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ABSTRACT: We present a workflow for the design and
production of biological networks from high-level program
specifications. The workflow is based on a sequence of
intermediate models that incrementally translate high-level
specifications into DNA samples that implement them. We identify
algorithms for translating between adjacent models and implement
them as a set of software tools, organized into a four-stage
toolchain: Specif ication, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic
computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular
platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN)
that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a
database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage
computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing
a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological
networks from a high-level program specification. Furthermore, the workflow’s modular design allows the same program to be
realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a
small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli
bacterial cells.
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S ynthetic biology has tremendous potential for enabling the
design and implementation of sophisticated biochemical

mechanisms for sensing, computing, control, production, and
actuation. This approach is anticipated to lead to many
breakthrough applications in biotherapeutics, bioremediation,
biomaterials, and in vivo sensing, actuation, and self-assembly
many of which are already being explored.1−4 As these
applications become more complex, however, there is an
increasingly pressing need for tools to assist in design and in
the production of organisms that implement those designs.
In this paper, we propose a workflow called TASBE (Tool-

chain to Accelerate Synthetic Biology Engineering), the first
complete method for the design and production of physical
biological networks from high-level specifications. This work-
flow is developed around a sequence of models that we have
identified, moving from high-level specifications to DNA
samples in four stages: Specif ication, Compilation, Part Assign-
ment, and Assembly. Given a behavioral program and a target
cellular platform, both specified in a high-level programming
language called Proto,5 TASBE compiles the specification into

an optimized design represented as an abstract genetic regulatory
network (AGRN), then assigns DNA parts to realize the design,
and finally produces an optimized sequence of protocols for
assembling the design from available DNA samples. The
protocols are then executed by a liquid-handling robot or
manually, to obtain a physical sample of cells satisfying the
specification.
The motivation for the TASBE workflow comes from

observing patterns and problems that occur in current work on
synthetic biology applications. Many of the envisioned
applications of synthetic biology are based on a synthetic
genetic construct organized into three modules: sensing of
input signals, computation to make decisions based on the
inputs, and actuation to turn decisions into actions. For
example, Rinaudo et al. constructed an RNA interference-based
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Boolean function evaluator in mammalian cells for applications
in sensing endogenous molecular inputs;6 Zhen et al.
constructed a cellular state classifier for detecting a specific
type of cancerous cell using a mixture of threshold tests and
Boolean logic, with the miRNA expression profile as input;3

Anderson et al. built an AND gate to detect a tumor cell;2 and
Tamsir et al. constructed networks implementing all possible
two-input Boolean functions with a NOR gate circuit as a basic
building block by arranging colonies spatially, which may have
applications to pattern formation.7 Applications also often need
computations with memory or time-varying functions to carry
out tasks such as counting, detection of events in sequences,
and pattern formation. Notable sense−compute−actuate
systems using memory or time-varying functions include a
transcriptional toggle switch,8 a five-state recombinase-based
sequential memory element,9 a recombinase-based rewritable
memory element,10 a single-cell transcriptional oscillator,11 and
a multicellularly synchronized genetic clock.12 There are, of
course, many applications that do not currently use the sense−
compute−actuate pattern, such as synthesis of drugs,1

biofuels,13 and biomaterials.14,15 The widespread sense−
compute−actuate pattern represents an important opportunity,
however: the separation of sensing and actuation from
computation means that a good approach for producing
functioning biological computations from high-level design has
the potential to impact a large number of current and potential
future applications. Moreover, because many of these prior
systems share patterns in their design and construction, it
suggests that this class of synthetic biological systems may be
particularly susceptible to automation by identification and
extraction of these patterns.
At the same time, the growing capabilities of synthetic

biology pose an important problem, as the field looks forward
to more sophisticated applications that will require larger
networks with more complex control logic. Current practices in
synthetic biology for specifying, designing, building, debugging,
characterizing, and iterating over this process cannot scale as
required for such applications. The constructs built thus far
have been small, with relatively simple intended behavior and
only a small set of available computational partshence
possible designsto choose from. The number of available
parts is rapidly expanding, however, and as the number of parts
and the size and complexity of applications grow, there is an
exponential increase in the number of possible designs, and the
number of possibilities for problems, such as unknown
interactions between parts or mismatched expression levels.
These are not distant challenges: even a single actuation that is
a Boolean function of three sensors may require 20 to 30 basic
functional sequences of DNA and a three to five stage cascade
of transcriptional regulation. These difficulties can be addressed
by factoring the larger task into tractable subproblems and
constructing a modular tool-chain in which each tool addresses
a subproblem. This way, existing specification, design, and
optimization techniques can be used or adapted, and
applications can be shifted easily from one cellular platform
to another. While new biological discoveries will alleviate some
of the fundamental difficulties in building robust devices, future
bioengineers will still have to confront the problems of
specifying a desired function succinctly, searching a massive
space of potential designs for one that satisfies the specification,
and of realizing that design into physical DNA. A well-specified,
verifiable, and reproducible workflow will allow the bioengineer
to focus on and cope with the key biological complexities of

