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ABSTRACT

Cost and cardinality estimation is vital to query optimizer,
which can guide the query plan selection. However tradi-
tional empirical cost and cardinality estimation techniques
cannot provide high-quality estimation, because they may
not effectively capture the correlation between multiple ta-
bles. Recently the database community shows that the
learning-based cardinality estimation is better than the em-
pirical methods. However, existing learning-based methods
have several limitations. Firstly, they focus on estimating
the cardinality, but cannot estimate the cost. Secondly, they
are either too heavy or hard to represent complicated struc-
tures, e.g., complex predicates.

To address these challenges, we propose an effective end-
to-end learning-based cost estimation framework based on a
tree-structured model, which can estimate both cost and
cardinality simultaneously. We propose effective feature
extraction and encoding techniques, which consider both
queries and physical operations in feature extraction. We
embed these features into our tree-structured model. We
propose an effective method to encode string values, which
can improve the generalization ability for predicate match-
ing. As it is prohibitively expensive to enumerate all string
values, we design a patten-based method, which selects pat-
terns to cover string values and utilizes the patterns to em-
bed string values. We conducted experiments on real-world
datasets and experimental results showed that our method
outperformed baselines.
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1. INTRODUCTION
Query optimizer is a vital component of database sys-

tems, which aims to select an optimized query plan for a
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SQL query. However, recent studies show that the classi-
cal query optimizer [13, 14, 20] often generates sub-optimal
plans due to poor cost and cardinality estimation. First,
traditional empirical cost/cardinality estimation techniques
cannot capture the correlation between multiple columns,
especially for a large number of tables and columns. Sec-
ond, the cost model requires to be tuned by DBAs.

Recently, the database community attempts to utilize ma-
chine learning models to improve cardinality estimation.
MSCN [12] adopts the convolutional neural network to esti-
mate the cardinality. However, this method has three lim-
itations. Firstly, it can only estimate the cardinality, but
cannot estimate the cost. Secondly, the deep neural network
with average pooling is hard to represent complicated struc-
tures, e.g., complex predicates and tree-structured query
plan, and thus the model is hard to be generalized to sup-
port most of SQL queries. Thirdly, although MSCN outper-
forms PostgreSQL in cardinality estimation, its performance
can be further improved. For example, on the JOB-LIGHT
workload, the mean error is over 50 and the max error is over
1,000. We can improve them to 24.9 and 289 respectively.

There are four challenges to design an effective learning-
based cost estimator. First, it requires to design an end-to-
end model to estimate both cost and cardinality. Second,
the learning model should capture the tree-structured in-
formation of the query plan, e.g., estimating the cost of a
plan based on its sub-plans. Third, it is rather hard to sup-
port predicates with string values, e.g., predicate "not LIKE
‘%(co-production)%’", if we don’t know which values con-
tain pattern ‘(co-production)’. As the string values are too
sparse, it is rather hard to embed the string values into the
model. Fourth, the model should have a strong generaliza-
tion ability to support various of SQL queries.

To address these challenges, we propose an end-to-end
learning-based cost estimation framework by using deep neu-
ral network. We design a tree-structured model that can
learn the representation of each sub-plan effectively and
can replace traditional cost estimator seamlessly. The tree-
structured model can also represent complex predicates with
both numeric values and string values.

In summary, we make the following contributions.
(1) We develop an effective end-to-end learning-based cost
estimation framework based on a tree-structured model,
which can estimate both cost and cardinality simultaneously.
(see Section 3).
(2) We propose effective feature extraction and encoding
techniques, which consider both queries and physical exe-
cution in feature extraction. We embed these features into
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our tree-structured model, which can estimate the cost and
cardinality utilizing the tree structure (see Section 4).
(3) For predicates with string values, we propose an effective
method to encode string values for improving the general-
ization ability. As it is prohibitively expensive to enumerate
all possible string values, we design a pattern-based method,
which selects patterns to cover string values and utilizes the
patterns to embed the string values (see Section 5).
(4) We conducted experiments on real-world datasets, and
experimental results showed that our method outperformed
existing approaches (see Section 7).

2. RELATED WORK

Traditional Cardinality Estimation. Traditional car-
dinality estimation techniques can be broadly classified into
three classes. The first is histogram-based methods [11]. The
core idea is to divide the cell values into equal depth or equal
width buckets, keep the cardinality of each bucket, and esti-
mate the cardinality according to the buckets. The method
is easy to implement and has been widely used in commer-
cialized databases. However, it is not effective to estimate
the correlations between different columns. The second is
sketching, which aims to solve distinct cardinality estimation
problem, including FM [7], MinCount [1], LinearCount [28],
LogLog [5], HyperLogLog [6]. The basic idea first maps the
tuple values to bitmaps, then counts the continuous zeros
or the number of hitting for each position, and finally infers
the approximate number of distinct values. These methods
can estimate the distinct number of rows for each dataset
effectively. However, they are not suitable for estimating
range query. The third is sampling-based methods [18, 26,
30, 14]. These methods utilize the data samples to estimate
the cardinality. In order to address the sample vanishing
problem (valid samples decrease rapidly for joins), [14] pro-
posed index-based sampling. Sampling methods improve
the accuracy of cardinality estimation, but they bring space
overhead and only be adopted by in-memory database like
HyPer [25]. Another limitation of this method is 0-tuple
problem, i.e., when a query is sparse, if the bitmap equals
to 0, the sample is invalid.

Traditional Cost Model. Traditional cost estimation is
estimated by combining multiple factors like cost of sequen-
tial page fetch, cost of random page fetch, cost of CPU
cost of processing a tuple and cost of performing operation.
Firstly, these factors are highly correlated to the cardinal-
ity of data affected by the query. Secondly, the weight of
each factor has to be tuned. There are some works focus-
ing the cost model tuning [29, 19, 13], and [13] conducted
experiments on the IMDB dataset to show that cardinality
estimation is much more crucial than the cost model for cost
estimation and query optimization.

Learning-based Cardinality Estimation. The database
community starts to solve this problem by using learning-
based method like statistic machine learning or deep neural
network. The first learning based work on cardinality es-
timation [21] first classifies queries according to the query
structure (join condition, attributes in predicates etc.), and
then trains a model on the values of the predicates, but the
model is ineffective to train on unknown structured query.
The state-of-the-art method [12] trains a multi-set convolu-
tional network on queries, but this method is not suitable
for query optimization, because the query-based encoding
is too tricky when optimizing on a tree structure, and the
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Figure 1: Comparison of Traditional Cost Estimation and
Learning-based Cost Estimation.

generalization is limited. [27] proposed a vision of training
representation for the join tree with reinforcement learning.
Yang et al [31] proposed deep likelihood models to capture
the data distribution of multiple attributes, but it focused
on cardinality estimation on single tables. Marcus et al [22]
proposed an end-to-end learning-based optimizer, but their
focus is not to estimate the cost and they utilize the cost to
select a good query plan.

Machine Learning for Database. Many machine
learning techniques have recently proposed for optimizing
databases [15], e.g., learned join order selection [32], knob
tuning [16, 33], performance prediction [2, 29, 17, 8, 34], but
they all require experts to select the features according to
operation properties. A deep learning based approach [23]
is also proposed.

3. OVERVIEW OF COST ESTIMATOR
Cost estimation is to estimate the execution cost of a

query plan, and the estimated cost is used by the query
optimizer to select physical plans with low cost. Cardinality
estimation is to estimate the number of tuples in the re-
sult of a (sub)query. In this section we propose the system
overview of cost and cardinality estimation.

Traditional databases estimate the cost and cardinality
using statistics. For filter operations, cardinality estima-
tor (e.g., PostgreSQL, DB2) estimates the cardinality using
the histograms; for join operations, the cardinality is esti-
mated by empirical functions with selectivity of joined tables
(nodes) as variables. In Figure 1, the numbers on top of each
node are estimated cardinality and real cardinality. We find
that there exist large errors in traditional methods.

