical users, 

concern about generalization of the methodology beyond the 

test samples used to demonstrate proof-of-concept, as well as 

earlier limitations in computational power, have hindered the 

broad employment of automated sleep staging systems.

With the growing adoption of arti�cial intelligence tech-

niques in everyday life ranging from voice recognition to pre-

diction of search preferences, there is a compelling case for 

reconsidering broad adoption of automated sleep staging to 

speed up clinical sleep staging as well as to open the door to 

“real time” applications like targeting memory reactivation [20, 

21] or the selective accentuation of slow oscillations in slow-

wave sleep (SWS) to augment memory [22–25].

A recent publication in this journal featured one big data 

approach [11] which used a very large dataset to train and val-

idate an automatic sleep classi�cation system. In contrast to 

the present work, the approach used was based on tuning mul-

tiple, expertly selected statistical EEG features. In contrast, we 

employed deep learning [26] algorithms that engage multiple 

neural network layers to discover patterns and structure in 

large datasets. Instead of relying on expertly selected features, 

deep-learning methods extract features in a data-driven fashion 

to discover structure and patterns to connect these features to 

high-level abstract concepts, thereby completely obviating the 

need for feature engineering.

Deep learning has delivered exceptional performance in 

applications involving image and speech recognition [26]. Our 

framework employs a combination of deep and shallow neural 

networks along with standardized data processing and trans-

port protocols. Its advantages compared with previous methods 

are as follows: (i) ability to operate on raw PSG data, without 

relying on artifact and noise correction; (ii) low data transport 

and processing overheads together with a high level of paral-

lelization, allowing for rapid sleep classi�cation even on con-

sumer-grade hardware; (iii) scoring accuracy that is on par with 

expert human scorers; and (iv) issuance of a con�dence score 

associated with each scored epoch for review purposes. We also 

demonstrated a novel application of the framework: to automat-

ically deliver precisely timed acoustic stimulation during slow-

wave (N3) sleep, for the purpose of memory augmentation [25].

Materials and Methods

Datasets

PSG data were obtained from four independent sources in 

Singapore and San Diego, USA. The data were acquired according 

to AASM practice standards and scored by experienced research 

assistants or registered polysomnographic technologists 

(RPSGT) according to AASM standards. The data comprised of 

the following: dataset-1 (DS1) with 1046 PSG records ( ≈ 7800 hr) 

from healthy adolescents (age: 15–19 years), DS2 with 284 PSG 

records ( ≈ 1700 hr) from healthy young adults (age: 21–40 years), 

DS3 with 210 diagnostic PSG records ( ≈ 1600 hr) from patients 

(age: 10–83 years) of a sleep disorders clinic, and DS4 with 77 PSG 

records ( ≈ 600  hr) from adult patients (age: 47–89  years) with 

Parkinson’s disease (PD). A  combination of DS1 and DS2 was 

used for training and testing of the classi�cation models. DS3 

and DS4 were used as independent validation sets. A  total of 

11,727 hr of PSG data with 1,403,164 epochs were used for train-

ing, testing, and validation. Details of the datasets are summa-

rized in Table 1. All participants provided written consent and 

data collection and usage were approved by the Institutional 

Review Board (IRB) of the National University of Singapore (DS1), 

the SingHealth Centralized IRB (DS2 and DS3), and University of 

California San Diego IRB (DS4).

