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Abstract— A complete defect detection task aims to achieve
the specific class and precise location of each defect in an image,
which makes it still challenging for applying this task in practice.
The defect detection is a composite task of classification and
location, leading to related methods is often hard to take into
account the accuracy of both. The implementation of defect
detection depends on a special detection data set that contains
expensive manual annotations. In this paper, we proposed a novel
defect detection system based on deep learning and focused on a
practical industrial application: steel plate defect inspection. In
order to achieve strong classification ability, this system employs a
baseline convolution neural network (CNN) to generate feature
maps at each stage, and then the proposed multilevel feature
fusion network (MFN) combines multiple hierarchical features
into one feature, which can include more location details of
defects. Based on these multilevel features, a region proposal
network (RPN) is adopted to generate regions of interest (ROIs).
For each ROI, a detector, consisting of a classifier and a bounding
box regressor, produces the final detection results. Finally, we set
up a defect detection data set NEU-DET for training and
evaluating our method. On the NEU-DET, our method achieves
74.8/82.3 mAP with baseline networks ResNet34/50 by using
300 proposals. In addition, by using only 50 proposals, our
method can detect at 20 ft/s on a single GPU and reach 92% of the
above performance, hence the potential for real-time detection.

Index Terms— Automated defect inspection (ADI), defect
detection dataset (NEU-DET), defect detection network (DDN),
multilevel-feature fusion network (MFN).

I. INTRODUCTION

DEFECT inspection is a crucial step to guarantee the

quality of industrial production, especially for steel

plates. However, this process is usually performed manually
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Fig. 1. Defect classification and defect detection task. (a) Defect classification
task aims to “What,” only outputting a defect class score. (b) Defect detection
task aims to “What” and “Where,” outputting a bounding box with a defect
class score.

Fig. 2. Complicated defects. (a) Multiple defects. The yellow boxes indicate
the defects belong to an identical class. (b) Multiclass defects. The red and
blue boxes indicate the defects of different classes. (c) Overlapping defects.
The pink box surrounds an overlapping region of defects of different classes.

in industry, which is unreliable and time-consuming. In order

to replace the manual work, it is desirable to allow a machine

to automatically inspect surface defects from steel plates with

the use of computer vision technologies.

The founder of computer vision, British neurophysiologist

Marr, considers that a vision task can be defined as “What is

Where” that is the process of discovering what presents in an

image and where is it [1]. Therefore, the object classification

and detection are the most fundamental problems in the field

of computer vision research [2]. Similarly, the automated

defect inspection (ADI) can also be divided into two types:

defect classification and defect detection. Given a defect

image, the defect classification task is to solve if this image

contains some class of defect [Fig. 1(a)], and the defect

detection task is to solve where a defect exists in this image,

represented by a bounding box with a class score [Fig. 1(b)].

Therefore, a complete defect detection task consists of two

parts: defect classification, determining specific categories of

defects, and defect localization, obtaining detailed regions of

defects. For defect inspection on steel plates, the detection task

has superior advantages to complicated defects, e.g., multiple

defects [Fig. 2(a)], multiclass defects [Fig. 2(b)], and overlap-

ping defects [Fig. 2(c)]. The classification task can only find
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Fig. 3. Different styles of obtaining a defect region. (a) Many previous
detectors based on hand-craft features directly combine related spatial cells
into a block through various special approaches. The block is regarded as a
detection region, which is a coarse box without refining. (b) Detectors based
on DL mainly use regression methods to refine a predicting box. Through a
large amount of iterative learning, the predicting box is gradually close to the
groundtruth box. Finally, the refined box is regarded as the bounding box of
the defect, which can represent the precise location information of the defect.

the defect with the highest category confidence in an image

and not know the number of defects shown in Fig. 2(a), classes

of defects shown in Fig. 2(b), and emerge of an overlapping

defect shown in Fig. 2(c). However, for the follow-up quality

assessment system, the quantity, category, and complexity of

defects would be served as the chief indicators to evaluate the

quality of a steel plate. It is apparent that defect detection can

achieve a more comprehensive information reflection of a steel

plate surface.