their design. This is consistent with and necessary to the goal of
transitioning synthetic biology from a niche experimental art
requiring broad and deep training, to a widely accessible
engineering discipline.
Our implementation of the TASBE workflow addresses these

challenges with a set of software tools whose algorithms are
based on the recurring design patterns of sense−compute−
actuate synthetic biology systems. Having conceived and
implemented the TASBE workflow, we validated it by applying
it to the specification of a simple small-molecule sensor/
actuator program. Starting with a high level specification of its
behavior and using the TASBE flow, we obtained a physical
sample of cells satisfying the behavioral specification. TASBE’s
modular design also allows the same program to be realized on
different cellular platforms by swapping workflow configu-
rations, which we demonstrate by executing the flow for two
different target cellular platforms: HEK293 mammalian cells
and E. coli bacterial cells. To our knowledge, the TASBE
workflow is the first complete method for translating an
abstract program specification to a functioning biological
network.

Related Work. A large number of prior projects have
addressed particular fragments of this challenge, but no prior
effort has actually made the end-to-end connection from
specification to in vivo functionality.
For example, there are a few high-level programming

languages that begin with abstract specifications and map to
genetic regulatory network designs at various levels of
abstraction: Proto5,16 uses a dataflow model to produce
network designs from a library of motifs, while GEC17 uses
logic programming to search for genetic networks based on
chemical reaction models, and the tool by Marchisio et al.18

uses Karnaugh maps to transform a truth table into a genetic
network design for a logic circuit.
Other tools begin at the level of DNA sequence features,

allowing the designer to build a design by composing features
such as promoters, open reading frames, and terminators. For
example, GenoCAD19 allows a user to specify part sequences
constrained by a grammar aimed at ensuring functionality,
while Eugene20 allows textual specification of both parts and
combinatorial assemblies of parts. TinkerCell21 provides similar
capabilities in a graphical form, allowing visualization and
graphical editing of parts and reaction networks.
Yet others focus on the chemical properties that are needed

to ensure correct operation of circuits. A particularly well-
known example is the RBS Calculator,22 a bidirectional
translator between RBS sequence and strength. Other
tools23,24 assume such tuning capabilities and focus on
searching for the combinations of reaction parameters that
can implement particular classes of networks, or use simulation
to allow a human to explore the effect of reaction parameters,
e.g., SynBioSS.25 Tools like GLAMM26 aid a designer in
visualization and search for exploring novel transgenic pathways
in large databases. Chemical parameters selection can also be
considered as an optimization problem, as in the case of
OptCircuit,27 which produces a genetic circuit design given the
desired temporal response and a parts library annotated with
part parameters, and the tool by Huynh et al.,28 which assigns
parts to a given genetic network by solving a nonlinear
optimization problem.
Finally, tools have been created that focus on the low-level

problems of sequence design, assembly, and sample production.
The j529 tool and the Device Editor30 are tools for specifying
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combinatorial variations of designs and creating oligos to
assemble them; Eugene20 also provides some capabilities in this
area. GeneDesign31 and GeneDesigner32 are DNA sequence
design tools, whereas OptMAGE33 is a oligo design tool for
genome engineering.
As a collection, these tools address a large number of

problems in the design and construction of synthetic biology
systems. In general, however, each tool has been formulated to
solve only its specific problem, and no effort has previously
integrated these tools in order to address the end-to-end design
problem; translating a high level behavioral description stated
in a programming language into a physical sample implement-
ing the behavior in vivo.

■ RESULTS AND DISCUSSION

Two key goals of synthetic biology are engineering of new
behaviors in organisms and discovering the principles of such
biological engineering.34−36 The TASBE workflow contributes
to the first goal by providing a generalizable solution for
translating a desired behavior into a biologically implementable
design and assembling DNA implementing that design.
Formulating algorithms for this problem also contributes to
the second goal, by capturing fundamental engineering
principles and practices, their interrelationships, and their
strengths and limitations.
The TASBE workflow decomposes the problem of mapping

from desired organism to DNA samples into qualitative stages
based loosely on the types of work that humans do when they
design biological systems: conceptualizing, sketching an initial
design, filling in details, and lab work. These stages are expected
to apply across a broad range of synthetic biology applications.
These qualitative stages are further resolved into a sequence of
intermediate models, chosen to be tractable for automation.
The models that we present in this paper are focused on
sensor/actuator programs that use combinatorial Boolean logic,
and with minor extension should be applicable to any sensing
or control application, but likely not to complex metabolic
engineering. Finally, there is a sequence of transformations that
map from each model to the next. Together, these trans-
formations incrementally translate from high-level design
specifications to DNA samples. The transformations are
expected to be improved frequently in order to expand the
classes of behaviors and organisms that can be engineered, to
improve algorithms, and to take advantage of new results in the
scientific literature. Figure 1 shows the stages and models
comprising the TASBE workflow, and the current set of
transformations used to implement it.
At the highest level, the TASBE workflow decomposes the

problem of designing an organism into four qualitative stages,
based on the type of work being carried out:

1. Specification: The starting point for the workflow is a
precise statement of the organism behavior that is desired
and of the target cellular platform in which the behavior
is to be implemented.

2. Compilation: With the aid of a dictionary that maps
between specification elements and genetic motifs, the
compilation stage transforms the specification into an
abstract genetic regulatory network (AGRN, a “template”
implementation that leaves as much flexibility as possible
for sequence selection.

3. Part Assignment: In the part assignment stage, the
AGRN is realized fully as one or more sequences of DNA

parts (available assembly-compatible DNA fragments).
The choice of DNA parts is guided by a database of
available parts and characterization data to determine
which parts have interactions that can correctly represent
the data values of the AGRN.

4. Assembly: Finally, each DNA part sequence is assembled
into a physical sample of DNA. The protocols for doing
so are determined by the sample library and automation
equipment available in the laboratory where assembly is
carried out.

As shown in Figure 1, these stages are then resolved into a
sequence of models that incrementally progress from high-level
program specification to DNA samples. We have selected
intermediate models as junctures in the design process when
new types of information must be introduced in order to
proceed. We begin with the program specification, which is
obviously essential as it captures the biological engineer’s
intent. The dataflow graph model is then a digestion of that
intent into a discrete set of computational primitives that can
implement it. The AGRN represents the farthest progress that
can be made without selecting particular DNA parts from an
external parts library, while the GRN represents the stage at
which decisions must be made about how to organize design

Figure 1. The TASBE workflow has four general stages: specification,
compilation, part assignment, and assembly. These are further refined
into seven models: (1) high-level program specifying the desired
behavior; (2) dataflow graph representing a computation as a set of
functional operators that produce and consume data values; (3)
abstract genetic regulatory network (AGRN) consisting of a set of
partially specified functional units; (4) genetic regulatory network
(GRN), consisting of the same elements as an AGRN, except that all
of the elements must be fully specified; (5) part sequence(s), where
each sequence is a concatenation of available DNA parts with
corresponding sample information; (6) assembly plan including a
sequence of protocols for creating each part sequence from available
DNA samples; (7) physical samples comprising DNA that actually
instantiates a biological network. The tools transform each model in
turn to its successor.
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elements into plasmids and about what protocols will be used
to assemble the design. The part sequences(s) are the outcome
of those decisions but cannot proceed to the final assembly plan
without integrating with laboratory information systems to
determine available resources for actually executing protocols.
Thus, the TASBE workflow’s intermediate models each
represent a necessary lowering of the level of abstraction.
Although this sequence might not be unique, it is likely that any
other end-to-end workflow would need to include equivalent
stages.
Finally, we have implemented transformations with a set of

tools for mapping between these models. In their present form,
these tools can be applied to any sensor/actuator program that
uses combinatorial Boolean logic. Specification is done in the
Proto programming language.16 Compilation is implemented
using the MIT Proto compiler37 and the Proto BioCompiler,5

which produce an AGRN optimized to reduce complexity. Part
assignment is handled by a new tool, MatchMaker,38 which is
configured with a platform-specific database using the Clotho
data model.39 Finally, assembly may be carried out using either
of two new tools: Puppeteer40 or BioCAD, both of which create
an assembly plan minimizing the length and complexity of
protocols and then use a protocol library to translate it to
elementary instructions for execution by a human or a liquid-
handling robot.
Validation. We validated the TASBE workflow by applying

it to a simple sensor/actuator test program with the following
behavior:

• Measure the value of a Boolean test sensor.

• If the sensor value is true, turn on a fluorescent

debugging reporter.
• If the sensor value is false, turn on a different fluorescent

debugging reporter.

We validated the workflow by creating a formal high-level
specification of this test program, then applying each tool in
sequence, thereby producing DNA samples that correctly
implement the specification on two different cellular platforms:
mammalian HEK293 cells and E. coli bacteria. To our
knowledge, this is the first demonstration of end-to-end
translation of a program specification to a functioning biological
network, as well as the first automated realization of the same
design on two different cellular platforms.