Framework overview

The sleep-scoring framework adopted the separation of con-

cerns (SoC) design principle by dividing the task between a cli-

ent and server module (Figure  1). The client was responsible 

for interfacing with the EEG recorder (for online sleep classi�-

cation) or local storage (for of�ine sleep classi�cation) and pre-

processing the data. Of�ine PSG data were stored in European 

Data Format (EDF), an open and nonproprietary �le format for 

storage and exchange of digitized PSG data [27]. Two EEG chan-

nels (C3-A2 and C4-A1) and two EOG channels (E1-A2 and E2-A1) 
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were used. The four-channel PSG data underwent �ltering and 

resampling operations followed by a short-time Fourier trans-

form, which resulted in a three-channel spectrogram for every 

epoch of data. The stacked spectrograms were then packed into 

a compressed feature set (CFS), a standardized binary �le format 

(Figure S2). The CFS format provides an interoperable high-level 

speci�cation for communication between different implemen-

tations of client and server modules. In addition to anonymity, 

the CFS format afforded signi�cant data compression resulting 

in far smaller �le sizes compared with of�ine EDF �les or raw 

online data. The software library used to create, stream, and 

store CFS �les from raw PSG data or EDF �les is available online 

(Matlab: https://github.com/amiyapatanaik/cfslib-MATLAB and 

Python: https://github.com/amiyapatanaik/pycfslib).

The server side module received a CFS �le/stream and 

decoded it back into a stacked spectrogram that was used for 

sleep classi�cation. The �nal sleep scores along with their asso-

ciated con�dence scores were sent back to the client in JavaScript 

Table 1. Details of training, testing, and validation datasets

Datasets

Name PSG Records (hrs) N Source Scored by Demographics Type

DS1 1046* (7777) 120 Cognitive 

Neuroscience Lab, 

Duke-NUS Medical 

School, Singapore

Trained  

research 

assistants

Healthy adolescents, age: 

15–19 y

75% training, 25% 

testing

DS2 284* (1749) 52 Chronobiology and 

Sleep Lab, Duke-

NUS Medical School, 

Singapore

The Siesta  

Group GmbH, 

Austria

Healthy adults, age: 21–40 y 75% training, 25% 

testing

DS3 210 (1590) 210 Sleep Disorders Unit, 

Singapore General 

Hospital, Singapore

Trained 

technicians

Patients with suspected organic 

and functional sleep disorders, 

age 10–20 y (4.8%), 21–45 y 

(42.4%), 46–60 y (33.3%), above 

60 y (19.5%)

Validation

DS4 77 (611) 77 Laboratory for Sleep 

and Chronobiology, 

University of 

California San Diego, 

School of Medicine, 

USA

Trained 

technicians

Patients with Parkinson’s dis-

ease (PD) with 42% patients 

additionally classi�ed as hav-

ing REM-sleep behavior dis-

order (RBD) and 28% patients 

as probably having RBD. age: 

47–89 y

Validation

Dataset 1 (DS1) and DS2 comprise PSG records from healthy adolescents and adults, respectively. DS3 is obtained from patients from patients in a sleep clinic, whereas 

DS4 is a sample of patients with Parkinson’s disease. Total 11 727 hr.

*includes naps.

Figure 1. Framework for automatic sleep stage classi�cation. The framework employs a separation of concerns design principle by dividing the task between a client 

and a server. The client handles data acquisition and preprocessing, while the server handles sleep scoring. The server and client communicate using standardized 

protocol for high level of interoperability.
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Object Notation (JSON), a lightweight open and nonproprietary 

data-interchange format. A con�dence score between 0 and 10 

was then assigned, with 0 being low con�dence and 10 being 

very high con�dence. This score provides guidance for quality 

control (QC), i.e. human review of the results of the automated 

sleep stage classi�cation. A cloud-based implementation of the 

framework is made available at https://z3score.com. An inter-

face to the sleep classi�cation server module can be found at 

https://github.com/amiyapatanaik/z3score-api along with sam-

ple client code. A  modi�ed version of fMRI Artefact rejection 

and Sleep Scoring Toolbox (FASST [28]) is also accessible from 

https://github.com/amiyapatanaik/FASST-Z3Score. The toolbox 

provides an easy to use graphical user interface for the inte-

grated automatic sleep scoring methodology implemented by 

the sleep classi�cation server.