In general, we can effectively estimate the cardinality for
leaf nodes (like Scan) by using the histogram; however, the
error would be very large for joins because of the correla-
tions between tables. Usually the more joins are, the larger
error is. Unlike traditional cost estimation methods, our
learning-based model can learn the correlation among mul-
tiple columns and tables, and the representation can retain
accurate information on distribution of results even for the
queries with dozens of operations.

Moreover, the query plan is a tree structure, and the plan
is executed in a bottom-up manner. Intuitively, the cost/-
cardinality of a plan should be estimated based on its sub-
plans. To this end, we design a tree-structured model that
matches the plan naturally, where each model can be com-
posed of some sub-models in the same way as a plan is made
up of sub-plans. We use the tree-structured model to esti-
mate the cost/cardinality of a plan in a bottom-up manner.

Learning-based Cost Estimator. The end-to-end
learning-based tree-structured cost estimator includes three
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Figure 2: Architecture of learning-based cost estimator
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Figure 3: Running Example of query plan encoding (padding means filling up the corresponding blocks with zeros)

main components, including training data generator, feature
extractor, and tree-structured model, as shown in Figure 2.
1) Training Data Generator generates training data as
follows. It first generates some queries according to the po-
tential join graph of the dataset and the predicates in the
workload (see Section 4.3 for details). Then for each query,
it extracts a physical plan by the optimizer and gets the real
cost/cardinality. A training data is a triple 〈a physical plan,
the real cost of the plan, the real cardinality of the plan〉.
2) Feature Extractor extracts useful features from the
query plan, e.g., query operation and predicates. Each node
in the query plan is encoded into feature vectors and each
vector is organized into tensors. Then the tree-structured
vectors are taken as input of the training model. For sim-
ple features, we can encode them by using one-hot vector or
bitmap. While for complicated features, e.g., LIKE predi-
cate, we encode each tuple 〈column, operator, operand〉 into
vectors, by using a one-to-one mapping (see Section 4.1).
3) Tree-structured Model defines a tree-structured model
which can learn representations for the (sub)plans, and the
representations can be used in cost and cardinality estima-
tion. The model is trained based on the training data, stores
the updated parameters in the model, and estimates cost
and cardinality for new query plans.
4) Representation Memory Pool stores the mapping
from sub-plans to their representations when processing a
query. For example, when the optimizer optimizes query A

✶ B ✶ C ✶ D by using dynamic programming, it must know
the cost of {A,B,C,D,A ✶ B,B ✶ C,C ✶ D,A ✶ (B ✶

C), (A ✶ B) ✶ C, (B ✶ C) ✶ D,B ✶ (C ✶ D), · · · }. When
evaluating A ✶ (B ✶ C), the representations of sub-plans
B ✶ C and A can be extracted from the memory pool di-
rectly without re-calculating. Note that we only keep the
mappings of the current query and the mappings will be
removed when the query is processed.

Workflow. For offline training, the training data are gen-
erated by Training Data Generator, which are encoded into
tensors by Feature Extractor. Then the training data is fed
into the Training Model and the model updates weights by
back-propagating based on current training loss. The details
of model training is discussed in Section 4.3.

For online cost estimation, when the query optimizer asks
the cost of a plan, Feature Extractor encodes it in a up-down
manner recursively. If the sub-plan rooted at the current
node has been evaluated before, it extracts representation
from Representation Memory Pool, which stores a mapping
from a query plan to its estimated cost. If the current sub-
plan is new, Feature Extractor encodes the root and goes to
its children nodes. We input the encoded plan vector into
Tree-structured Model, and then the model evaluates the cost
and cardinality of the plan and returns them to the query
optimizer. Finally, the estimator puts all the representations
of ‘new’ sub-plans into Representation Memory Pool.
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Table 1: Main Plan Operations

Operation Features
Aggregate [Operator,Namekeys]

Sort [Operator,Namekeys]
Join [Operator, P redicatejoin]

Scan
[Operator,Nametable, Nameindex,
P redicatefilter, SampleBitmap]

Figure 3 shows a running example of feature encoding for
a plan extracted from the JOB workload. The plan is en-
coded as a vector using the one-hot encoding scheme, which
considers both query and database samples. Then the vec-
tors are taken as an input of the training model.

4. TREE-BASED LEARNING MODEL
In this section, we introduce a tree-structured deep neural

network based solution for end-to-end cost estimation. We
first introduce feature extraction in Section 4.1, and then
discuss model design in Section 4.2. Finally we present the
model training in Section 4.3.

4.1 Feature extraction and encoding
We first encode a query node as a node vector, and then

transform the node vectors into a tree-structured vector.
There are four main factors that may affect the query

cost, including the physical query operation, query predi-
cate, meta data, and data. Next we discuss how to extract
these features and encode them into vectors.

Operation is the physical operation used in the query
node, including Join operation (e.g., Hash Join, Merge Join,
Nested Loop Join); Scan operation (e.g., Sequential Scan,
Bitmap Heap Scan, Index Scan, Bitmap Index Scan, Index
Only Scan); Sort operation (e.g., Hash Sort, Merge Sort);
Aggregation operation (e.g., Plain Aggregation, Hash Ag-
gregation). These operations significantly affect the cost.
Each operation can be encode as a one-hot vector. Figure 3
shows the one-hot vectors of different operations.

Predicate is the set of filter/join conditions used in a
node. The predicate may contain join conditions like
‘movie.movie_id = mi_idx.movie_id’ or filter conditions
like ‘production_year > 1988’. Besides the atomic predi-

cates with only one condition, there may exist compound

predicates with multiple conditions, like ‘production_year
> 1988 AND production_year < 1993’. The predicates af-
fect the query cost, because the qualified tuples will change
after applying the predicates.

Each atomic predicate is composed of three parts, Col-

umn, Operator, and Operand. Operator and Column can be
encoded as one-hot vectors. For Operand, if it is a numeric
value, we encode it by a normalized float; if it is string value,
we encode it with a string representation (see Section 5 for
details). Then the vector of an atomic predicate is the con-
catenation of the vectors for column, operator and operand.
Table 2 shows the vector of each predicate.

For a compound predicate, we first generate a vector for
each atomic predicate and then transfer multiple vectors
into a vector using a one-to-one mapping strategy. There
are multiple ways to transfer a tree structure to a sequence
in a one-to-one mapping, and here we take the depth first
search (DFS) as an example. We first transfer the nodes
to a sequence using DFS, and then concatenate the vectors
following the sequence order. Figure 4 shows an example of
encoding a compound predicate. We transfer the nodes into
a sequence in the visited order, where the solid lines with

Table 2: Features of Condition Operators

Operators Features
and/or/not [Operator]

=/!=/>/</LIKE/IN [Operator,Column, Operand]

arrow represent forward search, and each dotted line repre-
sents one step backtracking. We append an empty node to
the end of sequence for each dotted line. Thus, we can en-
code each distinct complex predicate tree as a unique vector
and the compound predicate can be encoded as a tensor.

MetaData is the set of columns, tables and indexes used
in a query node. We use a one-hot vector for columns, ta-
bles, and indexes respectively. Then the meta node vector
is a concatenation of column vectors, table vectors and in-
dex vectors. (Note that a node may contain multiple tables,
columns and indexes, and we can compute the unions of
different vectors using the OR semantic.) We encode both
meta data and predicate, because some nodes may not con-
tain predicates. Figure 3 shows an example.

Sample Bitmap is a fix-sized 0-1 vector where each bit de-
notes whether the corresponding tuple satisfies the predicate
of the query node. If the data tuple matches the predicate,
the corresponding bit is 1; 0 otherwise. This feature is only
included in single nodes with predicates. As it is expensive
to maintain a vector for all tuples, we select some samples for
each table and maintain a vector for the samples. Figure 3
shows an example of encoding sample data.