The previous ADI methods have two common problems:

the one is the unclear usage of hand-craft features [3]–[5]. The

determination of features is too subjective, and thereby human

experience usually plays a decisive role in it. The other prob-

lem is imprecise defect localization [Fig. 3(a)]. Most methods

only perform defect classification [6]–[8] or an incomplete

defect detection. For example, some methods perform binary

classification to find the regions of defects [9], [10] or only

provide a coarse region of a defect [11], [12]. The recent

developed deep learning (DL) technology can overcome the

drawbacks of traditional ADI methods and have achieved

significant results on many vision tasks. The DL can extract

discriminative representations through a deep network [e.g.,

a convolution neural network (CNN)]. These representations

can reach a high level of abstract and therefore have strong

representation ability. The hand-craft features, by contrast, are

merely the combination of low-level features [16]. Moreover,

DL can train on location-annotated samples to obtain precise

location information.

At present, some studies have already applied DL for ADI.

However, most methods can only perform defect classification

due to the lack of special data sets [18]–[21]. The defect

classification seems to be oversimplify and unable to pro-

vide location information. Other methods use a combination

of DL and traditional image processing to perform defect

detection or segmentation [17]. These methods always use

a DL classifier in parallel with a detector or a segmenter

that based on traditional image processing. This way can

eliminate the need for special training data sets but damage

the end-to-end characteristic of DL system and lose the

intelligence and generalization to some extent. Unlike the

above-mentioned methods, we attempt to establish an end-

to-end defect detection system for ADI, which can provide

a bounding box with a class score for precisely classifying

and locating a defect [Fig. 3(b)]. A DL-based segmenter like

Mask R-CNN [13] seems to be better for showing the shape

of a defect. However, this kind of segmenter will consume

huge amounts of computation source, which cannot meet the

real-time demand of industrial inspection. Furthermore, it is

highly impracticable for the industry to build a large instance-

level defect segmentation data set, and thereby this kind of

segmenter is almost impossible to apply. Therefore, it is the

best tradeoff to perform defect detection for ADI at present.

This paper mainly addresses three challenges. First, the

detection system needs strong classification ability. The com-

mon classification problems such as interclass similarity, intr-

aclass difference, and background interference are also present

in ADI [9], [11]. Therefore, we equip a deep network ResNet

into the system as the backbone [23]. As current research

in transfer learning [15], the key to drive large networks is

pretraining on ImageNet [22]. The detection system can gain

strong classification power by training ResNet on enough data.

Second, the challenge of performing defect localization

using CNN features in DL-based methods remains. As we

known, the convolutional layers of CNN can be regarded as

filters, which results in some location details will be gradually

lost when an image flows in the CNN. Usually, DL-based

methods perform localization based on the last convolutional

feature map [14], [28], [34]. Our method is to fuse multi-

ple feature maps. Because the feature maps exhibit diverse

characteristics at each stage of CNNs: the shallow features

have rich information but not discriminative enough, and the

deep features are semantic robustly but lose too many details.

In other fields [34], the Hypernet also uses more features but

they are mainly selected from the latter part of the network.

The proposed multilevel-feature fusion network (MFN) com-

bines the multiple features covering all stages. We address the

detection from the industrial perspective. Since gray images

have less information than color images, the MFN must

include lower level features that are discarded by HyperNet.

Furthermore, the MFN uniforms the size of multiple features

before fusion, which can not only save more details of images

but also use less parameters of models.

Third, in defect detection, data annotation is expensive,

because one has to draw a defect’s bounding box and assign a

class label to it. Recent progress in this field can be attributed

to two factors: 1) ImageNet pretrained models and 2) large

baseline CNNs, which made great progress in DL-based defect

classification [18]–[20]. However, the limited data and expen-

sive annotation still limit the development of defect detection.

In this paper, we open a defect detection data set NEU-DET

for fine-tuning models. When the DL models have finished

training on a special data set, they can be used to perform the

defect detection task.

This paper establishes an end-to-end ADI system, called

defect detection network (DDN), in an attempt to overcome

the above-mentioned challenges. The DDN 1) adopts a strong

ResNet in defect classification; 2) proposes the MFN to assem-

ble more location details; and 3) sets up a defect detection data

set for fine-tuning and reports improvements on it. In more

detail, first, we pretrain the ResNet on the ImageNet and



fine-tune all the models on the NEU-DET. The MFN can 
fuse the selected features into a multilevel feature, which has 
characteristics covering all the stages of the ResNet. Next, 
a region proposal network (RPN) is adopted in proposals 
generation based on the multilevel features and then the DDN 
can output the class scores and the coordinates of bounding 
box. Finally, we evaluate the proposed method on NEU-DET 
and the results can demonstrate a clear superior to other ADI 
methods.

To summarize, the main contributions of this paper are as 
follows.

1) The introduction of the end-to-end defect detection

pipeline DDN that integrates the ResNet and the RPN

for precise defect classification and localization.

