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Abstract

An end-to-end sea fog removal network using multiple scattering model was proposed. In

this network, the atmospheric multiple scattering model was re-formulated and used for sea

fog removal. Compared with the atmospheric single scattering model, the atmospheric mul-

tiple scattering model could more comprehensively consider the effect of multiple scattering,

which was important to the dense fog scenes, such as in ocean scene. Therefore, we used

the atmospheric multiple scattering model to avoid image blurring. The model can directly

generate the dehazing results, and unify the three parameters of the transmission map, the

atmospheric light and the blur kernel into one formula. The latest smooth dilation and sub-

pixel techniques were used in the network model. The latest techniques can avoid the gridd-

ing artifacts and the halo artifacts, the multi-scale sub-network was used to consider the fea-

tures of multi-scale. In addition, multiple loss functions were used in end-to-end network. In

the experimental results, the model was superior to the state-of-the-art models in terms of

quantitatively and qualitatively.

Introduction

In the ocean scene, sea fog is a traditional atmospheric phenomenon. Due to the presence of

dense fog in the ocean scene, it may reduce the contrast of the image, thereby affecting many

computer vision tasks. Therefore, sea fog removal is a difficult task.

Image dehazing has been extensively studied using the atmospheric single scattering model

[1, 2]. This model is mainly used in land scenes or mist scenes, and the image dehazing meth-

ods [3–10] are mainly divided into two categories: prior-based method [3, 4, 11–14] and learn-

ing-based method [5, 6, 15–22]. The prior-based method uses observations and hypotheses to

obtain image prior information, the acquired prior information is used to solve for atmo-

spheric light and transmission map. For example, He et al. [3] proposed the dark channel prior

(DCP) [3], and Zhu et al. [4] proposed the color attenuation prior (CAP) [4]. Among them,

He et al. [3] found large number of dark channels in the clean images by observing the clean

image, so He et al. [3] made an assumption based on this prior and inverted the dehazing

image by the atmospheric single scattering model. Prior-based method requires manual

extraction of prior knowledge. Among learning-based methods, convolutional neural
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networks are generally used to extract features [5–9, 18, 19]. For example, Ren et al. [5] pro-

posed single image dehazing via multi-scale convolutional neural networks (MSCNN), which

can directly estimate transmission map. Cai et al. [6] recovered the transmission map using

convolutional neural network instead of manual extraction of features. It should be noted that

all the above methods have a common feature that they use the atmospheric single scattering

model to recover dehazing images. The transmission map and the atmospheric light are calcu-

lated separately, and without considering multiple scattering. From the application of atmo-

spheric multiple scattering model, the effect of image dehazing using atmospheric multiple

scattering model is better than using atmospheric single scattering model. For example, Wang

et al. [23] and He et al. [24] used the atmospheric multiple scattering model for image dehazing

and had better results compared to using the atmospheric single scattering model. According

to the atmospheric scattering physical model proposed by Narasimhan and Nayar [2, 25], the

atmospheric single scattering model is a degenerate form of the atmospheric multiple scatter-

ing model. The atmospheric single scattering model does not consider multiple scattering.

Therefore, the restored images are sub-optimal.

Because of the widespread existence of dense haze and multiple scattering. Many image

dehazing methods will be less effective when applied to ocean scenes. To solve this problem,

the atmospheric multiple scattering model was proposed and used to remove sea fog, at the

same time, the network model and loss function were also proposed. Specifically, the proposed

network model was based on reconstructed atmospheric multiple scattering model, which

combined multiple parameters into one parameter and estimated to dehazing image. In the

end-to-end network, subpixel convolution [26] was used instead of transposed convolution to

avoid halo artifacts, and smooth dilation convolution [27] was used instead of transposed con-

volution to avoid gridding artifacts. In the ocean scene, due to the complexity of detail, struc-

ture and texture information, multiple loss functions were proposed to optimize the network,

which contained Mean Square Error loss, multi-scale structural similarity loss [28] and percep-

tual loss [29]. A large number of experiments prove the advantages of this model, compared

with the current most advanced model, it performs well in terms of PSNR [30], SSIM [31] and

subjective visual quality.