After encoding each node in the plan, we need to encode
the tree-structured plan into a vector using a one-to-one
mapping strategy. We also adopt the DFS method in the
same ways as encoding compound predicates.

4.2 Model Design
Our model is composed of three layers, embedding layer,

representation layer and estimation layer as shown in Fig-
ure 5. Firstly, feature vectors in each plan node are large
and sparse, we should condense them and extract high-
dimensional information of features, and thus the embedding
layer embeds the vector for each plan node. Secondly, the
representation layer employs a tree-structured model, where
each node is a representation model and the tree structure is
the same as the plan. Each representation model learns two
vectors (global vector and local vector) for the correspond-
ing sub-plan, where the global vector captures the informa-
tion of the sub-plan rooted at the node and the local vector
captures the information of the node. Node that each repre-
sentation model learns the two vectors based on the vectors
of its two children and the feature vector of the correspond-
ing node. Finally, based on the vectors of the root node,
estimation layer estimates the cost and cardinality.

4.2.1 Embedding Layer
The embedding layer embeds a sparse vector to a dense

vector. As discussed in Section 4.1, there are 4 types of fea-
tures, Operation, Metadata, Predicate and Sample Bitmap.
Operation is a one-hot encoding vector, and Metadata and
Sample Bitmap are bitmap vectors. We use a one-layer fully
connected neural network with ReLU activator to embed
these three vectors. However, the structure of the Predicate

vector is complicated because it contains multiple AND/OR
semantics, and we design an effective model to learn the rep-
resentation of predicates.

Our goal is to estimate the number of tuples that satisfy a
predicate. For an atomic predicate, we can directly use the
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vector. But for a compound predicate with multiple condi-
tions, we need to learn the semantic of the predicates and
the distribution of the results after applying the predicates
on the dataset.

Consider a compound predicate with two atomic predi-
cates using the AND semantic. We can estimate the number
of results satisfying the predicate by the minimum number of
estimated results satisfying the atomic predicates. Thus we
use the min pooling layer to combine the two atomic pred-
icates. Consider a compound predicate with two atomic
predicates using the OR semantic. We can estimate the
number of results satisfying the predicate by the maximum
number of estimated results satisfying the atomic predicates.
Thus we use the max pooling layer to combine the two
atomic predicates.

In this way, we use a tree pooling to encode a predicate,
where the tree structure is the same as the predicate tree
structure. Particularly, the leaf node is a fully connected
neural network, the OR semantic is replaced with the max
pooling layer and the AND semantic is replaced with the min
pooling layer. The advantages of this model are two folds.
The first is that only the leaf nodes need to be trained so
that it’s easy to do efficient batch training. The second is
that this model converges faster and performs better.

Figure 4 shows a compound predicate and its embedded
model. For leaf nodes, we use a fully connected neural net-
work. For conjunction nodes, we use max pooling layer for
‘OR’ and min pooling layer for ‘AND’ which meet the se-
mantic of ‘AND’ and ‘OR’.
Predicate Embedding Layer: LSTM vs Min-Max-

Pooling. We can also use LSTM as the predicate embed-

ding layer. However, LSTM cannot represent the semantic
of predicates explicitly. We compare them in Section 7.2.

Embedding Formulation. We denote features Opera-

tion, Metadata, Predicate and Sample Bitmap of nodet as
Ot,Mt, Pt, Bt respectively, and we denote each node of fea-
ture Predicate as Pt with P l

t as its left child and P r
t right

child. Embedding Model can be formalized as below. E is
the embedding output. W is the weight of a fully connected
neural network. b is a bias.

E = [embed(Ot), embed(Mt), embed(Bt), embed(Pt)]
embed(Ot) = ReLU(Wo · Ot + bo)
embed(Mt) = ReLU(Wm ·Mt + bm)
embed(Bt) = ReLU(Wb ·Bt + bb)

embed(Pt) =







min(embed(P l
t ), embed(P r

t )) Pt = and,
max(embed(P l

t), embed(P r
t )) Pt = or,

Wp · Pt + bp Pt = expr.

where type(Pt) is the type of a node, which includes AND,
OR, and a predicate expression.

4.2.2 Representation Layer

Cost estimation has two main challenges – information
vanishing and space explosion. First, it is easy to estimate
the cost for simple operations, e.g., estimating the cost of
a filtering predicate on a single table, but it is rather hard
to estimate the cost of joining multiple tables, because the
join space is large and the joined tuples are sparse. In other
words, in leaf nodes, we can capture much information for
single table processing. But for upper nodes in the query
plan, the correlation among nodes may be lost and this
is the information vanishing problem. Second, to retain

311



enough information to capture the correlations among ta-
bles, it requires to store much more space and intermediate
results. But the space grows exponentially and becomes pro-
hibitively expensive for a large number of tables. This is the
space explosion problem.

Representation layer aims to address these two problems,
by capturing the global cost information from leaf nodes
to the root and avoiding information loss (e.g., correlation
between columns). The representation layer trains represen-
tation for sub-plan recursively, instead of using data sketch
to represent intermediate results of sub-plans. The repre-
sentation layer uses the representation vector learned from
features to represent results of sub-plans. As Figure 5 shows,
all the units in this layer are neural networks in the same
structure and share common parameters and we call these
units as representation models. Each representation model
has three inputs, the embedding vector E, the representation
vector [Gl

t−1, R
l
t−1] of its left child, and the representation

vector [Gr
t−1, R

r
t−1] of its right child. (Note that for leaf

nodes, we use zero vectors as their children vectors.) The
output is [Gt, Rt].

The most important design issue in this layer is the choice
of recurrent neural network. As a joint network of the tree-
structured model, it decides which information to be passed
over. A naive implementation is using fully connected neu-
ral network which takes as input the concatenate of local
transformed features and its children’s output. However,
the lost information would never be utilized by upper nodes
any more. Therefore, representation model with naive neu-
ral networks suffers from gradient vanishing and gradient ex-
plosion problems. Compared to deep neural network, LSTM
cell can efficiently address these problems by using an extra
information channel. The structure of LSTM cell is shown
in Figure 5, where Gt is the channel for long memory, and
ft controls which information should be forgot in the long
memory. k1

t controls which information should be added into
the long memory channel. k2

t controls which information in
the memory channel should be taken as the representation
of the sub-plans. As Gt can be a path without any multipli-
cation, LSTM avoids gradient vanishing. The forget gate of
Sigmoid can help LSTM to address gradient explosion prob-
lem. The representation layer can be formalized as below:

xt = E
Gt−1 = (Gl

t−1 +Gr
t−1)/2

Rt−1 = (Rr
t−1 +Rr

t−1)/2
ft = Sigmoid(Wf · [Rt−1, xt] + bf )

k1

t = Sigmoid(Wk1
· [Rt−1, xt] + bk1

)
rt = tanh(Wr · [Rt−1, xt] + br)

k2

t = Sigmoid(Wk2
· [Rt−1, xt] + bk2

)

Gt = ft ×Gt−1 + k1

t × rt
Rt = k2

t × tanh(Gt)

where E is the vector, W is a weight and b is a bias.
Representation Layer: LSTM vs Fully Connected

Neural Network. We can use a two-layer fully connected
neural network (TNN) as the representation layer. The net-
work accepts the concatenation of children representations
as input and outputs the representation for the current plan.
However, TNN may suffer from gradient vanishing and ex-
plosion for complicated queries (see Section 7.2).