2) The proposed MFN for fusing multilevel features. Com-

pared with other fusing methods, MFN can combine

the lower level and higher level features, which makes

multilevel features to have more comprehensive charac-

teristics.

3) A defect detection data set NEU-DET for fine-tuning

networks and a demonstration that the proposed DDN

has a very competitive performance on this data set.

II. RELATED WORK

A. Defect Inspection

Generally, a defect classification method includes two parts:

a feature extractor and a classifier. The classic feature extractor

is to obtain hand-craft features such as HOG and LBP,

and they are always followed by a classifier, e.g., SVM.

Therefore, the combination of different feature extractors and

classifiers produces a variety of defect classification meth-

ods. For instance, Song and Yan [3] improve the LBP to

against noise and adopt NNC and SVM to classify defects.

Ghorai et al. [9] is based on a small set of wavelet features

and use SVM to perform defect classification. Different from

above-mentioned two methods, Chu et al. [8] employ a general

feature extractor and enhance SVM. From the perspective of

computer vision, the defect classification task is essentially

defect image classification, which is struggled in complicated

defect images. To solve it, the simple and direct way is to

perform defect localization before defect classification making

the inspection task classify on regions of defects instead of a

whole defect image, which is the defect detection task. For

example, the defect detectors in [11] and [12] first perform

a 0–1 classification to judge features whether belong to a

defect class or a nondefect class, and then finds defect regions

based on the boundary of defect-class features, finally perform

different classification methods to determine the specific class

of a defect. In addition, there is another simplified detector

for the requirement of quick detection, which only focuses on

regions of defects but regardless of the defects are in different

categories [10].

However, the DL-based methods differ radically from the

above methods. Hand-craft feature extractor locally analyses

a single image and extract features. However, CNN is to

construct the representation of all the input data through

a large amount of learning. CNN has fine generalization

and transferability so that there are some defect inspection

methods based on CNN. For example, Chen and Ho [21]

demonstrate that an object detector like Overfeat [24] can be

transferred to be a defect detector by some means. Similar

to [18] and [19], they demonstrate that using a sequential

CNN to extract features can improve classification accuracy

on defect inspection. Similarly, based on a sequential CNN,

Ren et al. [17] perform an extra defect segmentation task on

classification results to define the boundary of a defect. More-

over, Natarajan et al. [20] employ a deeper neural network

VGG19 for defect classification. With the depth of CNN,

the defect classification accuracy has been further improved.

B. Baseline Networks

There are three popular CNN architectures at present, which

are used as baseline networks for pretraining. The early suc-

cessful networks are based on the sequential pipeline architec-

ture [25], which establish the basic structure of CNN and prove

the importance of depth of networks. Subsequently, the incep-

tion networks employed modular units, which increase both

the depth and width of a network without the increment of

computational cost [26]. The third type is ResNet using resid-

ual blocks to make networks deeper without overfitting [23].

ResNet is widely applied in various vision tasks, achieving

competitive results with a few parameters.

Choosing a proper baseline network is the key to gain

good results for DL methods. A large network has strong

represent-ability for input data hence the extracted features

at high-abstract level, but there is a great demand for

training data.

C. CNN Detectors

The CNN detectors aim to classify and locate each target

with a bounding box. They are mainly divided into two meth-

ods: one is the region-based method and another is the direct

regression method. The most famous region-based detectors

are the “R-CNN family” [27], [28], [14]. In this framework,

thousands of class-independent region proposals are employed

for detection. Region-based methods are superior in precision

but require slightly more computation. The representative

direct regression methods are YOLO [29] and SSD [30].

They directly divide an image into small grids and then for

each grid predict bounding boxes, which then regressed to

the groundtruth boxes. The direct regression method is fast to

detect but struggles in small instances.

III. DEFECT DETECTION NETWORK

In this section, the DDN is described in detail (see Fig. 4).

A single-scale image of an arbitrary size is processed by a

CNN, and the convolutional feature maps at each stage of

the ConvNet are produced (ConvNet represents the convo-

lutional part of a CNN). We extract multiple feature maps

and then aggregate them in the same dimension by using

a lightweight MFN. In this way, MFN features have the

characteristics from several hierarchical levels of ConvNet.

Next, RPN [14] is employed to generate region proposals



Fig. 4. DDN. In a single pass, we extract features from each stage of the Baseline ConvNet, which then fused into a multilevel feature by MFN. RPN is
adopted to generate ROIs based on the multilevel feature. For each ROI, the corresponding multilevel feature is transformed into a fixed-length feature through
the ROI pooling and the GAP layers. Two fc layers process each fixed-length feature and feed into output layers producing two results: a one-of-(C + 1)
defect class prediction (cls) and a refined bounding box coordinate (loc).