Note that the simplicity of the test program we use for
validation should not be taken to represent a limitation on the
tools or the workflow approach. The contribution of this work
is the end-to-end workflow, and most particularly the
intermediate models that break the design problem into
tractable subproblems. Having established such a workflow,
its breadth of coverage can be improved by improving
individual tools. For example, Boolean feedback logic requires
only the addition of new motifs to the Proto BioCompiler,
while analog signal processing would require upgrades to Proto
BioCompiler and MatchMaker.
We now describe the results produced by the test program as

it progresses through each stage in turn, from specification to
ultimate experimental validation of the assembled DNA
samples in vivo. For details on internals of each transformation,
see the Methods section and Supporting Information.

Program and Platform Specification. For our validation
test, we began by specifying the sensor/actuator program, a set
of network motifs for implementing various program operators,
and cellular platform files for HEK293 and E. coli cells. High-
level program specification, operator motifs, and cellular
platform specification are all written in the Proto spatial-
computing language.16 Representative samples of each are
shown in Figure 2; the full files are included in the Supporting
Information.
Figure 2(a) shows our Proto specification of the simple

sensor/actuator test program: the def statement names the
program simple-sensor-actuator and declares that it requires no
other external inputs (the empty parentheses). The let
statement in the next line creates a program variable, in this
case, placing the value of the Boolean test-sensor operator into
a variable named x. This value is then used to set one of two
fluorescent debugging reporters: the first is set when x is true,
the second when x is false. Note that the variable x is implicitly
of Boolean type, due to the input and output types of the
operators producing and consuming it; if these did not match,
it would be reported as a compiler error during the next stage.
Figure 2(b) shows the motif declaration for our not operator,

taken from Beal et al.5 This motif specifies a single functional
unit comprised of a constitutively high promoter (P high),
which can be repressed by the transcription factor representing
the operator’s input (R− arg0) and which regulates the
expression of the protein that represents the operator’s output
(value).

Figure 2. In the TASBE workflow, Proto code is used to specify programs (a), genetic regulatory network motifs for implementing computations
(b), and cellular platforms (c,d).
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Figure 2(c,d) shows sample excerpts from the cellular
platform definition files for HEK293 and E. coli cells. These
declare the available sensors and actuators available on each
platform: for example, we had a doxycycline sensor (Dox) for
HEK293 but not E. coli and an arabinose sensor (Ara) for E. coli
but not HEK293. Likewise, operators available on both
platforms may be implemented differently: for example, macros
map the test-sensor and debug actuator families to different
implementations reflecting the available operators and the
preferences of the biological engineers for each platform.
Compilation. For the next stage of our validation test, we

applied Proto and the Proto BioCompiler to the specifications
set out in the previous section by evaluating the expression
“simple-sensor-actuator”, which invokes our sensor/actuator
test program. We evaluated this expression once for each
cellular platform, selecting between HEK293 and E. coli via the
arguments provided to the compiler.
Figure 3(a,b) shows the initial dataflow graphs produced for

mammalian and E. coli platforms, respectively. Note that the
different definition files for the two cellular platforms result in a
graph with Dox, blue, and yellow for the mammalian platform
and with Ara, green, and red in the E. coli platform. Since the
test program is already quite simple, optimization of the
dataflow graph only replaces the function call with its contents

(Figure 3(c,d)), a simple transformation but vital since we
currently have no way to implement function calls in cells.
Subsequent transformation by the Proto BioCompiler

produces first the initial AGRNs shown in Figure 3(e,f). For
example, the not operator is mapped to the repression of a
functional unit producing an unspecified protein “B”, while the
Dox and Ara operators map to more complex subnetworks
comprising two functional units and a small-molecule reaction.
The pattern-based optimizations then simplify these networks.
For example, copy propagation and dead code elimination
combine to remove protein “B” and the functional unit that
produced it. The final complexity-optimized AGRNs are shown
in Figure 3(g,h). In more complex networks, the optimizations
can reduce network size by up to 83%.5

Part Assignment. The part assignment stage of the TASBE
workflow fills in the underspecified elements of the AGRN to
produce first a fully specified genetic regulatory network, in
which each element is associated with an available DNA part,
and then a linearization of those parts into one or more
complete DNA sequences to be assembled. Our implementa-
tion of this stage is a new tool called MatchMaker (presented in
detail in Yaman et al.38) that solves this problem using a
database of available features, parts, and signal levels.
MatchMaker comprises three algorithms: the feature assign-