4.2.3 Estimation Layer

The Estimation Layer is a two-layer fully connected neu-
ral network, and the activator is a ReLU function and the

output layer is a sigmoid function to predict the normalized
cardinality and cost. The output layer should be able to
evaluate cost or cardinality for any sub-plan by its represen-
tation vector. This layer takes the representation Rt of the
upper model in Representation Layer as input, and can be
formalized as below:

cost′ = ReLU(Wcost′ · Rt + bcost′)

card′ = ReLU(Wcard′ · Rt + bcard′)

cost = Sigmoid(Wcost · cost
′ + bcost)

card = Sigmoid(Wcard · card
′ + bcard)

As we need to estimate both cost and cardinality, we use
multitask learning [4] in order to improve the generalization
by using the domain information contained in the training
signals of related tasks as an inductive bias. Parameter shar-
ing is one of the most common implementation strategies for
multitask learning, which means that we train several tasks
simultaneously, and the models of these tasks share some
network layers. Since the cost of the query plan is corre-
lated to the cardinality of each node in the plan tightly,
we train the cost estimation task and cardinality estimation
task simultaneously. These two tasks share common embed-

ding layer and representation layer and we expect these two
layers to learn general representations for both tasks, and
the estimation layer can extract cost and cardinality from
representations respectively. In this way, the generality of
the learning model is better than training on cost only task,
and thus the model can achieve much better performance.
Estimation Layer: Single vs Multiple. We can either
learn cost only (Single) or cost-cardinality together (Multi).
Multi-learning is better because the model can learn general
representations for both tasks (see Section 7.3).

4.3 Training Model
Training Data Generation. First, given a dataset, we
generate a join graph based on the primary keys (PK) and
foreign keys (FK), where the nodes are tables and edges
are PK-FK between two tables. Then according to the join
graph, we select some joined tables. Next, we add some
predicates for the selected jointed tables. To generate the
predicates, we generate numeric expressions and string ex-
pressions as follows. For numeric expressions, we randomly
select some columns with numeric type in the chosen tables
and select a value for each column. Then we pick oper-
ators from ‘>,<,=, ! =’ for each column. While for ex-
pressions with string values, we first pick operators from
‘=, ! =, LIKE,NOT LIKE, IN ’, and then select strings
from datasets. After generating expressions for each table,
we aggregate these expressions into complex predicates by
using the ‘AND’/‘OR’ semantics. Next we obtain all the
training SQL queries, and we get physical plans from DBMS
by using plan analysis tools.

Loss Function. Our model trains cost and cardinality si-
multaneously. The loss function can be a linear combination
of cost loss and cardinality loss, and the weight can be re-
garded as hyper-parameters. We try different loss weights
in {0.1, 0.2, 0.5, 1, 2, 5, 10}, and pick the one with the low-
est validation error by cross validation. In order to achieve
high quality and accelerate convergence speed, we take the
normalized true cardinality/cost as the targets. The loss
functions are formalized as below:
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loss =
1

n

∑

i

(

ω · qerror(costi, ˆcosti)+

qerror(cardi, ˆcardi)
)

qerror(costi, ˆcosti) =
max(costi, ˆcosti)

min(costi, ˆcosti)

qerror(cardi, ˆcardi) =
max(cardi, ˆcardi)

min(cardi, ˆcardi)

where n is the number of training queries, costi and cardi
are respectively the real cost and cardinality, and ˆcosti and
ˆcardi are respectively the estimated cost and cardinality.

Batch Training. In a batch of training samples with size
N , let D denote the maximum depth of the tree structure.
We change the depth-first encoding into width-first encod-
ing, where the input of each batch is organized hierarchically
which means the first dimension of the nodes tensor equals
to D while not N . An extra tensor is needed to represent the
edge of different layers of trees where each element indicates
positions of the left child and right child. For each time, the
model batches nodes in certain level of encoded plan trees
and trains them all at once. In this way, the model only
needs to run LSTM cell for each level of trees (D times) in-
stead of running for each node, which reduces the training

and evaluating time by O( 2
DN
D

) times.

5. STRING EMBEDDING
The distribution of numeric values can be learned, even

though some values do not appear in the training data,
because most numeric values are in a continuous space.
For example, predicate production_year ∈ [1990, 2000)
can be inferred from production_year ∈ [1990, 1995) and
production_year ∈ [1995, 2000). However, string values are
sparse and discrete, and thus hard to learn. So it is much
harder to learn the predicates with string values than pred-
icates with numeric values.

There are four intuitive ways to represent a predicate with
string values, including one-hot, selectivity, sample bitmap,
hash bitmap. The one-hot embedding maps a string to a bit
in the vector. However it cannot estimate an approximate
result for unseen string values. The selectivity embedding
first translates the selectivity of a string value into a nu-
merical value, and then utilizes the numeric value to embed
the string. However, it cannot reflect the details on which
tuples satisfy the predicate. The sample bitmap embedding
uses samples to embed a string value, i.e., the string value is
1 if the sample contains it; 0 otherwise. However, it suffers
from the 0-tuple problem for sparse predicates. The hash

bitmap embedding first initializes a zero vector V, and then
for each character in the string, calculates its hash value H
and set position H%|V| in the bitmap as 1. The number
of character types is small (e.g., only 60 distinct characters
in the JOB workload, including numbers, characters, punc-
tuations, and other special characters). Therefore, the em-
bedding vectors with hundreds of bits could effectively avoid
hash collision even for unseen strings. The hash-bitmap em-
bedding carries the characters contained in a string, so we
can know the approximate overlap of two strings by taking
‘AND’ on their hash bitmap. However, the hash bitmap em-
bedding can only capture the similarity between two strings
but cannot reveal the co-occurrences of two strings.

Embedding-based Method. In order to represent the
distribution of the string values in a dataset, we need to
learn representations for string values in the predicates, and

Table 3: Example of substring extraction
Predicate Extraction

title LIKE ‘Din%’ "Dinos in Kas" → "Din"
title LIKE ‘Sch%’ "Schla in Tra" → "Sch"
title LIKE ‘%06%’ "(2002-06-29)" → "06"
title LIKE ‘%08%’ "(2014-08-26)" → "08"

the representations can capture the co-occurrences of strings
that co-exist in the same tuple. There are two kinds of pos-
sible string predicates in a query. The first is exact match-
ing predicate (e.g., using operators ‘=’ and ‘IN’), and query
strings in exact matching predicates will match the tuple
values. The second is pattern matching predicate (e.g., us-
ing operator ‘LIKE’), and the keywords in pattern matching
predicates match substrings of data values in the dataset. In
this section, our goal is to pre-train all the substrings in the
predicates so that each keywords in predicates can be en-
coded by coexistence-aware representation. There are two
challenges. The first is how to build a dictionary covering
all the keywords in both current and future workloads and
the size of the dictionary is bounded. The second is how to
maintain all the keywords in the dictionary to efficiently
get the encoding of each keyword with little space over-
head. We first give the overview of the embedding method
in Section 5.1, and then address these two challenges in Sec-
tions 5.2 and 5.3 respectively.

5.1 String Embedding Overview
Given a dataset and a query workload, we aim to encode

all the keywords that either are used in the current workload
or will be used in the future workload. Thus we do not just
encode the plain strings appearing in the query workload.
Instead, we generalize the strings/substrings and generate
some important rules which could extract all the keywords
in the query workload from the dataset. Then we extract
all substrings that satisfy the rules and train a model to
learn a representation for each of them. We take a collec-
tion of (sub)strings with the key values in one tuple as a
sentence and use the skip-gram model [24] (a kind of model
for word2vec) to train the string embedding. To efficiently
get the embedding of each string in order to encode the
queries online, we build an index with small space overhead
and support fast prefix/suffix searching. Thus we address
two challenges in string embedding.

Rule Generation. We generate some rules to generalize
the keywords in the query workload, where each rule is sim-
ilar to a regular expression, e.g., the prefix of a string with
length 3. The rules are used for string embedding.

String Indexing. We use the rules to extract all the key-
words, and then we encode them. To efficiently get the code
of each substring, we construct trie indexes for storing all
these keywords with their vectors.