In summary, many dehazing methods do not consider multiple scattering and current

research lacks solutions for dehazing under dense fog scenes, such as ocean scene. To over-

come these problems, this paper makes the following innovations:

• In order to eliminate the influence of the sea fog, the atmospheric multiple scattering model

was reconstructed and used for ocean image dehazing. Specifically, in the reconstructed

atmospheric multiple scattering model, the convolution of clean image with blur kernel was

simply expressed as Hadamard product, in the reconstructed atmospheric multiple scatter-

ing model, the three parameters were fused into one parameter estimate.

• In the end-to-end network, subpixel convolution [26] is used instead of transposed convolu-

tion to avoid halo artifacts, and smooth dilation convolution [27] is used instead of trans-

posed convolution to avoid gridding artifacts.

• In the ocean scene, for the complexity of detail, structure and texture information, multiple

loss functions were used to optimize the network, which contained Mean Square Error loss,

multi-scale structural similarity loss [28], and perceptual loss [29].

The structure of this paper is as follows: In the first section, the existing problems of image

dehazing were illustrated. Specifically, explained the challenges of image dehazing in ocean

scenes and proposed the solution. In the second section, introduced the relevant work, which

mainly included the atmospheric scattering physical model, prior-based methods and
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learning-based methods. In the third section, the proposed model was analyzed and explained

it from the following three aspects: transformed formula, network model and loss function. In

the fourth section, qualitative and quantitative experiments have shown the advantages of the

method in this paper. In the fifth section, the advantages of the method in this paper were

summarized.

Related work

In the previous section, we mainly summarize the challenges and proposed solutions for image

dehazing in the ocean scene. In this section, we will focus on atmospheric scattering physical

model, prior-based methods and learning-based methods.

The atmospheric scattering physical model

The atmospheric scattering physical model [1] can be divided into the atmospheric single scat-

tering model [2] and the atmospheric multiple scattering model [23, 24]. In the applications of

the atmospheric multiple scattering model, Wang et al. [23] and He et al. [24] used the atmo-

spheric multiple scattering model to recover the dehazing image, and achieved better effect of

dehazing compared with the atmospheric single scattering model. In the ocean scene, the

atmospheric multiple scattering model more comprehensively describes and explains the

image blur caused by multiple scattering.

The atmospheric single scattering model. Fig 1 shows the atmospheric single scattering

processes, in imaging, the image affected by haze can be represented by the following formula:

IðxÞ ¼ tðxÞ � JðxÞ þ ½1� tðxÞ� � A; ð1Þ

In formula (1), the hazy image and clean image are represented by I(x) and J(x), and the

atmospheric light is represented as A. Where t(x) is the transmission map, which can be repre-

sented as follows:

tðxÞ ¼ e�bdðxÞ; ð2Þ

where β and d(x) denote the scattering coefficient and the distance between the target and the

imaging device. It should be pointed out that the atmospheric single scattering model ignores

multiple scattering in this process.

The atmospheric single scattering model assumes that the reflected light of the scene will be

attenuated by the atmospheric particle scattering, and the attenuated part will not interfere

with the reflected light of other scenes. Based on the atmospheric single scattering model,

when the applied scene fog is thin, this process can be simply viewed as single scattering. How-

ever, in the ocean scene, due to the dense haze, the atmospheric single scattering model can’t

fully describe the scattering process of reflected light at this time.

The atmospheric multiple scattering model. Fig 2 shows the atmospheric multiple scat-

tering processes. The atmospheric multiple scattering model [32] takes into account the multi-

ple scattering, in the case of multiple scattering, the image affected by haze can be expressed by

the following formula:

IðxÞ ¼ ½JðxÞ � hA� � tðxÞ þ A � ½1� tðxÞ�; ð3Þ

hA is the atmospheric point spread function, which is a convolution matrix, and methods of

solving this convolution matrix has attracted the interest of researchers, for example, using

Monte Carlo and filtering methods [33–35] to solve the convolution matrix. In order to sim-

plify the representation, in the following we denote the convolution matrix hA by k and call it
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the blur kernel. �is the convolution operator, and J(x) � hA denotes the amount of scene radia-

tion affected by multiple scattering effects. According to formula (3), it can be seen that, com-

pared with the atmospheric single scattering model, the atmospheric multiple scattering model

considers the influence of multiple scattering on the image.