Figure 3. Stages of compilation and optimization for mammalian (a,c,e,g) and E. coli (b,d,f,h) cellular platforms. For dataflow graphs (a,b,c,d),
operators are shown as boxes, variables as arrows connecting from output to inputs and annotated with their data type, and function definitions as
dotted boxes with the name of the function in the corner and a star on the function’s output variable. For AGRNs (e,f,g,h), functional units are low
horizontal lines connecting promoters (bent arrows) and open reading frames (boxes) with terminators not shown on the diagram; activation and
repression are green arrows and red stub connectors respectively, and all are annotated with the data types or values they represent.
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ment and signal matching algorithms transform an AGRN into
a GRN; the part assignment algorithm then transforms the
GRN into part sequences.
We executed MatchMaker on the two AGRNs produced by

the compilation stage in our sensor/actuator test example, one
targeted for mammalian cells and one for E. coli. Each AGRN
was run against feature, signal, and part databases created for
that cellular platform. Figure 4 illustrates the input AGRNs and
the feature databases used for feature matching, as well as the
implementing feature set selected by MatchMaker to realize the
sensor-reporter program on each cellular platform. The signal
database was populated with synthetic threshold data in the
form of two pairs of induction-expression points for each
promoter-inducer or promoter-repressor part, e.g., the TetR-
pTet-RFP-aTc characterization construct was associated with
simulated low and high threshold points (0.4,0.5) and
(3.0,1.8)such threshold values can be extracted from

experimentally obtained data.41,42 The final part sequences
produced by MatchMaker are shown as the roots of the
assembly trees in Figures 5 and 7.

Assembly. The final stage of the TASBE workflow takes
one or more part sequences and constructs physical samples
comprising that DNA. For this stage, we used two different
implementations: Puppeteer40 and BioCAD.
We applied Puppeteer to assemble the part sequence

produced for E. coli as an output of MatchMaker. Figure 5
shows the optimized assembly tree planned by Puppeteer,
leading to a single root, which is the sensor/actuator test
program part sequence output by MatchMaker for E. coli.
We first verified by hand that the protocol instructions

generated by Puppeteer were a correct implementation of the
assembly tree. To validate the robotic instructions, we executed
a part of the assembly plan using a Tecan Freedom Evo 150
liquid handling robot. Using Puppeteer, we translated the

Figure 4. For each cellular platform, MatchMaker uses a feature database and signal level information (not shown) to select parts for instantiating
the AGRN of the sensor/actuator test program. Parts selected by MatchMaker are marked in yellow.

Figure 5. Plan generated by Puppeteer for BioBrick assembly of E. coli sensor/actuator test program (root at bottom) from available part samples
(leaves at top). Edges represent restriction digests; dots represent ligations. The red dot ligation was executed robotically, while black dot ligations
were executed by hand.
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instructions for assembling the pTet-rbs-RFP-terminator partial
sequence from the pTet and rbs-RFP-terminator parts (indicated
by the red dot in Figure 5) into robot-specific instructions. This
resulted in three sets of instructions corresponding to the two
digestion steps and one ligation step (see Supporting
Information for details). For each step, we performed two
robotic trials and one manual control.
All of the digestion and ligation steps were successful in each

of the two trials and were verified by manual gel electrophoresis
and by transformation into cells. Figure 6 shows the results of
gel electrophoresis of the restriction mapped ligation samples
(see Methods section and Supporting Information for details).

We applied BioCAD to assemble the part sequence produced
for HEK293 cells as an output of MatchMaker, after first adding
a constitutive reporter to be used as a transfection indicator.
Figure 7 shows the assembly tree planned by BioCAD, leading
to a single root, which is the sensor/actuator test program part
sequence output by MatchMaker for HEK293 cells, plus the
additional red fluorescent reporter mKate.

The first level of the assembly tree was executed by hand,
creating Gateway entry vectors verified by manual screening
and then digested with I-SceI and purified. The second level of
the assembly tree was translated into a robotic script and
automated using Gibson assembly using a Tecan Freedom Evo
150 liquid handling robot. Figure 8 shows the restriction digest
(digested manually, with gel run on the robot; see Methods
section and Supporting Information for details). Six samples
assembled by the robot produced the same restriction map as
six samples assembled manually, with all nonautomated steps
being performed in parallel. In addition, the results match
previous manual results performed under similar conditions
(note that there are some differences between the restriction
maps and expected bands as predicted from our sequence data;
we are currently sequencing the carrier vector to identify the
discrepancies). One robot sample was then chosen for
transfection and in vivo verification and characterization of
the network functionality.

Validation of TASBE Products in Vivo. The final test of
an engineered biological construct is, of course, its behavior
when incorporated into the intended cellular platform. This is
the final product of the TASBE workflowthe “model” that is
simply the actual engineered cells themselves. Validation of
constructs in vivo at this stage is thus a validation of the entire
end-to-end process used to produce those constructs: if the
desired behaviors are observed, then the workflow has been
successful.
For end-to-end validation of our sensor/actuator test

program, we took the plasmid samples produced by the
assembly stage and introduced them to their intended target
cellstransfecting the mammalian network into HEK293 cells
and transforming the E. coli network into E. coli bacteriathen
cultured the cells in triplicate both with and without induction
by the test-sensor chemical for each platform. After the
platform-appropriate period of culturing, we measured cellular
behavior via microscopy and FACS. For full details, see
Methods section and Supporting Information.