5.2 Rule Generation
Rule Definition. Each rule can be expressed as a pro-
gram. We borrow the idea from domain specific language
(DSL) proposed by Gulwani [9, 10] to define a rule, which is
composed of three parts, pattern, string function and size.
The pattern matches substrings of tuples in the dataset.
The string function decides which keyword in the substrings
should be extracted. The size indicates the length of the
keyword to be extracted. The pattern includes capital let-
ters PC , lowercase letters Pl, numerical values Pn, white
spaces Ps and exact matching token Pt(T ) which can only
match a specific substring T . The string function includes
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Table 4: Candidate rules for "Dinos in Kas" → "Din%"
Rules

"Dinos" → "Din"

〈Prefix, Pt(“D”)Pl, 3〉
〈Prefix, PCPl, 3〉

〈Prefix, PCPt(“i”)Pl, 3〉
〈Prefix, PCPt(“in”)Pl, 3〉
〈Prefix, Pt(“Din”)Pl, 3〉

"Dinos in" → "Din"

〈Prefix, Pt(“D”)PlPsPl, 3〉
〈Prefix, PCPlPsPl, 3〉

〈Prefix, PCPt(“i”)PlPsPl, 3〉
〈Prefix, PCPt(“in”)PlPsPl, 3〉
〈Prefix, Pt(“Din”)PlPsPl, 3〉

"Dinos in Kas" → "Din"

〈Prefix, Pt(“D”)PlPsPlPsPCPl, 3〉
〈Prefix, PCPlPsPlPsPCPl, 3〉

〈Prefix, PCPt(“i”)PlPsPlPsPCPl, 3〉
〈Prefix, PCPt(“in”)PlPsPlPsPCPl, 3〉
〈Prefix, Pt(“Din”)PlPsPlPsPCPl, 3〉

two types, Prefix and Suffix, which respectively extract the
prefix/suffix of the string. The rule is formalized as below:

rule = 〈F ,P ,L〉, F ∈ {Prefix, Suffix}

P ∈ combination{PC ,Pl,Ps,Pn,Pt(T )}

PC = [A−Z]+;Pl = [a−z]+;Ps = whitespace+;

Pn = [0−9]+;Pt(T ) = T ;

where P is a pattern, F is a string function, and L is the
length of a substring.

Rule Candidate Set. Given a keyword in the predicate
and a string value in the dataset, we first find all substrings
of the string value that match the keyword. Then for each
matched substring, we generate all possible patterns that
map the keyword to the substring, by enumerating all pos-
sible combinations of patterns in PC , Pl, Pn, Ps, Pt(T ). If
the predicate is prefix search (e.g., LIKE “Din%”), then for
each possible pattern p, we generate a rule (prefix, p, size of
the keyword). If the predicate is suffix search, we generate a
rule (suffix, p, size of the keyword). If the predicate is sub-

string search, we generate a rule (prefix/suffix, p, size of the
keyword), based on how the keyword matches the substring.
All the possible rules will form a Rule Candidate Set. For
example, Table 4 shows an example on how to generate rules
for keywords in prefix searching. Pattern ‘Din%’ will select
value ‘Dinos in Kas’ in the dataset, and the value ‘Dinos
in Kas’ should be able to generate keyword ‘Din’ by using
some general rules. The size of keyword ‘Din’ is 3, and it
can be the prefix of different substrings of value ‘Dinos in
Kas’. Different substrings (‘Dinos’, ‘Dinos in’, · · · ) may have
different pattern sets. The pattern set is a set of patterns
matching a substring. For example, in the domain of pat-
terns, ‘Dinos’ can only be matched by 5 possible patterns,
and thus it has 5 ways (rules) to generate keyword ‘Din’ in
Table 4. Suffix searching is similar to prefix searching but
uses suffix functions. Table 5 shows an example for the con-
tainment searching. Different from affix search, it considers
both prefix and suffix functions, e.g., ‘06’ is the prefix of
substring ‘06-29’ and it’s also the suffix of ‘2002-06’.

Rule Selection. Based on the candidate rules, we aim
to find an optimal set of rules, which finds the minimum
number of rules to cover the keywords in query workload.
However, if we select those too general rules, the number of
substrings would be too large. Therefore, we set an upper
bound for the total number of extracted substrings.

Let R denote a subset of candidate rule CR which could
cover the keywords in the workload, SR be the set of sub-
strings which are extracted by rules in R from the datasets,
and SW is the set of keywords in the workload. We aim to

Table 5: Candidate rules for "(2002-06-29)" → "%06%"
Rules

"06-" → "06"

〈Prefix, Pt(“06”)Pt(“−”), 2〉
〈Prefix, PnPt(“6”)Pt(“−”), 2〉

〈Prefix, PnPt(“−”), 2〉
〈Prefix, Pt(“0”)PnPt(“−”), 2〉

"06-29" → "06"

〈Prefix, Pt(“06”)Pt(“−”)Pn, 2〉
〈Prefix, PnPt(“6”)Pt(“−”)Pn, 2〉

〈Prefix, PnPt(“−”)Pn, 2〉
〈Prefix, Pt(“0”)PnPt(“−”)Pn, 2〉

"06-29)" → "06"

〈Prefix, Pt(“06”)Pt(“−”)PnPt(“)”), 2〉
〈Prefix, PnPt(“6”)Pt(“−”)PnPt(“)”), 2〉

〈Prefix, PnPt(“−”)PnPt(“)”), 2〉
〈Prefix, Pt(“0”)PnPt(“−”)PnPt(“)”), 2〉

"-06" → "06"

〈Suffix, Pt(“−”)Pt(“06”), 2〉
〈Suffix, Pt(“−”)PnPt(“6”), 2〉

〈Suffix, Pt(“−”)Pn, 2〉
〈Suffix, Pt(“−”)Pt(“0”)Pn, 2〉

"2002-06" → "06"

〈Suffix, PnPt(“−”)Pt(“06”), 2〉
〈Suffix, PnPt(“−”)PnPt(“6”), 2〉

〈Suffix, PnPt(“−”)Pn, 2〉
〈Suffix, PnPt(“−”)Pt(“0”)Pn, 2〉

"(2002-06" → "06"

〈Suffix, Pt(“(”)PnPt(“−”)Pt(“06”), 2〉
〈Suffix, Pt(“(”)PnPt(“−”)PnPt(“6”), 2〉

〈Suffix, Pt(“(”)PnPt(“−”)Pn, 2〉
〈Suffix, Pt(“(”)PnPt(“−”)Pt(“0”)Pn, 2〉

minimize the size of R with an upper bound B where SR

contains all strings in SW . The problem is formalized below:

R = arg min
R⊆CR

(|R|) s.t. |SR| < B, SW ⊆ SR

This is an NP-hard problem by a reduction from a classical
set cover problem (SCP)[3]. Now the universe is SW , and
the subset is Sr ∩ SW where r ∈ CR. We also have that
the union of subsets

∑

r∈CR
Sr ∩SW equals to the universe

SW . Our target is to find the minimum number of subsets to
cover the universe. We propose a greedy solution to address
this problem approximately. We add a rule r to the rule
set R covering the most substrings in SW each time. If the
total size of SR exceeds the bound B, we remove the rule r
with the largest Sr and repeat. For example, consider three
rules in the Table 5, 〈Prefix,Pt(“06”), 2〉, 〈Prefix, Pn, 2〉
and 〈Suffix, Pt(“(”)PnPt(“−”)Pn, 2〉. The first rule can
only extract ‘06’. The second rule can extract 5 substrings
including {‘20’, ‘06’, ‘29’, ‘08’, ‘26’}. The third rule can
extract {‘06’, ‘08’}. The third rule would be selected in
our algorithm, because it’s general and will not extract too
many substrings. Based on the selected rules, we generate
all the string values in the dataset and store the extracted
substrings in the dictionary.