Prior-based methods

In image dehazing, there are many prior-based methods of image dehazing [3, 4, 11–14],

which restore the dehazing image by using the attributes of the image itself. Through observa-

tion and statistics of hazy images, many prior-based methods were proposed [3, 4]. For exam-

ple, He et al. [3] proposed a dehazing method using dark channel prior (DCP) for image

dehazing. Its content is that in outdoor clear images, there are a large number of dark channels

in the image, and the value of these dark channels is very small or even close to zero. Based on

this observation, the haze-free image was successfully restored. This method is hereafter called

DCP [3]. Although the dark channel prior (DCP) method can effectively solve the problem of

image dehazing based on observations and assumptions, it relies too much on prior knowl-

edge. It is difficult to achieve desired effect of dehazing when the changing scene is inconsistent

with prior knowledge. In addition, Zhu et al. [4] proposed a dehazing method using color

attenuation prior (CAP) for image degradation in dehazing, its content is that the haze con-

centration is proportional to the difference between brightness and saturation. Based on this

Fig 1. The atmospheric single scattering process, it represents the process of imaging in hazy scenes and only single scattering is considered.

https://doi.org/10.1371/journal.pone.0251337.g001
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observation, this method models the scene depth and restores the information of scene depth,

and uses the established model to dehaze. Although the color attenuation prior (CAP) can

effectively solve the problem of image degradation in image dehazing, it relies on statistical

information and cannot be completely dehazing in many scenes. Among the above prior-

based methods, although the prior-based methods have made great progress in image dehaz-

ing, they still rely on various prior knowledge and have certain limitations.

Learning-based methods

In order to avoid depending on prior knowledge, many dehazing methods use neural networks

instead of manually extracting features of haze, and they are able to avoid the reliance on prior

knowledge very well. Therefore, many dehazing methods using convolutional neural network

have been proposed [5, 6, 15–22]. For example, Ren et al. [5] proposed an image dehazing

method based on multi-scale convolutional neural network to solve the problem of over-reli-

ance on prior knowledge in the prior-based dehazing method. Ren et al. [5] estimated the

transmission map through the multi-scale convolutional neural network and finally realized

image dehazing. Although the multi-scale convolutional neural network can restore the trans-

mission map, it estimates the transmission map and atmospheric light separately, which will

result in the accumulation of errors and cannot effectively remove haze. In addition, Li et al.

Fig 2. The atmospheric multiple scattering process, it represents the process of imaging in hazy scenes and considers the effect of multiple scattering

on the image, it can describe the scattering process more fully.

https://doi.org/10.1371/journal.pone.0251337.g002
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[15] addressed the problem that separate estimation of transmission map and atmospheric

light would cause error accumulation, which fused transmission map and atmospheric light

into one parameter so only one parameter needs to be estimated, thus successfully avoided the

problem of error accumulation, and restored the haze-free image through the end-to-end con-

volutional neural network. This method is hereafter called AOD-Net [15]. Although it avoids

the accumulation of errors to a certain extent by fusing the transmission map and the atmo-

spheric light into one parameter, the estimation of the parameters is not always accurate with a

shallow convolutional neural network, and there is still some haze in the image after dehazing.

In summary, although learning-based methods have achieved good results in image dehazing,

they are usually based on the atmospheric single scattering physical model, which do not con-

sider the effect of multiple scattering on the image.