Validation of Mammalian Construct. Figure 9 shows the
behavior of the sensor/actuator test program in HEK293
mammalian cells. On this platform the Boolean test-sensor is

Figure 6. Agarose gel showing successful robotic ligation of pTet and
the rbs-RFP-Term parts by Puppeteer. Lane M shows a 10-kb
molecular weight marker. Lanes 1, 4, and 7 show uncut plasmid. Lanes
2, 5, and 8 show single cut plasmid where the plasmid was digested
with SpeI and the correct band size is seen at 3016 bp. Lanes 3, 6, and
9 show double cut plasmid where the plasmid was digested with XbaI
and SpeI and the correct band sizes are seen at 937 bp and 2079 bp.
Lanes 1−3 and 4−6 represent two separate clones screened from the
robot ligation, while lanes 7−9 show a clone screened from the manual
ligation done simultaneously as a positive control for the automated
ligation.

Figure 7. Plan generated by BioCAD for Gibson/Gateway assembly of mammalian sensor/actuator test program (root at bottom) from available
part samples (leaves at top).
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Figure 8. Agarose gel showing successful robotic Gibson assembly by BioCAD: (a) six samples from automated Gibson reaction and six samples
from a manual control are all in agreement after digestion with enzymes AgeI and NheI (NEB) and compared to Hyperladder I (BioLine). (Note the
artifact in manual lane 2 is a plastic post in the prototype clear gel box). (b) Same image acquired with a BioRAD Imager using a blue filter for
SybrSafe. (c) DNA fragment sizes match previous unautomated controls in a separate experiment (A−I are manual Gibson assembles imaged on
BioRAD imager).

Figure 9. Validation of mammalian platform sensor/actuator test program plasmid transfected into HEK293 cells: the chart in (a) shows mean and
per-cell variation of FACS data for a negative control (b), the true condition (c), and the false condition (d). Relative expression levels conform to
the original high-level program specification, and microscopy (e−p) shows agreement with FACS results.
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mapped to doxycycline concentration; we test the false state
with a concentration of 0 nM Dox and the true state with a
concentration of 2 μM Dox. The debug test actuator, which is
mapped to the EBFP2 fluorescent protein, should be low in the
false condition and high in the true condition, whereas the
debug-2 actuator, mapped to EYFP, should be high in the false
condition and low in the true condition.
Figure 9(a) shows the expression mean and per-cell standard

deviation for both actuators in all three conditions. Figure 9(b−
d) shows the FACS scatter plots of EBFP2 vs EYFP for
negative control cells and for test program cells in the false
condition and true condition, respectively. The observed
behavior follows the specification: mean EBFP2 expression
for the true condition is 5.9 times higher than for false and the
low expression is nearly identical to the negative control, while
mean EYFP expression for the false condition is 8.3 times
higher than for true, though expression is not entirely repressed

in the true condition (likely due to the slow dilution of stable
EYFP produced before LacI concentration is high enough to
repress effectively). Microscopy results are in agreement with
FACS: in cells with significant transfection (as indicated by
mKate expression on the red channel), induction by Dox
markedly raises EBFP2 expression and lowers EYFP expression.
Thus, in mammalian cells the test program’s behavior in vivo
complies with its original high-level specification in Proto
(though there is much room for quantitative improvement of
signal levels and network robustness).

Validation of E. coli Construct. Figure 10 shows the
behavior of the sensor/actuator test program in E. coli cells. On
this platform the Boolean test-sensor is mapped to arabinose
concentration; we test the false state with a concentration of 0
mM Ara and the true state with a concentration of 50 mM Ara.
The logical specification is the same as in mammalian cells, with
different fluorescent reporters. The debug test actuator, which

Figure 10. Validation of E. coli platform sensor/actuator test program plasmid transformed into E. coli cells: the chart in (a) shows mean and per-cell
variation of FACS data for a negative control (b), the true condition (c), and the false condition (d). Relative expression levels conform to the
original high-level program specification, and microscopy (e−m) shows agreement with FACS results.
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is mapped to the GFP fluorescent protein, should be low in the
false condition and high in the true condition, while the debug-
2 actuator, mapped to RFP, should be high in the false
condition and low in the true condition.
Figure 10(a) shows the expression mean and per-cell

standard deviation for both actuators in all three conditions.
Figure 10(b−d) shows the FACS scatter plots of GFP vs RFP
for negative control cells and for test program cells in the false
condition and true condition, respectively. In the true condition
a minority subpopulation of cells appear to have discarded or
disabled the plasmid; when these are excluded the observed
behavior closely follows the specification: mean GFP expression
for the true condition is 2.6 times higher than for false (though
there appears to be a high degree of leaky expression), and
mean RFP expression for the false condition is 13.5times higher
than for true. Microscopy shows the same results: induction by
arabinose markedly raises GFP expression and lowers RFP
expression. Thus, in E. coli cells as well the test program’s
behavior in vivo complies with its original high-level
specification in Proto (though again there is much room for
quantitative improvement of signal levels and network
robustness).