[regions of interest (ROIs)] over the MFN feature. Finally,

the MFN feature corresponding to each ROI is transformed

into a fixed-length feature through the ROI pooling [28]

and the global average pooling (GAP) layers. The feature

is fed into two fully connected (fc) layers. One is a one-of-

(C + 1) defect classification layer (“cls”) and the other is a

bounding-box regression layer (“loc”).

The rest of this section introduces the details of DDN and

motivates why we need to design MFN into the network for

the defect detection task.

A. Baseline ConvNet Architecture

As we know that pretraining on the ImageNet data set is

important to achieve competitive performance, and then this

pretrained model can be fine-tuned on a relatively small defect

data set. In this paper, we select the recent successful baseline

network ResNet as the backbone. ResNet presents several

attractive advantages as follows.

1) ResNet can achieve the state-of-the-art precision with

extremely few parameters, in comparison with the CNN

of sequential pipeline architecture of the same magni-

tude (ResNet50 vs. VGG16, 0.85 M vs. 138 M para-

meters). It implies that ResNet has lower computational

cost and less probability of overfitting.

2) ResNet uses GAP to process the final convolutional

feature map instead of the dual stacked fc layers, which

can be in a manner of preserving more comprehensive

location information of defects in the image.

3) ResNet has a modularized ConvNet, which is easy to

integrate.

In this paper, we select ResNet34 and ResNet50 as base-

line networks. The detailed structures of both networks

are shown in Table I, and residual blocks are denoted as

{R2, R3, R4, R5}.

B. Produce Multilevel Features

Previous excellent approaches only utilize high-level fea-

tures to extract region proposals (like the faster R-CNN extract

proposals upon the last convolutional feature maps). In order

to obtain quality region proposals, single-level features should



TABLE I

ARCHITECTURE OF BASELINE NETWORKS

be extended to multilevel features. Obviously, the simplest

way is to assemble feature maps from multiple layers [31].

Therefore, now comes the question, which layers should be

combined? There are two essential conditions: nonadjacent,

because adjacent layers have highly local correlation [32], and

coverage, including features from low level to high level. For

a ResNet, the most intuitive way is to combine the last layers

in each residual block.

To fuse features at different levels, the proposed network

MFN is appended on the pretrained model. MFN has four

branches, denoted as {B2, B3, B4, B5}, and each branch

is a small network. B2, B3, B4, and B5 are sequentially

connected to the last layer of R2, R3, R4, and R5. When

an image flows through the baseline ConvNet, the Ri features

are produced in order. The Ri feature means the feature map

output from the last layer of the residual block Ri , i =

2, . . . , 5. Similarly, the Bi feature is the feature map produced

from the last layer of the MFN batch Bi , i = 2, . . . , 5. Then,

each of Ri features is led to the corresponding branch in MFN

producing Bi features. Finally, multilevel features are obtained

via concatenating the B2, B3, B4, and B5 features, which come

from different stages of a CNN.

As a final note, MFN is efficient in computation and strong

in generalization. MFN can reduce required parameters via

modifying the number of filters of 1 × 1 conv. This operation

may hurt accuracy but prevent overfitting in the case of

insufficient training data.

C. Extract Region Proposals

The RPN is employed to extract region proposals by sliding

on the multilevel feature maps. RPN takes an image of

arbitrary size as input and outputs anchor boxes (candidate

boxes), each with a score representing whether it is a defect

or not. The originality of RPN is the “anchor” scheme that

makes anchor boxes in multiple scales and aspect ratios. Then,

anchor boxes are hierarchically mapped to the input image

so that region proposals of multiple scales and aspect ratios

produced. As a result of the resolution size of MFN feature, the

RPN can be considered as sliding on the R4 feature. Follow

[14], we set three aspect ratios {1:1, 1:2, 2:1}. Considering

multiple sizes of defects, we set four scales {642, 1282, 2562,

5122}. Therefore, RPN produces 12 anchor boxes at each

sliding location.

The region proposal extractor always ends with an ROI

pooling layer. This layer performs a max-pooling operation

over a feature map inside each ROI to convert it into a small

feature vector (512-d for ResNet34 and 2048-d for ResNet50)

with a fixed size of W × H (in this paper, 7 × 7). At last,

based on these small cubes, calculate the offset of each region

proposal with an adjacent groundtruth box and the probability

whether there exist defects.