Although both AOD-Net [15] and the method of this paper both fuse multiple parameters

into a single parameter. Compared to AOD-Net [15], the method of this paper is different in

the physical model, network structure, and loss function. Specifically, first, in terms of physical

model, AOD-Net [15] uses the atmospheric single scattering physical model, which is not a

dehazing method designed for oceanic scenes. Instead, the method of this paper uses the atmo-

spheric multiple scattering physical model, which can avoid the blurring of images caused by

multiple scattering, especially in the ocean scene. Second, the method of this paper uses a new

network structure, which uses the latest smooth dilation [27] and sub-pixel [26] techniques to

avoid gridding artifacts and the halo artifacts, and uses multi-scale sub-network to fuse multi-

scale feature information, while the AOD-Net method only uses a spanning-connected convo-

lutional neural network as the network model. Third, the loss function is different, we pro-

posed and used multiple loss functions to optimize the network model, specifically, the

method of this paper use Mean Square Error loss, multi-scale structural similarity loss [28],

and perceptual loss [29], which can not only help the network focus on image details, but also

consider the texture and structural information of the image during the training process. In

contrast, AOD-Net only uses Mean Square Error loss.

Method

In this section, an end-to-end sea fog removal network using multiple scattering model was

introduced. Firstly, the atmospheric multiple scattering model was reconstructed, and the

obtained atmospheric multiple scattering model could be optimized by fusing multiple param-

eters into one parameter. On this basis, the network model was designed, in order to enable

the network to fully learn the characteristics of haze and accurately estimate parameters, we

used the latest smooth dilation [27] and sub-pixel [26] techniques, as well as multi-scale sub-

network. Finally, multiple loss functions were introduced. Specifically, we used Mean Square

Error loss, multi-scale structural similarity loss [28] and perceptual loss [29], which not only

help the network pay attention to the details of the image, but also consider the texture and

structure information training of the image during training. In this paper, the dataset can be

found at: https://doi.org/10.17605/OSF.IO/5VHSN. It is important to note that this data set

originates as part of RESIDE data set.

Transformed formula

In the ocean scene, if multiple scattering is not taken into account, halo and blur will often

appear in the dehazing results. The light is scattered many times and reaches the camera at dif-

ferent angles, and finally forms the dispersion spot on the imaging plane. As depicted in Fig 3,

the dispersion spot is caused by multiple scattering, there will be halo and blur in the result of
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the image. It is for this reason that many image dehazing methods applied to ocean scene will

result in halo and blur.

By the atmospheric scattering model in (3), the image under the influence of multiple scat-

tering is obtained by

JðxÞ � k ¼
1

tðxÞ
IðxÞ � A

1

tðxÞ
þ A: ð4Þ

As revealed by Fig 3, it takes into account the effects of multiple scattering, so that the

image J(x) � k under the influence of multiple scattering will appear halo and blur. Especially

in the ocean scene, due to dense haze and small targets, multiple scattering has a very serious

impact on the image. In many dehazing methods, most of them mainly consider the land

scene, where the haze is thin and the effect of multiple scattering on the image is not very seri-

ous, so they do not consider the effect of dispersion spots, and according to formula (4) we can

easily see that in the ocean scene, the result we get J(x) � k is suboptimal because the effect of

multiple scattering is not considered. Therefore, further optimization is important. However,

deconvolution and the estimation of blur kernel is a challenging problem in image processing.

Based on the above factors, blurring is widespread in hazy images, therefore, referring to

formula (4), the image under the influence of multiple scattering is obtained by convolution of

the blur kernel and clean image. However, estimating the blur kernel and deconvolution are

difficult. In the method of image deblurring and super-resolution, a number of researchers

have proposed methods of estimating blur kernel and deconvolution. For example, S. Metari

et al. [33] viewed the blur kernel generated by multiple scattering as Gaussian blur kernel and

used Gaussian filter to filter the images to simulate various weather conditions. Gu et al. [32]

used the SFT layer to view the convolution of low-resolution image with blur kernel as Hada-

mard product in the same space, and finally succeeded in recovering high-resolution image.