Data acquisition and preprocessing: client side

The client side module acquired two EEG channels (C3-A2 and 

C4-A1) and two EOG channels (E1-A2 and E2-A1) from the EEG 

recorder or of�ine storage. Within the preprocessor module, the 

C4-A1 and C3-A2 channels were averaged, to construct a single 

EEG channel. If either of the EEG channels was missing, the data 

were sent directly without averaging. The data were then �ltered 

using a window-based order 50 �nite impulse response (FIR) 

band-pass �lter. Computation of �lter weights was performed 

using a Hamming window. The pass-band frequency was 0.3 to 

45 Hz for EEG channels and 0.3 to 12 Hz for EOG channels. The �l-

tered data were then downsampled to 100 Hz using a polyphase 

FIR �lter. If the original data were sampled at 100 Hz, the down-

sampling step was omitted. The data were then divided into 30 s 

epochs. Each epoch at this stage comprised of 3000 samples per 

channel. For each epoch, a spectrogram, comprising time-fre-

quency decompositions of the original data, was obtained using 

a short-time Fourier transform. Speci�cally, a Hamming win-

dow of length 128 with overlap of 29.69 per cent was used and 

Fourier transform was performed using Fast Fourier Transform 

(FFT) algorithm. This resulted in a spectrogram with 32 time 

points (resolution of 938  ms) and 65 frequency points (reso-

lution of 0.7692 Hz). The �rst 32 frequency bins were considered 

(corresponding to 0 to 24.6154 Hz) resulting in a 32 × 32 spec-

trogram. The spectrogram for each channel was then stacked 

into a three-channel matrix of size 32 × 32 × 3. This resulted in 

a single stacked-spectrogram per epoch. Spectrograms from all 

data were stacked together and were encoded to the CFS format 

(Figure S2). The CFS data stream was transported to the server 

using Hypertext Transfer Protocol (HTTP).

Sleep classi�cation: server side

The server module consisted of a decoder to read the stacked 

spectrograms from CFS �les and two stages of classi�cation 

blocks (Figure  2). The �rst classi�cation stage comprised of a 

16-layer deep convolutional neural network (dCNN), which took 

the spectrogram and assigned class probabilities to each sleep 

stage for that epoch, i.e. for a given spectrogram correspond-

ing to the nth epoch, the dCNN, in its �nal layer generated the 

probability ( , , , , )/p p p p pn
wake

n
stage

n
stage

n
stage

n
REM1 2 3 4

 that the epoch was 

classi�ed with a particular sleep stage. The sleep stage with 

the highest probability was the most probable class (MPC). To 

numerically compute the MPC, each sleep stage was encoded as 

a number (1: Wake, 2: S1, 3: S2, 4: S3, 5: REM) and then the MPC 

was computed as

 c argmax p ii= ( ) = …; , , .1 5  

The probabilities for the �ve possible sleep stages along with the 

MPC constituted the output of classi�cation block 1.

For of�ine data, the block-1 classi�er was run on all available 

data. For online data requiring real-time processing, at least �ve 

epochs of data were �rst processed by the block-1 classi�er. For 

any epoch, the output of the block-1 classi�er along with �ve 

preceding and �ve succeeding MPC outputs were fed into block-2 

classi�ers (Figure 2). In online mode, when succeeding MPC out-

puts were not available, the �ve preceding MPC outputs were 

reused. The block-2 classi�cation block consisted of a multi-

layer perceptron (MLP). The MLP block weighted the succeeding 

and preceding �ve MPC outputs along with the current epoch’s 

block-1 classi�cations to generate a revised class probability of 

each sleep stage for that epoch. An MPC block was again used to 

Figure 2. Overview of the classi�er module. The classi�cation module receives CFS data from the client and decodes it into stacked spectrograms. The spectrograms 

are then fed into classi�cation block 1 comprising of a dCNN. The output of the dCNN is fed into a multilayer perceptron in classi�cation block 2. The �nal sleep stages 