For a single image, RPN may extract thousands of region

proposals. To deal with the redundant information, the greedy

nonmaximum suppression (NMS) is often applied for elimi-

nating high-overlap region proposals. We set the intersection

over union (IOU) threshold for NMS at 0.7, which can discard

a majority of region proposals. After NMS, the top-K ranked

region proposals are selected from the rest. In the following,

we fine-tune DDN using top-300 region proposals owing to

the extracted quality region proposals, but reduce this number

to accelerate the detection speed without harming accuracy at

test-time.

IV. TRAINING

A. Multitask Loss Function

The defect detection task can be divided into two subtasks,

hence DDN has two output layers. The cls layer outputs a

discrete probability distribution, k = (k1, . . . , kC ), for each

ROI over C + 1 categories (C defect categories plus one

background category). As usual, k is computed by a softmax

function. The cls loss Lcls is a log loss over two classes (defect

or not defect). Lcls = − log(k, k∗) where k∗ is the groundtruth

class. The loc layer outputs bounding box regression offsets,

t = (tx , ty , tw , th), for each of the C defect categories. As in

[28], the loc loss L loc is a smooth L1 loss function. L loc =

SmoothL1(t − t∗) where t∗ is the groundtruth box associated

with a positive sample. For bounding box regression, we adopt

the parameterizations of t and t∗ given in [27]

tx = (x − xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha)

t∗x =
(

x∗
− xa

)

/wa, t∗y =
(

y∗
− ya

)

/ha

t∗w = log
(

w∗/wa

)

, t∗h = log
(

h∗/ha

)

(1)

where the subscripts x , y, w, and h denote each box’s center

coordinates and its width and height. The variables x , xa , and

x∗ separately represent the predicted box, anchor box, and

groundtruth box (the same rules for y, w, and h).

With these definitions, we minimize a multitask loss func-

tion, which is defined as

L(k, k∗, t, t∗) = Lcls(k, k∗) + λp∗Lcls(t, t∗) (2)



Algorithm 1 Five-Step Joint Training Algorithm

Defect images with annotations

Train the merged network for initializing MFN with the

pretrained model, obtaining model MP .

Train RPN based on MP , generating proposals P∗.

Train the detector network using proposals P∗, obtaining

model M∗

D .

Fine-tune RPN based on M∗

D , generating proposals P and

obtaining model MR .

Fine-tune the detector network using proposals P , obtaining

model MD .

Combine MR and MD as the final model.

where λ is the weight parameter balancing both cls and loc

terms. During training, we set λ = 2 indicating that DDN

is devoted to achieving better defect locations. p∗ is the

activation parameter of the loc term. The localization loss

is involved in the subsequent calculation only for positive

samples (p∗
= 1) and is disabled otherwise (p∗

= 0).

We follow the “IOU” strategy in [14] to determine the positive

and negative samples from anchors.

B. Joint Training

For pretrained network, MFN and RPN are new layers.

Hence, we need to make these three networks share the com-

mon convolutional features through training. The pretrained

model is essentially a classification network, and multilevel

features generated from MFN can be directly fed into the

cls layer. Therefore, the pretrained network and MFN can be

merged into one network, and then performed an end-to-end

training. Without RPN, the rest of DDN is a detector network.

To share features with RPN, the four-step alternating training

strategy in [14] is adopted, alternating between training RPN

and training detector network. Combining these two strategies,

we develop a practicable five-step joint training algorithm,

which is shown in Algorithm 1.

After step 2 and step 3, RPN and the detector network are

initialized with the ImageNet pretrained model in succession.

However, these two networks have not shared the convolu-

tional features at this point. They get it until the fine-tuning

processes of step 3 and step 4 are finished. Specifically,

we freeze the shared convolutional layers and only fine-tune

the unshared layers. Finally, we combine two networks as a

united network.

C. Implementation

For DDN, we adopt image-centric training strategy. Images

are resized such that their short side is 600 pixels. We use

stochastic gradient descen to train with a weight decay

of 0.0001 and a momentum of 0.9. We take a single image

per minibatch iteration. The minibatch size is 64 for detec-

tor network training (include MFN training) and 128 for

RPN training. We fine-tune the model using a learning rate

of 0.001 for 200k minibatch iterations and 0.0001 for another

100k minibatch iterations. We use “Xavier” initialization for

Fig. 5. Examples of defect images with annotations in NEU. The green box
is a groundtruth box, which has a class label and two corner coordinates of
the box (top-left and bottom-right). The category to which the image belongs
(a) crazing, (b) inclusion, (c) patches, (d) pitted surface, (e) rolled-in scale,
and (f) scratches.

all new layers [33]. To avoid overfitting, we also use several

data augmentation methods such as rotation, reflection, and

shift, but remove the dropout module.