Since blurring affects the whole image, according to the literature [32] the convolution of the

blur kernel and the image can be seen as Hadamard product in spatial consistency, thus the

blur kernel and the clean image can be seen to be spatially consistent, and inspired by the liter-

ature [32], we express the convolution of the clean image with the blur kernel simply as Hada-

mard product. To this end, the formula in (4) is re-expressed as:

JðxÞ � k ¼
1

tðxÞ
IðxÞ � A

1

tðxÞ
þ A: ð5Þ

Fig 3. The dispersion spot frommultiple scattering, due to the existence of multiple scattering, the clear image
will appear blur phenomenon, which is affected by the dispersion spot formed by multiple scattering.

https://doi.org/10.1371/journal.pone.0251337.g003
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As explained in the second section, previous methods usually estimate t(x) and A separately.

They estimate multiple parameters, and this optimization leads to sub-optimal solution, in the

atmospheric multiple scattering model, estimating the three parameters separately will result

in the accumulation of errors and the estimation of the blur kernel is more difficult. Therefore,

we fused the three parameters into a single parameter K(x) and only estimated this one param-

eter. To this end, the formula in (5) is re-expressed as:

JðxÞ ¼ KðxÞIðxÞ � KðxÞ þ 1;where

KðxÞ ¼

1

tðxÞ
ðIðxÞ � AÞ þ ðA� kÞ

kðIðxÞ � 1Þ
:

ð6Þ

Three parameters were fused into one parameter based on the atmospheric multiple scatter-

ing model. The unique parameter estimation will affect the dehazing effect, and we need to

build a deep network model that can learn the features and estimate the parameters accurately.

Network design

The designed network needs to learn the characteristics of hazy images and estimate parame-

ters accurately. This network can input hazy images and directly output clean images [36], the

designed network model can accomplish haze feature extraction and accurate estimation of

parameters. The network model consists of two parts, according to Fig 4, it can be seen that

the K-estimation module was used to estimate the parameter, and the clean image generation

module was used to recover the dehazing images, the whole network was implemented in an

end-to-end manner.

As depicted in Fig 4(b), in the K-estimation module, the latest smooth dilation [27] and

sub-pixel [26] techniques are used, and multi-scale subnetwork is used to fuse multi-scale fea-

tures. Specifically, first, we used convolution kernels of different sizes to convolve the input

hazy image, in which the neural network can learn the features of haze under different recep-

tive fields. After this, the feature maps were input into multi-scale sub-network, which can

help the neural network to learn the features of haze at different scales. Finally, to enhance the

learning ability and dense prediction ability of the neural network, the latest smooth dilation

[27] and sub-pixel [26] techniques were used, which can improve the accuracy of the network

prediction and ensure that the neural network recovers the information of dense prediction.

In this process, the learning ability and prediction accuracy of the network model are

directly related to the effectiveness of dehazing. Since image dehazing is an intensive and com-

plex prediction task, the use of smooth dilation convolution [27], sub-pixel convolution [26]

and multi-scale sub-network can improve network performance and avoid information loss.

Prediction of parameter and learning of characteristics of haze are very important. Therefore,

it is necessary to increase the depth of the network model, in order to solve the above problem,

smooth dilation convolution was used in this network model, unlike the dilation convolution

which often cause the gridding artifacts, smooth dilation convolution can avoid this problem,

which can increase the depth of the network and enhance the reception field of the network.

In addition, the deconvolution process will cause information loss, which will affect the learn-

ing of haze feature and the estimation of parameter. Therefore, sub-pixel convolution [26] was

used, it avoided the loss of information during deconvolution process and increased the depth

of the network and the receiving field. Finally, in order to improve the depth and learning abil-

ity of the network, multi-scale sub-network was used to enhance the performance of the net-

work, which can help the network model to learn multi-scale information. Fig 5 shows a more
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specific network structure, and in the following sections, the important parts of the network

structure are described in detail.