■ DISCUSSION AND CONCLUSIONS

We have developed the TASBE workflow for the design and
production of physical biological networks from high-level
specifications. Our workflow is developed around a sequence of
models that bridge from high-level specifications to DNA
samples. The choice of appropriate intermediate models
decomposes the overall problem into tractable subproblems,
allowing the construction of software that realizes the workflow,
creating a tool-chain for synthetic biology engineering.
We have validated the TASBE workflow by applying it to

design and to construct a correctly functioning sensor/actuator
network. As we have shown above, each stage of the tool-chain
solves a well-defined subproblem, incrementally moving the
design to the final assembled DNA samples, which then behave
in vivo in accordance with their specification. The TASBE
workflow thus provides the first complete method for
translating an abstract program specification into a functioning
biological network.
Because the TASBE workflow decomposes the overall

problem into well-defined subproblems, the tool-chain is
modular and therefore extensible. Any algorithm in the tool-
chain can thus be modified without affecting other elements of
the tool-chain. We have demonstrated this in two different
ways: (1) realization of the same program on two different
cellular chassis, HEK293 mammalian cells and E. coli bacterial
cells, with sensors, actuators, and optimizations appropriate to
each platform, and (2) swapping the assembly stage to
instances customized for different protocols and different
laboratory systems. Similarly, the programming language used
for specification might easily be swapped for other languages
customized to better suit particular problem domains or
communities of users.
The modularity of the TASBE workflow also allows for

extension with tools that provide new types of capabilities.
Tools for verification,43 debugging, and simulation21,44 could be
connected to the workflow relatively easily. Likewise, the
Clotho applications framework allows AGRN and GRN designs
to be stored into a Clotho database, where they are accessible
to a variety of other applications. The designs can also be

exported to SBOL45 for use with applications outside of Clotho
or the TASBE workflow.
Finally, the identification of subproblems exposes a number

of new areas for investigation, both regarding the natural
behavior of cells and the design and optimization of engineered
biological systems. The algorithms deployed at each stage of
our workflow are by no means optimal or complete but serve as
a foundation for future research. The challenges exposed are
not wholly new questions, but rather refinements of general
open problems to specific actionable research questions. For
example, “characterization of biological parts” is one of the
foundational challenges of synthetic biology; see refs 41, 42,
and 46−50 for some of the key prior approaches to the
problem. One of the challenges for progress in this area,
however, has been the lack of a clear definition of what a “part”
is or what “characterization” experiments can provide necessary
and sufficient data. In the TASBE workflow, the feature and
signal matching problems provide a model of part that implies a
minimal set of information necessary for the solution of these
problems. Moreover, this information is within reach of current
experimental techniques.51 Similar well-defined challenges exist
at every stage of the tool-chain: how motifs can be constructed
for additional types of computation, sensing, and actuation;
how motif equivalencies can best be used to explore the space
of optimizations; what throughput yield can be achieved on
various protocols with automation assistance; etc. Breaking the
research space into such subproblems not only provides a focus
for research but guarantees that extensions and improvements
in any stage are compatible with research extending or
improving other stages as well.
TASBE formalizes the automated design scenario from high-

level specification to DNA assembly and addresses the needs of
transcriptional networks composed from fully characterized
parts.52 It lays the foundation upon which future extensions can
be built. As diverse synthetic biological applications mature,53 a
broader picture of the needs will become available. More
complex and less modular design scenarios will require
extensions and modifications to the TASBE workflow. The
work presented here will serve as a foundation upon which
more complex design flows can be built.
It is undeniable that the principles of design of genetic

networks are not as well formulated or understood as the
principles of software engineering or electronic circuit
engineering. However, we hope that these principles will
emerge from attempts such as TASBE, formalizing the design
process into rigorously defined models and algorithms and that
this approach will enable synthetic biologists and engineers to
build large and complex genetic networks.

■ METHODS

This section provides details of the TASBE workflow stages:
program and platform specification, compilation, part assign-
ment, and assembly. Additional implementation details, as well
as specifications of the protocols executed, can be found in the
Supporting Information.