and associated relative con�dence are then sent back to the client.
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�nd the �nal sleep stage for that epoch. Additionally, a relative 

con�dence score r  was computed as

 r
p

p

max

secondmax
= −







min , ,1 10  

where pmax
 is the probability of the MPC and psecondmax  is the 

probability of the second MPC. The score varied between 0 and 

10, with 0 signifying very low con�dence and 10 signifying very 

high con�dence. By thresholding this con�dence score, a portion 

of the overall data could be marked for review during quality 

control. The classi�ed sleep stage along with associated relative 

con�dence was sent to the client in JavaScript Object Notation 

(JSON) over HTTP. The MLP had a total of 445 tunable weights, 

whereas the dCNN had 177,669 weights. The overall classi�cation 

blocks have a total of 177,669 + 445 = 178,114 tunable weights. The 

speci�cs of architecture for each classi�cation block, along with 

initialization and training procedures, are discussed in detail in 

Supplementary Material (Figure S1 and Table S1).

Novel application: real-time acoustic stimulation

The ability to perform sleep staging rapidly and reliably opens 

up many novel applications that require stage dependent inter-

vention. For example, boosting SWS, using transcranial stimula-

tion [24] or acoustic stimulation [25] has been shown to enhance 

declarative memory. Similarly, online detection of REM sleep can 

be used to time the induction of lucid dreams [29]. In the present 

work, we demonstrated one such application by automatically 

delivering precisely timed acoustic stimulation during SWS in 

real-time.

For effective auditory closed loop simulation of SWS, short 

bursts of auditory tones must be presented during the up-state 

of the EEG waveform (Figure 3). Therefore, both sleep stage and 

phase of the EEG signal must be estimated in real-time. Three 

EEG channels (F3-A2, C3-A2, and C4-A1) and two EOG chan-

nels (E1-A2 and E2-A1) sampled at 500 Hz were acquired in 

real-time. The F3-A2 EEG channel was used for phase tracing, 

whereas other channels were used for sleep scoring. The data 

were fed into a 30  s running buffer (Figure  4A) at 50 Hz. Due 

to the presence of large DC drifts, a DC-blocking �lter [30] with 

cutoff of 0.03 Hz was applied to the buffer. The running buffer 

was resampled at 100 Hz using polyphase FIR �lters. All �ltering 

was applied in both temporal directions to avoid phase delay 

caused by �ltering. The running buffer was sleep scored once 

in a second using the framework, whereas phase detection was 

carried out 50 times a second. Phase tracking of raw EEG sig-

nal in real-time is a dif�cult task. Phase-locked loops (PLL) have 

been shown to reliably track phase in real-time [31]. However, 

the implementation and parameter optimization of a PLL-based 

phase tracker are nontrivial. We used a simple voltage thresh-

old and in�ection point–based up-state detection and target-

ing algorithm (Figure S3). Although the algorithm did not track 

phase per se, it detected the up-state reliably which was suf�-

cient for our purposes. Auditory tones in the form of 40 ms pink 

noise were delivered in the form of 2 on and 2 off blocks. During 

the off blocks, the phase-targeting was carried out but no tones 

were delivered.

Results

Classi�cation accuracy

The classi�cation blocks were trained using 75 per cent of DS1 

and DS2, whereas the remaining 25 per cent were used for test-

ing. A single pass through the whole training dataset constituted 

one training epoch. Training continued until no improvement 

in accuracy for the testing set was observed (Figure  5A). The 

block-2 classi�er reduced the error rate of the block-1 classi�er 

by 18.4 per cent in the testing set. The overall accuracy was 90 

per cent for the training set and 89.8 per cent for the test set, cor-

responding to Cohen’s kappa ( κ ) of 0.865 and 0.862, respectively 

(Figure 5B). This corresponds to perfect agreement according to 

Landis and Koch’s [32] arbitrary benchmarks for evaluating κ . 