V. EXPERIMENTS

The performance of DDN is evaluated on our defect data

sets: NEU-CLS and NEU-DET. We demonstrate that DDN

achieves a reasonable design and promising results.

A. NEU-DET Data Set

NEU surface defect1 is a defect classification data set

that we opened seven years ago [3]. There are six types of

defects from hot-rolled steel plates, including crazing, inclu-

sion, patches, pitted surface, rolled-in scales, and scratches.

Each class has 300 images, but it does not mean that an image

consists of a single defect. Examples of defect images are

shown in Fig. 5.

To perform defect detection tasks, we provide annotations

saved as XML files. With them, the classification data set is

upgraded to a detection data set. The annotation marks the

class and bounding box of each defect appearing in an image.

Each bounding box is regarded as a groundtruth box, which is

represented by its top left and bottom right coordinates. There

are nearly 5000 groundtruth boxes in total. For simplicity,

we call the original data set NEU-CLS, and the complemented

data set NEU-DET. Examples of annotations are also shown

in Fig. 5.

B. Defect Classification on NEU-CLS

As mentioned above, MFN can be merged into baseline

CNNs for defect classification tasks. Therefore, we first

1The NEU data set has been introduced in our previous work [3].
If you want to know the details about the data sets, visit the website:
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html



Fig. 6. Classification results on NEU-CLS data set.

report results on defect classification to demonstrate that our

approach can achieve the competitive accuracy over other

related methods, and merging MFN does not significantly

affect the classification ability. Fig. 6 shows the defect clas-

sification results compared with other methods. According to

Fig. 6, we can get the following conclusions.

1) The networks with MFN can perform well on defect

classification so the multilevel features still have strongly

semantical capability.

2) For ResNet34, MFN slightly harms the classification

results. However, this influence is vanished for the

deeper network ResNet50. It indicates that features

extracted from deeper network are more distinctive

hence the entire network becomes more robust.

3) With MFN, the ResNet34 obtains 99% of the accuracy

of the ResNet50, which indicates that, in practice, a very

deep network is not really required for defect classifica-

tion task.

As we know, stronger performance on defect classification

should be positively correlated with stronger performance on

defect detection. A good classification result is the prerequisite

for subsequent defect detection experiments.

C. Defect Detection on NEU-DET

We carry out defect detection experiments on NEU-DET

data set. Conventionally, we divide the NEU-DET into training

set and test set, and fix the training/testing split. The training

set containing 1260 images used for fine-tuning the network

introduced in Section IV-B, and the test set containing 540

images. We compare DDN with faster R-CNN and Hyper-

Net [34] on the test set and both methods use the same

baseline network (VGG16 [40]) mentioned in their papers.

In addition, DDN and faster R-CNN are also experimented on

ResNet34/50 due to the similar proposals generator. Unlike

defect classification, only accuracy is not an appropriate

performance measure in case of defect detection. Therefore,

we evaluate the results of detection experiments by average

precision (AP), which is a good tradeoff between the two

significant detection indexes: Precision and Recall. These

indexes are defined as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

AP =
Precision + Recall

2
(5)

where TP, FP, and FN represent the number of true positives,

false positives, and false negatives, respectively. The mean AP

(mAP) is also calculated to evaluate the overall performance,

which is the mean value of the AP of all the classes.

Table II shows the results of defect detection experiments.

Under the baseline ResNet34/50, DNN achieves a mAP of

74.8/82.3, 4.6/4.4 higher than faster R-CNN. This result

demonstrates that the proposals extracted from multilevel fea-

tures are superior to the proposals extracted from single-level

features. Under the same baseline network (VGG16), faster

R-CNN achieves an mAP of 72.3 and HyperNet achieves an

mAP of 74.8. DNN achieves an mAP of 76.6, 4.3 points higher

than faster R-CNN and 1.8 points higher than HyperNet.

HyperNet is also a detector based on the multiple features,

but our method can extract higher quality region proposals,

which will be discussed in Section VI in detail. The examples

of detection results on NEU-DET are shown in Fig. 7.

Through the previous defect classification experiments, it is

proven that MFN effects slightly on classification accuracy.

Therefore, the improvement of mAP is benefited from the

quality region proposals extracted from multilevel features.

That means that MFN contributes to improve the localization

accuracy. We specifically evaluate the performance of MFN

in Section V-D.