5.3 String Indexing
There could be a large number of strings and it is expen-

sive to maintain all strings in a dictionary. In order to avoid
storing a huge number of duplicate tokens, we build a trie
index to store the mapping from a string to its code.

String Indexing. We use both prefix trie and suffix trie
as string index. Substrings extracted by the prefix function
are stored into prefix trie and substrings extracted by the
suffix function are stored in suffix trie. So each string in the
dictionary must have one or two paths in the index. Leaf
nodes of the trie index are representation vectors of strings.

Online Searching. When a new query comes, there may
be some query strings which do not exist in the dictio-
nary. These query strings may be in prefix searching (LIKE
s%), suffix searching(LIKE %s), keyword searching(=) or
containment searching(LIKE %s%). For prefix search, we
search the longest prefix of the query string. For suffix
search, we search the longest suffix of the query string. For

314



Table 6: Methods on JOB workload

Methods
Represent Predicate Estimate String Sample
Network Network Network Encoding Bitmap

PostgreSQL No No No No No
MySQL No No No No No
Oracle No No No No No
MSCN No CNN Single No Yes/No
TNN NN LSTM Multi Rule+Embed Yes/No

TLSTM LSTM LSTM Multi Rule+Embed Yes/No
TPool LSTM Pool Multi Rule+Embed Yes/No

other searches, we search both the longest prefix and longest
suffix of the query string, and then pick the longest one as
the representation. Considering "title LIKE ‘Dino%’", we
search the prefix trie and take the representation of ‘Din’ as
the representation of ‘Dino’.

6. SUPPORTING DATABASE UPDATES
Our model can be extended to support database changes,

including tuple update, column update and table update.
(1) Tuple update. The estimator reserves (e.g., 500 bits)

in each sample bitmap for tuple insertion. When tuples are
added, the estimator samples new tuples in the same ratio
with original data sampling, and fills the reserved bits with 0
or 1 based on the effect that whether the samples satisfy the
query. When tuples are deleted, we just update the sample
bits. The updated sample bitmap for each query can be
input into the model for evaluation directly. When tuples
are updated, samples would also be updated locally, and
the estimator will recalculate the sample bitmap for each
query. The updated sample bitmap for each query can be
input into the model for evaluation directly. If many tuples
are updated, we fine-tune the model online by training some
queries related to the updated tuples incrementally.

(2) Column update. The estimator reserves several bits
in one-hot column vector for each table. When a column
is inserted, the estimator selects a bit representing the new
column and calculates the sample bitmap online. Besides,
the estimator fine-tunes the updated table and its ancestors
in the query tree incrementally. For column deletion, the
model does not need to make any change online.

(3) Table update. The estimator reserves several bits in
the one-hot table vector and column vector. When a table
is inserted, the estimator selects a bit representing the new
table, selects bits representing the columns in the new table
and calculates the sample bitmap online. Besides, the esti-
mator also fine-tunes the created table and its ancestors in
the query tree incrementally. For table deletion, the model
does not need to make any change online.

7. EXPERIMENTS
7.1 Experiment Setting
Datasets. We use the real datasets IMDB and JOB [12].
It is much harder to estimate the cardinality and cost on
the IMDB dataset than TPC-H, because of the correlations
and skew distributions of the IMDB dataset. The IMDB
dataset includes 22 tables, which are joined on primary keys
and foreign keys. We build indexes on primary and foreign
keys. We use two types of query workloads for tesing.

(1) The first workload type contains predicates with nu-
meric attributes only [12]. We use three widely-used work-
loads in previous works: (i) easy workload Synthetic, (ii)
medium workload Scale, and (iii) hard workload JOB-light1.
Synthetic contains queries with 0-2 joins and there are 5000

1https://github.com/andreaskipf/learnedcardinalities
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Figure 6: Validation Error on Numeric Workload

queries. Scale contains queries with 0-4 joins and there are
500 queries. JOB-light contains queries with 1-4 joins and
there are 70 queries. We generate 100K queries with 0-3
joins. We take 90% as training data and 10% as validation
data, and the three workloads as the test data.

(2) The second workload type contains complex predicates
with string attributes. We generate training data based on
the join graph of IMDB and predicates used in the JOB
workloads. We generate 50,000 queries on single tables,
50,000 queries with 0-4 joins, and 50,000 queries with more
than 5 joins. We obtain the plans for these queries from
PostgreSQL and use them to train our model. We take 90%
of generated queries as training data and 10% as validation
data. The 113 JOB queries2 are taken as the test workload.

Methods. Table 6 shows the baseline methods. We com-
pare with three traditional cost estimators from two open
sourced databases (PostgreSQL 9.5.19 and MySQL 5.7.26)
and a commercial database (Oracle 18.4.0.0.0). MSCN uses a
multi-set convolutional neural network to learn the cardinal-
ity of SQL queries, but it doesn’t support string predicates
and does not support cost estimation. To extend MSCN to
estimate the cost, we utilize PostgreSQL by taking the esti-
mated cardinality of MSCN as input. TNN uses fully connected
neural network (NN) as the representation layer and LSTM
as the predicate embedding layer. TLSTM uses a LSTM as
the representation layer and LSTM as the predicate layer.
TPool uses LSTM as the representation layer and min-max
pooling (Pool) as the predicate layer.

Environment. We use a machine with Intel(R) Xeon(R)
CPU E5-2630 v4, 128GB Memory, and GeForce GTX 1080.

7.2 Numeric predicates only
As existing methods only support the predicates with nu-

merical values, we report the results of different methods on
the workload with numeric predicates only. After models
are converged, we test them on the workload including Syn-

thetic, Scale and JOB-light. Figure 6 shows the validation
errors, and Tables 7, 8 show the test errors.

Sample vs Non-Sample. The methods with sample
bitmap (e.g., TLSTM and MSCN) outperform the methods with-
out bitmap (e.g., TLSTM-NoSamp and MSCN-NoSamp) on both
the validation and test workloads, because sample bitmap
reveals both the distribution of data and the semantic of
predicates explicitly, and the model easily extracts the ap-
proximate intermediate result distribution from the bitmap.
Tree-structured Model vs CNN. TLSTM outperforms
MSCN, because the tree-structured model could capture the
query predicate and learn the semantic of them much better
than convolutional network. However, MSCN and TLSTM make
no much difference on validation queries because the valida-
tion workload contains only easy queries like the training

2https://github.com/gregrahn/join-order-benchmark
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Table 7: Cardinality on numeric workloads(test errors)

Synthetic median 90th 95th 99th max mean
PostgreSQL 1.69 9.57 23.9 465 373901 154

MySQL 2.07 22.6 50.6 625 458835 353
Oracle 1.97 12.4 40.1 473 545912 378

MSCN-NoSamp 2.14 6.72 11.5 114 1870 23.6
TLSTM-NoSamp 1.97 5.53 9.13 81.5 988 10.3

MSCN 1.19 3.32 6.84 30.51 1322 2.89
TNN 1.40 5.51 10.7 43.1 441 3.57
TLSTM 1.20 3.21 6.12 25.2 357 2.87
TPool 1.18 3.19 6.05 24.5 323 2.81

Scale median 90th 95th 99th max mean
PostgreSQL 2.59 200 540 1816 233863 568

MySQL 3.08 90.1 329 7534 54527 426
Oracle 2.43 114 482 3412 102833 397

MSCN-NoSamp 2.33 96.1 257 1110 4013 131
TLSTM-NoSamp 2.06 69 176 931 3295 78.2

MSCN 1.42 37.4 140 793 3666 35.1
TNN 1.59 58.7 141 573 2238 31.3
TLSTM 1.43 38.8 139 469 1892 28.1
TPool 1.42 37.3 125 345 1813 26.3