Multi-scale sub-network. In network model, the fusion of features at different levels

tends to improve the performance of the model [37, 38]. Since image dehazing is an intensive

prediction task, multi-scale sub-network was used in the network model, which can help neu-

ral network to learn multi-scale information. Specifically, first, feature maps of different scales

were obtained through down-sampling operations, and it was able to learn feature information

of haze at different scales, then connect the feature maps by sub-pixel convolution [26]. In this

process, the multi-scale sub-network integrated the characteristic information of haze at differ-

ent scales, which can help the neural network to better learn the characteristic information of

haze. Fig 6 shows the multi-scale operation.

Smooth dilation convolution. In neural networks, successive down-sampling layers will

degrade the resolution. Therefore, in the tasks of target detection and semantic segmentation,

Fig 4. The end-to-end network, it is composed of two parts, the K-estimation module is used to estimate parameters, and the clean image generation
module uses the re-formulated atmospheric multiple scattering model to generate clean images.

https://doi.org/10.1371/journal.pone.0251337.g004
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the dilated convolution [27] can obtain a larger receptive field, which results in more dense

data, it was able to preserve the spatial features of the image very well without loss of image

information. However, dilated convolution may lead to loss of spatial continuous information

and appearance of grid artifacts. To alleviate it, Yu et al. [39] proposed to increase the interac-

tion between input units by adding an additional convolutional layer. In the network, we insert

six smooth dilated convolution residual blocks and call them “Smooth Dilated Resblock”.

Fig 5. A more detailed network structure is presented, which consists of convolutional layer, max pooling layer, sub-pixel convolutional layer,
smooth dilate resblock and concat layer.

https://doi.org/10.1371/journal.pone.0251337.g005

Fig 6. Multi-scale operation, it down-samples the input feature maps by 1/2, 1/4, 1/8, and 1/16, and then restores

them to the original size connection by sub-pixel convolution.

https://doi.org/10.1371/journal.pone.0251337.g006
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Sub-pixel convolution. In neural network, successive transposed convolution operations

cannot fully recover low-resolution image. Therefore, for intensive recovery tasks like super-

resolution, the up-sampling process of the transposed convolution is sub-optimal and

increases computational complexity. To solve this problem, Shi et al. [26] proposed a new sub-

pixel convolution to replace the transposed convolution.

Sub-pixel convolution [26] inputs H ×W low-resolution image and converts them into

rH × rW high-resolution image by sub-pixel operation. The process is to obtain feature maps

of r2 channels through convolution, then obtain high-resolution image through regular

reorganization.

Loss function design

At present, many learning-based image dehazing methods [6, 15, 16] only use Mean Square

Error loss. Although they can recover the original image from the hazy image, the mean square

error loss cannot fully express the image that the human visual system intuitively perceives due

to there are complex details, structure and texture in ocean scenes. To efficiently address this

issue, multiple loss functions were used to optimize the network, it includes Mean Square

Error loss, multi-scale structural similarity loss [28] and perceptual loss [29].

Multi-Scale structural similarity loss. The MS_SSIM [28] for two images x, y is defined

as:

MS SSIMðx; yÞ ¼
YM

j¼1
SSIMðxj; yjÞ;where

SSIMðx; yÞ ¼
ð2mxmy þ C

1
Þð2sxy þ C

2
Þ

ðm2

x þ m2

y þ C
1
Þðs2

x þ s2

y þ C
2
Þ
:

ð7Þ

Where μ and σ denote the means and standard deviation of the image. The higher the similar-

ity of two images, then the higher the MS_SSIM, for two identical images, MS_SSIM [28] is

equal to one. The loss function of MS_SSIM can be written as follows:

LMS SSIM ¼ �MS SSIMðx; yÞ: ð8Þ

Perceptual loss. In the perceptual loss [29] function, the loss network was obtained by the

pre-trained model, input clean image and dehazing result, and minimize loss between feature

maps, which can make the high-level information closer.

L
�;j

featðŷ; yÞ ¼
1

CjHjWj

k�jðŷÞ � �jðyÞk
2

2
; ð9Þ

where j and ϕ denote the layer j of the network and the loss network respectively, the loss

obtained will be the square-normalized euclidian distance.