The highest disagreement between automatic and expert classi-

�cation was observed for N1 sleep. For other stages, automated 

and expert classi�cation were in agreement for at least 90 per 

cent of records.

With validation set DS3, the overall accuracy was 81.4 per 

cent corresponding to κ = 0 740. , signifying substantial agree-

ment. Compared with the training and testing set, agreement 

for REM sleep dropped substantially with automatic classi�-

cation agreeing with expert classi�cation 71.8 per cent of the 

time. For validation set DS4, overall accuracy was 72.1 per cent 

corresponding to κ = 0 597. , corresponding to moderate agree-

ment. The lower agreement can be attributed to an overall drop 

of agreement across all sleep stages but particularly for REM, 

which was expected given that many of the patients with PD 

also exhibited REM behavior sleep disorder. Classi�cation per-

formance did not improve by increasing depth of the d-CNN any 

further. Replacing the second stage MLP with a long short-term 

Figure 3. Phase angle of a sinusoidal wave. Acoustic stimulation is most effective when delivered in the up-state (green) and is ineffective when delivered in the down-

state (red). Ideally, the stimulus should be targeted for the peak of the wave (90°) while avoiding overshooting.
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memory (LSTM) [33] to utilize long-range contextual informa-

tion resulted in a decrease in classi�cation accuracy in the val-

idation sets.

Automatic vs expert scoring agreement

The between experts’ IRR for the validation sets was estimated 

by rescoring a subset of the data. Speci�cally, 50 PSG records 

were randomly chosen from each of the validation sets DS3 and 

DS4 and were rescored independently by RPSGT-certi�ed sleep 

technologists from a professional sleep scoring company—

SomnoSure, St. Louis, MO—USA. The subject-wise agreement 

between expert and automatic scoring was slightly lower than 

the overall agreement rate (i.e. after combining all epochs) for 

both DS3 (subject wise κ = 0 713.  vs overall κ = 0 740. ) and DS4 

(subject-wise κ = 0 560.  vs overall κ = 0 597. ). For the rescored 

subset, a pairwise comparison of subject-wise IRR revealed a 

higher rate of agreement between automatic and expert scorer 

compared with the expert–expert scorer (t
49

  =  2.320, p  <  0.05, 

Figure  6). While for DS4, there was no statistically signi�cant 

difference in agreement between automatic-expert and expert-

expert IRR ( t N S49 0 013= . , . . ). The reliability of agreement between 

all three raters (two experts and the automatic scorer) was then 

assessed using Fleiss’ κ for the rescored subset. The median 

Fleiss’ κ was 0.655 for DS3 and 0.563 for DS4 which correspond 

to substantial and moderate agreement, respectively (based on 

Landis and Koch’s [32] arbitrary benchmarks). This was similar 

to the IRR observed between automatic and expert scorers for 

the entire dataset.

Quality control and secondary review system

Any machine learning algorithm can yield unexpected results 

if the input data differ signi�cantly from the training sets. 

Therefore, notwithstanding the human expert level accuracy of 

the framework, secondary review is an important aspect of sleep 

classi�cation. The con�dence score associated with each epoch 

provides guidance for this review whereby only the epochs below 

a given con�dence threshold are recommended for review. For 

both validation datasets, Figure 7 shows the percentage of data 

Figure 4. Automatic acoustic stimulation system. (A) Overview of the real-time stimulus presentation system. The scoring and phase tracking were carried out on a 

running 30 s buffer which was updated at 50 Hz. Scoring was performed using the client–server architecture every second. When conditions based on phase of the 

EEG wave and sleep stage were satis�ed, an auditory stimulus was presented. (B) Average event-related potentials stimulus locked to the �rst auditory stimulus for a 

representative participant, who underwent a stim and a sham session. Sham refers to the control condition where phase tracking was carried out but without auditory 

stimulation. Both sessions were separated by a week.
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that were marked for review (bottom x-axis) for a corresponding 

con�dence threshold value (top x-axis) and the auto vs expert 

IRR value for data that remained unreviewed (y-axis). For the 

validation datasets, a con�dence threshold of 1 required 12 per 

cent of the data to be reviewed for both validation datasets DS3 

and DS4 while resulting in perfect agreement for remaining data 

for DS3 and substantial agreement for DS4 (based on Landis and 

Koch’s [32] arbitrary benchmarks for evaluating Cohen’s κ).