JOB-light median 90th 95th 99th max mean
PostgreSQL 7.93 164 1104 2912 3477 174

MySQL 9.55 303 685 2256 2578 149
Oracle 8.32 374 976 2761 3331 157

MSCN-NoSamp 5.43 126 978 1310 2020 100
TLSTM-NoSamp 5.18 97.3 613 864 1541 72.3

MSCN 3.82 78.4 362 927 1110 57.9
TNN 2.95 76.8 275 799 902 49.8
TLSTM 3.73 50.8 157 256 289 24.9
TPool 3.51 48.6 139 244 272 24.3

workload, and the sample bitmap of length 1000 is sufficient
to represent distribution of each intermediate result and
brings little error for the cardinality estimation of queries.
Thus the advantage of tree-structured model is not signif-
icant on easy queries for cardinality estimation. However,
if we apply the model to harder queries like the JOB-light
workload, then small bias or 0-tuple problem of the sample
bitmap would lead to large errors of the estimated cardinal-
ity. On the JOB-light workload, TLSTM outperforms MSCN by
20% on mean error for cardinality estimation, and 40% for
cost estimation. On the Scale workload, TLSTM outperforms
MSCN by 2 times on max error for cardinality estimation and
cost estimation. On Synthetic workload, TLSTM outperforms
MSCN by 4 times on max error for cardinality estimation and
3 times for cost estimation. The main reasons are three-fold.
(1) Tree-structured model is good at representing compli-
cated plans and predicates. (2) Tree-structured model cap-
tures more correlations for complex queries. (3) Cost model
used by MSCN is hard to be tuned.
LSTM vs TNN. On the JOB-light workload. For cardi-
nality estimation, TLSTM outperforms TNN by 3 times on max
error and 2 times on the mean error. While for cost estima-
tion, TLSTM outperforms TNN by 3 times on mean error and
max error. On the Synthetic workload, TLSTM outperforms
TNN on all the cardinality errors. On the Scale workload,
TLSTM outperforms TNN on all the cardinality errors and cost
errors. TLSTM outperforms TNN on harder queries for cardi-
nality estimation and cost estimation. These results show
that LSTM uses the representation model to learn more ro-
bust representations for sub-plans, as LSTM has an extra
channel to avoid information vanishing for complex queries.
Multi-Learning vs Cost Only Learning. On the JOB-
light workload, multitask technique can help the model
to achieve 3 times improvement on 90-99th, mean and
max error for cost estimation. On the Synthetic work-

Table 8: Cost on numeric workloads (test errors)

Synthetic median 90th 95th 99th max mean
PostgreSQL 15.1 65.1 173 1200 8040 62.7

MySQL 4.51 39.7 94.7 449 7203 32.4
Oracle 6.72 41.1 124 796 6674 56.1

MSCN-NoSamp 10.3 24.7 234 569 2110 31.6
TLSTM-NoSamp 5.34 21.2 153 328 1345 19.8

MSCN 3.14 7.43 18.1 65.8 739 10.3
TNN 1.49 4.50 10.6 61.5 718 4.35
TLSTM 1.56 4.47 10.7 57.7 689 4.45

TLSTM-Multi 1.49 4.33 10.2 55.8 624 4.16
TPool 1.48 4.12 10.1 47.6 532 3.99

Scale median 90th 95th 99th max mean
PostgreSQL 13.3 38.9 81.1 718 1473 35.7

MySQL 4.25 37.4 131 577 5157 40.7
Oracle 6.49 27.7 61.4 623 3612 31.5

MSCN-NoSamp 3.32 20.9 30.5 274 1173 21.2
TLSTM-NoSamp 2.19 13.4 21.7 228 1162 14.9

MSCN 1.79 10.6 27.1 88.8 1027 8.22
TNN 1.61 5.37 13.5 72.7 714 5.53
TLSTM 1.58 5.51 14.4 70.1 611 5.21

TLSTM-Multi 1.56 5.56 12.2 68.6 254 4.41
TPool 1.54 5.29 11.9 67.6 254 4.39

JOB-light median 90th 95th 99th max mean
PostgreSQL 26.8 332 696 2740 3020 173

MySQL 9.47 102 342 1293 2228 84.5
Oracle 12.3 157 278 1366 1825 102.1

MSCN-NoSamp 12.4 152 231 1071 1553 62.7
TLSTM-NoSamp 10.4 103 217 986 1271 38.3

MSCN 4.75 11.3 40.1 563 987 27.4
TNN 2.06 25.5 134 293 401 19.1
TLSTM 3.66 32.1 80.3 445 583 17

TLSTM-Multi 1.85 13.2 22.9 95 123 5.81
TPool 1.85 11.1 20.3 101 125 5.76

load, TLSTM-Multi outperforms TLSTM on all the cost errors.
On the Scale workload, TLSTM-Multi outperforms TLSTM by
more than 2 times on max error for cost estimation. The
reason is that multitask learning can improve the general-
ization ability of the model for complex queries.
Traditional vs Learning-based. Learning-based meth-
ods (MSCN, TLSTM, TPool) outperform traditional approaches
(PostgreSQL, MySQL, Oracle), because traditional meth-
ods rely on the independent assumption among different
columns while learning-based methods can capture the cor-
relations between columns/tables. Our model achieves the
best performance, as our model captures more correlations.

7.3 Both string and numeric predicates
To investigate our string encoding techniques, we divide

the training data into two parts and train on them respec-
tively. The first is workload without join, and the second
is workload with multiple joins. All these training queries
contain complicated predicates on both numeric and string
values. Firstly, we train our models on the first workload and
test them on single table workload, and this can compare the
performance of different predicate embedding techniques di-
rectly. Secondly, we train our models on the second workload
and evaluate them on 113 JOB queries, and this can com-
pare the effects of different predicate embedding techniques
on complicated queries estimation.

7.3.1 Evaluation on single table workload
The predicates in the workload contain string equal

search, string pattern search, range query and numeric equal
search. For conjunction predicates, the complex predicates
are composed of expressions with ‘AND’ and ‘OR’ seman-
tics. The most complex predicate in the workload has 4
boolean conjunctions and 5 expressions. We set the batch
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Table 9: Test errors on the JOB workload with strings

Cardinality median 90th 95th 99th max mean Cost median 90th 95th 99th max mean
PostgreSQL 184 8303 34204 106000 670000 10416 PostgreSQL 4.90 80.8 104 3577 4920 105

MySQL 104 28157 213471 1630689 2487611 60229 MySQL 7.94 691 1014 1568 1943 173
Oracle 119 55446 179106 697790 927648 34493 Oracle 6.63 149 246 630 1274 55.3

TLSTM-Hash 11.1 207 359 824 1371 83.3 TLSTM-Hash 4.47 53.6 149 239 478 24.1
TLSTM-Emb 11.6 181 339 777 1142 70.2 TLSTM-Emb 4.12 18.1 44.1 105 166 10.3

TLSTM-EmbRule 10.9 136 227 682 904 55.0 TLSTM-EmbRule 4.28 13.3 22.5 104 126 8.6
TPool 10.1 74.7 193 679 798 47.5 TPool 4.07 11.6 17.5 63.1 67.3 7.06
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Figure 7: Cardinality Error on Single Table Queries
size as 64 and divide all 50,000 queries into 782 batches.
We take the first 700 batches as the training data, and the
remainders as test data. We use the Adam optimizer and
the learning rate is 0.001. Since the semantic of predicates
has no much effect on execution cost on single table queries
(Scan operation on the same table takes similar time no
matter what predicate is.), we only report the error for car-
dinality estimation in Figure 7.

Hash Bitmap vs String Embedding. TLSTM-Hash per-
forms the worst for cardinality estimation on test queries and
its convergence speed is the slowest. TLSTM-Emb outperforms
TLSTM-Hash by 30% on cardinality error, because string em-
bedding can capture coexistence relation among different
strings to improve the performance on the test workload.