In this paper, multiple loss functions were applied. As shown in formula (10), where α and

β are the positive weights of the corresponding loss functions:

L ¼ MSEþ aLMS SSIM þ bL
�;j

featðŷ; yÞ: ð10Þ

Experiments

In this section, a large number of experiments were carried out to verify the validity of the

model. Specifically, the dehazing results of the proposed method were verified on the synthetic

data set and the real data set. In addition, this paper also compared five state-of-the-art
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dehazing methods. The experimental results show that the method of this paper performs well

in the qualitative and quantitative comparisons.

The training set of the model consists of 13580 synthetic hazy images of oceans and lakes.

Similarly, the test data set consists of 1575 synthetic haze images of oceans and lakes. In this

paper, the dataset can be found at: https://doi.org/10.17605/OSF.IO/5VHSN. It includes the

training set and the synthetic image test set. In addition, the images used for the real-world

image comparison experiment were obtained from the Internet, real-world images are avail-

able at: https://doi.org/10.17605/OSF.IO/N2BDG. By default, the optimizer and learning rate

are Adam and 0.0001, and the entire network is trained for 10 epochs.

Quantitative results on synthetic images

In the comparative experiment of synthetic images, dehazing method of this paper was com-

pared with five state-of-the-art dehazing methods. Specifically, we selected two prior-based

methods and three learning-based methods, which ensured that the results of the comparison

experiments could be analyzed from different perspectives, and the five dehazing methods are

as follows: DCP [3], CAP [4], DehazeNet [6], AOD-Net [15] and GCAN [18]. In terms of eval-

uation indexes [40, 41], PSNR [30] and SSIM [31] were used for quantitative evaluation. Fig 7

shows the dehazing results of synthetic images of different scenes under the six methods.

Table 1 shows the PSNR and SSIM results for the dehazing results in Fig 7.

Fig 7. Dehazed results of synthetic images, we compared five methods of dehazing, here shows the effect of some pictures.

https://doi.org/10.1371/journal.pone.0251337.g007

Table 1. Quantitative SSIM and PSNR results on the image dehazing, on test data set.

Metrics DCP [3] CAP [4] DehazeNet [6] AOD-Net [15] GCAN [18] Our result

PSNR 18.24 20.78 21.26 22.38 18.16 24.12

SSIM 0.84 0.88 0.87 0.91 0.83 0.93

https://doi.org/10.1371/journal.pone.0251337.t001
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Fig 7 displays five synthetic hazy images of ocean and lake scenes and their dehazing results.

Through observation, it can be found that DCP [3] and CAP [4] darken the brightness of the

dehazing result. For DehazeNet [6] and AOD-Net [15], they usually cannot completely elimi-

nate haze. For GCAN [18], we find that it has color distortion and halo. It can be observed

from Fig 7 that our method of this paper is more effective compared with the five dehazing

methods. It can preserve edge details well, and will not show halo and blur.

As shown in Table 1, We compared the proposed model with five state-of-the-art dehazing

methods: DCP [3], CAP [4], DehazeNet [6], AOD-Net [15] and GCAN [18]. According to

Table 1, it can be concluded that the proposed method has higher PSNR and SSIM indexes

than dehazing methods using atmospheric single scattering model, which can indicate that the

reconstructed atmospheric multiple scattering model and network model are capable of the

task of ocean scenes, and the dehazing effect is very good.

Qualitative visual results on real-world images

In the comparison experiment of real images, in order to show the difference between dehaz-

ing method of this paper and others using atmospheric single scattering model, five advanced

dehazing methods were used in the comparative experiment, and it should be noted that they

all use the atmospheric single scattering model. We have selected three sea fog images on the

Internet, and they are all from real ocean scenes with hazy images. The five dehazing methods

were as follows: DCP [3], CAP [4], DehazeNet [6], AOD-Net [15] and GCAN [18].