Data compression, classi�cation speed, and acoustic 
stimulation

Using the CFS �le format, we achieved an average compression 

of 16.4× compared with original EDF �les (15.97GB compared 

with 262GB). On a workstation without a GPU (Intel Xeon E5, 3.7 

GHz, Quad Core CPU), a single epoch of raw data were scored in 

less than 5 ms, which works out to ≈ 5 s for scoring an ≈ 8.5 hr 

sleep recording. This included time to convert the raw data to CFS 

Figure 5. Classi�cation performance of the framework. (A) Training and testing error rates vs. training epoch number for classi�cation blocks 1 and 2. Training was 

stopped once test error saturated or started increasing. (B) Confusion matrix for training, testing, and validation sets. The training set comprised of 75% dataset 1 (DS1) 

and DS2, and the testing set comprised of the remaining 25% of DS1 and DS2. DS3 and DS4 constituted independent validation sets.
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format, transport the data to the locally deployed server, and get 

back the scored data. This was brought down to sub-1 ms using a 

mid-range GPU (NVIDIA GeForce GTX-1060).

The framework allowed presentation of acoustic stimulation 

for boosting SWS fully automatically. Figure 4B shows average 

event-related potentials stimulus locked to the �rst auditory 

stimulus for a representative subject during stim and sham con-

ditions. Sham was a control condition where phase targeting was 

carried out but no auditory stimulation was given while during 

stim, an auditory stimulus was delivered. A detailed description 

of the dataset and associated �ndings of the acoustic stimula-

tion protocol are described in a separate study [34].

Discussion

Irrespective of the scoring method used (AASM or R&K), the 

overall IRR among human experts scoring sleep recordings was 

about 80 per cent (Cohen’s κ = 0.68 to 0.76) [3]. Part of the discrep-

ancy in scoring can be attributed to scorer errors and bias, but 

most disagreements in scoring were from epochs that cannot 

be clearly assigned a sleep stage [35]. This results in an upper 

bound in the performance of any automatic sleep stage classi-

�cation system. In the present work, accuracy on the training 

and testing set was higher than IRR values previously reported 

(~90 per cent agreement between our classi�cation model and 

expert scores compared with reported expert–expert agreement 

of ~82% [3]). The higher accuracy can likely be attributed to 

the classi�cation model mimicking the sleep technicians who 

scored the training and test datasets instead of attempting to 

follow a rigid rule-base. However, to be con�dent of the gener-

alizability of a classi�er, its performance should be shown to be 

on par with expert–expert IRR on a separate dataset, ideally with 

different characteristics compared with the training samples.

To demonstrate this, we utilized two independent datasets 

that differed from the training and testing datasets in terms 

of age, health conditions, geography, EEG recorders used, scor-

ing dif�culty, and technicians who scored the data. Validation 

set DS3 was obtained from patients who visited a sleep clinic. 

Validation set DS4 included patients with PD and was a consid-

erably more dif�cult dataset to score. Prior work has shown that 

IRR is very low for patients with PD [36], with a median κ = 0 614. .  

On both datasets, the overall performance of our framework was 

on par with expert human scorers. This assessment was arrived 

at through evaluation by an independent set of sleep technicians 

and re�ects achievement of an accuracy level consistent with prior 

reports [36]. Among the different sleep stages, sensitivity and spe-

ci�city of N1 detection were lower compared with other stages 

for both datasets. This is in line with previous observations with 

human experts [3, 36–38]. These results are promising given that 

the sleep staging system was trained on young, healthy individu-

als, and yet, it could accommodate evolving alterations in sleep 

architecture arising from aging and neurological disease [39].