D. Analysis on MFN

To verify MFN is able to improve the localization accuracy,

we compare with several region proposal extractors, sliding

window, Edge Boxes [35], and Selective Search [36]. In addi-

tion to these methods, RPN + MFN is also compared with the

naive RPN (extract proposals based on single-level features).

If the quality of proposals gets improved, the detector can use

fewer proposals and stricter IOU thresholds without harming

recall. Therefore, we evaluate recall on NEU-DET test set with

different numbers of proposals and IOU thresholds. The num-

ber of proposals is the top-K ranked region proposals selected

by these methods. IOU denotes a ratio between intersection

and union of the predicted boxes and the groundtruth boxes.

Fig. 8 shows the defect recall with various IOU thresholds

at three different numbers of region proposals. The larger

the IOU threshold, the more quality the selecting proposals.

Unsurprisingly, the performance of the methods based on

convolutional features is strongly higher than the methods

without CNN [37]. When IOU > 0.7, the recall of naive

RPN drops sharply compared with RPN + MFN. The

naive RPN only extracts proposals from high-level features

and some location information is filtered by the preceding



TABLE II

DETECTION RESULTS ON NEU-DET

Fig. 7. Examples of detection results on NEU-DET. For each defect,
the yellow box is the bounding box indicating its location and the green
label is the class score. The subset to which the image belongs (a) crazing,
(b) inclusion, (c) patches, (d) pitted surface, (e) rolled-in scale, and
(f) scratches.

layers making the decline of proposals in quality. With the

increasing number of proposals, the naive RPN drops more

sharply when IOU > 0.7. This is because RPN extract too

many low-quality proposals and it is more obvious with the

increase of proposals. The naive RPN works badly with the

strict IOU threshold (e.g., IOU > 0.7). MFN can help RPN

to obtain location information from low-level and mid-level

features, which makes RPN is under a higher tolerance for

strict IOU threshold.

TABLE III

COMBINING LAYERS IN DIFFERENT MANNERS

Increasing the number of proposals can get a promising

recall, but this will greatly increase the runtime of the detec-

tion [38], and what is worse, low-quality proposals would

be involved in the process of detection, leading to failure of

defect detection in some cases. Therefore, a good detector

should select as few proposals as possible and meanwhile a

relatively strict IOU threshold. Fig. 9 shows the defect recalls

with various numbers of proposals at three different IOU

thresholds. The naive RPN achieves a desirable recall with top-

300 proposals, but RPN + MFN only needs top-100 proposals

to get a similar performance.

As shown in Fig. 10, for RPN + MFN with ResNet34,

we achieve 92% of the performance of selecting 300 proposals

by selecting only 50 proposals, which reduces the run time by

half. We consider selecting top-50 proposals as a good tradeoff

in practical defect detection task.

VI. DISCUSSION

In this section, to demonstrate our design is logical and

advanced, we discuss several implicit factors that can influence

on defect detection.

A. Combine Which Layers for MFN?

MFN combines features from various levels into a mul-

tilevel feature, which is effective for improving detection.

In Section III-B, it is briefly discussed that what kind of

layers should be combined. In DDN, we select four layers

that are the last layers of R1, R2, R3, and R4. Therefore,

whether other combination manners of these four layers may

result in better performance. Therefore, we train DDN +

ResNet34 in five different combination manners on NEU-DET

data set. As shown in Table III, combining all the four layers

outperform the other manners. It indicates that the multilevel

feature is effective for improving the accuracy of detection.



Fig. 8. Recall versus IOU threshold on the NEU-DET at different numbers of region proposals. (a) 50 region proposals. (b) 100 region proposals. (c) 300
region proposals.

Fig. 9. Recall versus number of proposals on the NEU-DET at different IOU thresholds. (a) IOU threshold is 0.5. (b) IOU threshold is 0.6. (c) IOU threshold
is 0.7.

Furthermore, low-level feature (e.g., R1 feature) should be

paid more attention than high-level feature (e.g., R5 feature)

for defect detection because R2 feature has richer location

information than R5 feature.

B. Is the Simple Design More Effective for MFN?

The major role of MFN is to uniform the features from

different levels in resolution and dimensionality. To keep the

dimension consistent, a straightforward approach is using 1×1

conv to reduce/increase the dimensionality. There are two

placement patterns for 1 × 1 conv: front-mounted and back-

mounted. The front-mounted pattern means that 1 × 1 conv is

placed before concatenating multilevel feature. What we use

in this paper is the front-mounted pattern, that is, a 1 × 1

conv is placed at the end of each branch of MFN, and the

back-mounted pattern means that a 1 × 1 conv is placed after

concatenating multilevel feature. This pattern seems simple

but in fact needs more parameters. Similar to [34], we use

multiple 5×5 convs to uniform the resolution and dimension-

ality simultaneously. However, the 5 × 5 conv is an expensive

operation, which has the same effect as the double stacked

3 × 3 conv but requiring additional parameters. Table IV

shows the comparable results among three patterns in detail.