Rule vs No-Rule. As the rules can pre-train many more
strings and encode them with more accurate distributed
representations, TLSTM-EmbRule can cover more strings and
thus outperforms TLSTM-Emb by around 15%.

Tree-Pooling Predicate vs Tree-LSTM Predicate.

TPool outperforms TLSTM-EmbRule by 20% on test work-
load, because the tree structure with Min-Max pooling is
more capable of representing compound predicate in seman-
tic, and it can learn a better predicate representation with
stronger generalization ability.

7.3.2 Evaluation on the JOB workload

We train the representation and output layers on 100,000
queries with multiple joins. We take 90% of multi-table
join queries as training data and 10% of them as validation
data. We train the model until the validation cardinality
error will not decrease anymore, and then we evaluate the
trained model on the JOB queries. The estimation errors
are shown in Table 9.

Traditional vs Learning-based. Experimental results
show that traditional methods (PostgreSQL,MySQL,Oracle)
have large errors on cardinality estimation for harder queries
in the JOB workload. The reason is that distribution infor-
mation passed to the root of the plan is not accurate using
statistical or sampling methods, and traditional methods es-
timate cardinality of most of queries as 1 (the true value is
from 0 to millions). The cost estimation error is less than
cardinality estimation, and the learning-based methods still
outperform traditional methods by 1-2 orders of magnitude.

Hash Bitmap vs String Embedding. TLSTM-Emb outper-
forms TLSTM-Hash on 90-99th errors, max error and mean er-
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Figure 8: Estimation errors on the JOB workload. The
box boundaries are at the 25th/50th/75th percentiles
ror for cardinality estimation, because the string embedding
not only represents the correlations among columns but the
correlations among tables, and the methods with string em-
bedding perform better for cardinality estimation on com-
plex queries with multiple joins. Moreover, the performance
difference for cost estimation is even larger. TLSTM-Emb out-
performs TLSTM-Hash by 2 times on mean and 99th cost
errors, and 3 times on max, 95th and 90th cost errors. The
improvement on complex queries for cost estimation is due
to the correlations carried by string embedding.

Rule vs No-Rule. TLSTM-EmbRule outperforms TLSTM-Emb
on all the errors for cardinality estimation, especially on 90-
99th errors, max error and mean error. The methods with
rules achieve better performance, because the rules extract
lots of substrings from datasets so that all the keywords
in the workload are trained and the distribution representa-
tions of strings contain more coexistence relations. Complex
queries tend to gain more benefit from rules, because er-
rors would accumulate rapidly for complex queries. Similar
to cardinality estimation, TLSTM-EmbRule also outperforms
TLSTM-Emb on 90-95th, max and mean errors on cost errors.

Tree-Pooling Predicate vs Tree-LSTM Predicate.

The difference between TLSTM-EmbRule and TPool is the
structure of the predicate embedding model, and TPool out-
performs TLSTM-EmbRule on all the cardinality errors and
cost errors. This is because that the tree model with Min-
Max Pooling can represent the compound predicate bet-
ter and train a more robust model for cardinality and cost
estimation. On 99th and max errors for cost estimation,
TPool outperforms TLSTM-EmbRule by 1.5-2 times, because
the predicates representation trained by the Min-Max Pool-
ing structure still keeps accurate for complex queries.

Distribution of errors. Figure 8 shows the error vari-
ance on the JOB workload. For PostgreSQL, we have tuned
the factor of page IO so that the unit of the estimated cost
equals to the unit of time (milliseconds). However, it still
overestimates the cost and underestimates the cardinality,
and the maximal error is very large. Our methods under-
estimate both cost and cardinality of queries, but errors of
our methods are more concentrated and smaller. We draw
the real time and estimated cost together in Figure 9, which
is more intuitive and comprehensive. The cost estimated
by TPool fits the real time very well. PostgreSQL can not
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Figure 9: Distribution of Estimated Cost

Table 10: Time and Errors on Varying Training Sizes

Training Size (K) 20 40 60 80 100 120 140
Cardinality Error 134 101 72.3 55.1 50.1 47.5 49.0
Time (Minutes) 103 149 208 251 302 352 406

Table 11: Efficiency on estimation of 113 queries (ms)

PostgreSQL MySQL Oracle MSCN TLSTM TPool TPoolBatch

18.9 22.1 17.6 14.2 70.3 47.3 3.63

estimate the small cost at all and the estimated cost is very
scattered. The error variance of TLSTM-Hash is between the
TPool and PostgreSQL.

7.4 Efficiency
Training Time. We show the training time on the queries
with 0-12 joins and test errors on the JOB workload with
varying training sizes in Table 10. We can see that our
method takes about 5 hours to train 10K queries.
Estimation Time. We evaluate the online estimation
time. Table 11 shows the efficiency of different methods
on 113 queries on the JOB workload. The Batch indicates
whether the batch technique described in Section 4.3 is used.
The estimation time of PostgreSQL/MySQL/Oracle is ob-
tained from the planning time without query optimization.
TLSTM and TPool estimate these queries one by one, and
TPoolBatch estimates these queries in batch. TPoolBatch

outperforms TPool by one order of magnitude, because the
batch evaluation reduces the number of times computing
the model, and increases the parallelism as discussed in Sec-
tion 4.3. TPool outperforms TLSTM by 50%, because tree-
pooling replaces neural networks in the predicate model and
has less computation cost in estimation.

7.5 Database Update
We evaluate our method on database update. As table

cast-info has the most join relations in the JOB join graph
(it has 3.6 million tuples and can join with 12 tables), we
use this table for tuples update. As table movie-keyword

has lots of related queries in the test workload (over a half
in Synthetic, Scale and JOB-light), we use this table for table
update. As the attribute role-id is frequent in the predicate,
we use this column for column update.

Firstly, we remove table movie-keyword from the
database, and remove column role-id from table cast-info.
Secondly, we extract 3,000,000 tuples (around 10%) from ta-
ble cast-info as inserted tuples, and train the model on the
remainder tuples. For tuple insertions, we insert 1,000,000
tuples each time and insert 3 times to table cast-info. For
column insertion, we insert column role-id to table cast-info.
For table insertion, we insert table movie-keyword. Table 12
shows the affected queries by the updates.

After tuple update, we directly estimate our model us-
ing the model in Section 6. After column/table update, we
fine tune our method by online training some queries, where

Table 12: Affected queries by database updates

# Affected queries Synthetic Scale JOB-light JOB
total 5000 500 70 113

insert tuples to cast-info 1614 209 35 57
insert column role-id 508 57 15 26

insert table movie-keyword 1628 231 42 75

Table 13: Number of queries used by fine-tuning

# Queries Synthetic Scale JOB-light JOB
insert column role-id 100 100 100 200

insert table movie-keyword 150 150 150 300

Table 14: Time of fine-tuning

Time (seconds) Synthetic Scale JOB-light JOB
insert column role-id 2.31 4.12

insert table movie-keyword 4.17 7.68
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Figure 10: Errors with Database Changes
Table 13 shows the number of queries used for fine tuning.
Table 14 shows the running time for fine tuning. We can
see that for tuple updates, we do not need to online tuning
the model. For column and table update, our method only
takes several seconds for fine tuning.

After database updates and fine tuning, we run the test
workloads. Figure 10 shows the estimation errors. We can
see that the errors are similar with those without updates,
because the sample bitmap and our fine-tuning method can
capture the plan semantics and data correlations.

8. CONCLUSION
In this paper, we proposed an end-to-end learning-based

tree-structured cost estimator for estimating both cost and
cardinality. We encoded query operation, meta data, query
predicate and some samples into the model. The model con-
tained embedding layer, representation layer and estimation
layer. We proposed an effective method to encode string
values into the model to improve the model generalization.
Extensive results on real datasets showed that our method
outperformed existing techniques.
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