Figure 6. Agreement between automatic and expert scores. Fifty randomly selected polysomnography records from each validation dataset DS3 and DS4 were rescored 

by an independent organization. This was used to estimate the subject-wise IRR between experts for each dataset as measured by Cohen’s κ and then compared with 

the computed agreement between automatic scoring and experts. The expert vs automatic scoring agreement was statistically signi�cantly better than expert-expert 

agreement for DS3 but similar for DS4. The distribution of Cohen’s κ is shown on the left for each validation dataset. The reliability of agreement between the two 

experts and automatic scoring was assessed using Fleiss’ κ. The box-plot of the distribution of Fleiss’ κ for the 50 records is shown on the right for each validation 

dataset DS3 and DS4. Within each plot, individual participants are uniquely color coded.
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Our approach is differentiated from prior work, in which train-

ing, testing, and validation data were obtained by partitioning 

the same dataset. Although all machine learning algorithms �t 

a model to the data, the ultimate goal of any such algorithm is 

to learn the underlying statistics which are not speci�c to that 

particular dataset and to generalize these to data from different 

sample populations. Even for large datasets, when both training 

and validation sets are obtained from the same sample, perform-

ance on the validation set might not generalize to other datasets 

as the model might be learning idiosyncrasies speci�c to that 

sample. This led us to avoid retraining the algorithm on the val-

idation datasets. Instead, we chose to use con�dence scores to 

provide a way to carry out quality control after automatic sleep 

classi�cation. Although variations of the framework might further 

improve performance, the current network architecture repre-

sents a good trade-off between maximizing classi�cation accur-

acy while minimizing network complexity and computation load.

PSG, the gold standard for measuring sleep quantitatively, is 

a mature technology, and the time-consuming process of sleep 

scoring has changed little over the years. Burgeoning public 

interest in the personal measurement of sleep as evidenced by 

the growing sales of personal sleep/activity tracking devices pro-

vides a strong impetus for a robust, easily implemented rapid 

sleep scoring system. Devices based on actigraphic measures do 

not reliably quantify duration in each sleep stage [40]. Given the 

rapidly increasing computing power of personal mobile devices 

Figure 7. Secondary review system. The automatic sleep scoring framework generated a con�dence score in addition to sleep classi�cation for every epoch of data. The 

con�dence score varied between 0 and 10: 0 indicating low con�dence whereas 10 indicating high con�dence. The secondary review system relied on quickly reviewing 

epochs with con�dence below a set threshold. The �gure shows amount of data (bottom x-axis) that needed review at a given con�dence threshold (top x-axis) and the 

inter-rater reliability as measured by Cohen’s κ on the remaining (nonreviewed) data for both validation datasets DS3 and DS4.
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(like smartphones), advances in cloud computing and internet-

of-things technology, we anticipate that real-time sleep scoring 

like what we describe here will open up many novel applications 

(see for example, Kokoon, https://kokoon.io and Dreem head-

band, https://dreem.com). Our sleep classi�cation framework is 

well positioned to take advantage of these developments.

By using a client–server architecture, the computationally 

heavy classi�cation on the server side is separated from the 

relatively light preprocessing on the client side. This keeps the 

technical speci�cations of the client recording the PSG to a mini-

mum. The CFS �le format ties the client and server in an inter-

operable fashion while signi�cantly reducing data overhead.

In conclusion, our framework provides a practicable, vali-

dated, and speedy solution for automatic sleep stage classi�ca-

tion that can signi�cantly improve throughput and productivity 

of sleep labs. It has the potential to play an important role in 

emerging novel applications of real-time automatic sleep scor-

ing as well as being installed in personal sleep monitors.

Supplementary Material

Supplementary material is available at SLEEP online.
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