The front-mounted style uses three times fewer parameters

than the back-mounted, and five times fewer than hyperstyle.

Therefore, MFN in the front-mounted style has less possibility

to be overfitting. Moreover, in case of the same resolution size,

MFN features can preserve more complete information due to

its larger dimensionality than Hyper feature’s (512 vs. 126).

C. Do We Need More Defect Data?

As we known, an object detector can improve performance

with more training data [39]. Therefore, whether this rule is

also effective for industrial defect data? In order to make clear

this problem, we train the DDN on not only the complete

NEU-DET data set but also each subset separately. As shown



TABLE IV

UNIFORM DIMENSIONALITY IN DIFFERENT STYLES

Fig. 10. Detection time versus number of proposals on the NEU-DET. The
detection time refers to the GPU runtime per image. Sliding window, Edge
Boxes, and Selective Search are CPU-based methods that are far less than
GPU-based methods on detection speed.

in Fig. 11, for AP of each defect class, the performance of

separate training is worse than the complete training in general.

Specifically, the crazing, rolled-in scale, and scratches dropped

sharply, whereas the inclusion, patches, and pitted surface

present moderate decline. This may be due to the former

requiring more data for learning than the latter. Although

the total amount of training data is the same, results emerge

dramatical difference. We consider that more training data can

improve the represent ability of CNN for special instances.

That is to say, if DDN can be trained on more detection

data, the AP may also be improved. Finally, it is need to

emphasize that other types of training data may be useless

(e.g., common object) because the DDN is fine-tuned on the

ImageNet pretrained model.

D. Failure Case Analysis

Though our method achieves promising results in general,

in some cases, there is a poor performance for defect classes

such as “crazing,” “inclusion,” “patches,” and “rolled-in scale.”

Combining with the success cases shown in Fig. 7, we visu-

Fig. 11. AP of each defect class on separate training versus complete training.

Fig. 12. Examples of failure cases. Yellow box indicates the detection
results produced by the DDN, and pink box indicates the failure detection.
(a) Overdistinctive defect. (b) Confusing defect. (c) Interference between
similar defects. (d) Undefinable scope.

alize some failure cases, as shown in Fig. 12, for analysis and

attempt to explore the reasons for the unsatisfactory detection.

We can observe that the DDN is robust to the continuous linear

“crazing” defects but fails to find the discontinuous one in

the lower right of Fig. 12(a). It means that the overdistinctive

defect is hard to be correctly recognized, which, due to the

defect data provided, is not comprehensive. It is also difficult

to define the confusing defects, as shown in Fig. 12(b), and

even the human eye cannot accurately distinguish them from

the background. Two kinds of defects, the “inclusion” and

“patches” as shown in Fig. 12(c), are overlapped and the

“inclusion” gets a lower score. It is no doubt that the DDN has



the ability to handle the overlapped defects and the success 
case is shown in Fig. 7(f). We guess the reason is that the 
“inclusion” and the “patches” in the figure are similar, and 
they influence each other when they are very close. For the 
“rolled-in scale,” the bounding box may ignore some edge 
defects shown in Fig. 12(d) due to such defects that are too 
scattered to define their scope. A more ideal defect detector 
is yet wanted because there is still room for improvement.

VII. CONCLUSION

In this paper, the DDN, a defect inspection system for steel 
plates is proposed. This system is a DL network that can 
obtain the specific category and detailed location of a defect by 
fusing the multilevel features. For defect detection tasks, our 
system can provide detailed and valuable indicators for quality 
assessment system, such as the quantity, category, complexity, 
and area of a defect. Furthermore, we set up a precious defect 
detection data set—NEU-DET. Experiments show that DDN 
can achieve 99.67% accuracy for defect classification task and 
82.3 mAP for defect detection task. In addition, the system can 
run at a detection speed of 20 ft/s while keeping the mAP at 70.

In the feature, we will focus on two directions as follows: 
the one is data augmentation technology due to the expensive 
manual annotations in detection data sets. The other is to 
perform the defect segmentation task with DL technologies, 
which can obtain a more precise defect boundary.
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