Fig 8 shows the dehazing results in a real ocean scene. According to the observation, it

could be found that halo and blur appeared in the dehazing results of DCP [3] and GCAN

[18], their visual effects were not good, and the details could not be restored well. For CAP [4],

DehazeNet [6] and AOD-Net [15], their edge details and structural information cannot be well

represented, and there was blur around the edges of the object. In the ocean scene, the method

of this paper restored image detail, structure and texture while eliminating sea haze to the

greatest extent. Therefore, the method of this paper is good at removing sea fog in the ocean

scene.

Conclusion

In this paper, an end-to-end sea fog removal network using multiple scattering model was pro-

posed, the end-to-end network is based on reformulated atmospheric multiple scattering

model, and use multiple loss functions for sea fog removal. In addition, the latest sub-pixel and

Fig 8. Dehazed results of real-world images, we compared five methods of dehazing, here shows the effect of some pictures.

https://doi.org/10.1371/journal.pone.0251337.g008
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smooth dilated techniques were used in the network. They can not only enhance the learning

ability and predictive ability of network, but also avoid gridding artifacts and halo artifacts.

Finally, multiple loss functions were used to constrain the network structure, which can take

into account the image details and pay attention to the texture and structure of the image. The

experiment shows the effectiveness and significance of the method.
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31. Engin D, Genç A, Kemal Ekenel H. Cycle-dehaze: Enhanced cyclegan for single image dehazing. Conf
Comput Vis Pattern Recognit Workshops. 2018: 825–833.

32. Wang R, Li R, Sun H. Haze removal based on multiple scattering model with superpixel algorithm. Sig-
nal Processing. 2016; 127: 24–36.

33. LiuW, Hou X, Duan J, Qiu G. End-to-end single image fog removal using enhanced cycle consistent
adversarial networks. IEEE Trans Image Process. 2020; 29: 7819–7833.

34. RenW, Zhang J, Xu X, Ma L, Cao X, Meng G, et al. Deep video dehazing with semantic segmentation.
IEEE Trans Image Process. 2018; 28(4):1895–1908. https://doi.org/10.1109/TIP.2018.2876178 PMID:
30334760

35. Morales P, Klinghoffer T, Jae Lee S. Feature forwarding for efficient single image dehazing. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern RecognitionWorkshops. 2019: 0–0.

36. He R, Wang Z, Fan Y, Feng DD. Multiple scattering model based single image dehazing. 2013 IEEE 8th
Conference on Industrial Electronics and Applications (ICIEA). 2013: 733–737.

37. Narasimhan SG, Nayar SK. Contrast restoration of weather degraded images. IEEE Trans Pattern Anal
Mach Intell. 2003; 25(6):713–724.

38. Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, et al. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2016: 1874–1883.

39. Wang Z, Ji S. Smoothed dilated convolutions for improved dense prediction. KDD. 2018: 2486–2495.

40. Wang Z, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment. Conf
Rec Asilomar Conf Signals Syst Comput. 2003;2: 1398–1402.

41. Wang Z., Li Q. Information Content Weighting for Perceptual Image Quality Assessment. IEEE Trans
Image Process. 2011; 20(5):1185–1198. https://doi.org/10.1109/TIP.2010.2092435 PMID: 21078577.

PLOS ONE An end-to-end sea fog removal network using multiple scattering model

PLOSONE | https://doi.org/10.1371/journal.pone.0251337 May 14, 2021 15 / 15

https://doi.org/10.1364/AO.34.004453
https://doi.org/10.1364/AO.34.004453
http://www.ncbi.nlm.nih.gov/pubmed/21052279
https://doi.org/10.1109/TIP.2015.2456502
https://doi.org/10.1109/TIP.2015.2456502
http://www.ncbi.nlm.nih.gov/pubmed/26186784
https://doi.org/10.1109/TIP.2013.2262284
http://www.ncbi.nlm.nih.gov/pubmed/23674449
https://doi.org/10.1109/TIP.2018.2876178
http://www.ncbi.nlm.nih.gov/pubmed/30334760
https://doi.org/10.1109/TIP.2010.2092435
http://www.ncbi.nlm.nih.gov/pubmed/21078577
https://doi.org/10.1371/journal.pone.0251337