Program and Platform Specification. For a high-level
program specification language, we selected the Proto16 spatial
computing language. Proto is a purely functional language that
represents programs as a functional dataflow computation
evolving over continuous space and time. This unusual model
of computation makes Proto particularly well suited for the
specification of genetic regulatory networks5,54 and is also
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anticipated to be useful for specifying differentiated behavior in
colonies, tissues, and biofilms.
In the TASBE workflow, Proto is used for three different

classes of specification: the program to be implemented, the
collection of biological network motifs for implementing
elementary program operators, and the cellular platform on
which the computation will be realized, including the set of
available sensors and actuators.
Specification of Programs. Proto is used to specify the

desired behavior that will eventually be realized as a genetic
regulatory network. Because Proto uses a functional dataflow
model of computation, any operator with a biological network
implementation can be composed with any other such
operator, and these composites abstracted and composed
together further into an arbitrarily complex program. The
composite program is guaranteed to still have a biological
network implementation (though it may be very complex) so
long as there is no recursion.
Specification of Network Motifs. The biological network

implementation for each Proto operator is also specified in
Proto, using the methods developed in Beal et al.5 Basic
program operators (called “primitives”) are either defined or
annotated with a:grn-motif annotation. This associates the
operator with a motif specifying an abstract genetic regulatory
network (AGRN) fragment, with variables that will be filled in
when the motif is instantiated and used.
Specification of Cellular Platforms. We also extend the

prior work5 to allow representation of cellular platforms in
Proto. This is implemented by modifying the Proto
BioCompiler to allow specification of a cellular platform
definition file, which is read in and evaluated before the
program. The definition file for a cellular platform contains
motif definitions of the sensors and actuators available on that
platform, as well as macro aliases mapping some of these
particular operators to platform-generic operators (e.g., for
debugging).
Thus, simply by switching which platform definition file is

being used, the design of a program can be customized for
different types of organism. Platform files can also be used to
represent relations between strains or lab-specific custom-
izations: platform definitions can reference one another using
the Proto include command, allowing arbitrary hierarchical
families of cellular platforms to be defined, inheriting and
overriding definitions from one another.
Compilation. The compilation stage comprises two trans-

formations between models. First, the Proto program is
interpreted to produce a dataflow graph model of the
computation. Second, the dataflow graph is compiled to an
AGRN. During each transformation, pattern-based optimiza-
tions are applied to reduce the complexity of the model.
Interpreting Proto into a Dataflow Graph. We use the

standard MIT Proto compiler37 to interpret the Proto program
into a dataflow graph. A dataflow graph is a model of an
abstract computation in terms of variables and operators. Each
variable holds a data value of some type (e.g., Boolean), which
can change over time as the computation evolves. Each
operator takes a set of variables as input and produces a new
variable calculated from the value of its inputs. Some operators,
such as sensors, constants, and pattern generators, have no
inputs and report either a function of the environmental
conditions or a value generated by some internal function.
There are also operators, such as actuators and communication,
that have side-effects on environmental conditions. The

dataflow graph representation has the advantage of being
both abstract and universal: any program in any language can
be represented as a dataflow graph with appropriate semantics.
Technically, Proto programs actually describe the flow of

information over continuous regions of space-time (e.g., the
behavior of an entire colony of cells over time), and part of the
interpretation process is a global-to-local transformation from
this aggregate view to the dataflow graph describing the
computation that should happen in single cells at any given
instant of time.16,55 We will not discuss this global-to-local
transformation here, as it is trivial for any program that does
not include cell-to-cell communication.
For purposes of this paper, then, interpretation of Proto to

produce a dataflow graph occurs in two stages. First, each block
of code is evaluated into its corresponding dataflow graph
structure, and these are connected together on the basis of the
relation of the code blocks. Macros act as operators on code
blocks; for example, the statement (macro debug blue) causes
each debug to be replaced with blue. Next, we infer the types of
the variables in the dataflow graph and use standard compiler
techniques for pattern-based heuristic optimization to produce
produce a more compact equivalent computation.

Compilation of Dataflow Graph to AGRN. The abstract
genetic regulatory network (AGRN) model represents a
biological design as a collection of DNA functional units,
chemical species, and regulatory relations. Each functional unit
is a sequence of DNA featurespromoters, open reading
frames, regulatory regions, and terminatorsannotated with
data type, regulation, and product information, as appropriate.
Each chemical species is annotated with the data type that its
concentration represents and the regulatory relations that it
participates in, where a regulatory relation is a chemical species
that activates or represses some promoter or other chemical
species.
Conversion from dataflow graph to AGRN is carried out by

the Proto BioCompiler,5 which uses a method based on design
motifs to first produce an AGRN and then to reduce its
complexity. Motifs, such as those shown in Figure 2(b−d), are
typed patterns that are used to translate each Proto operator in
the dataflow graph into an equivalent biological network
construct (i.e., fragment of an AGRN). Motifs can specify
particular chemical species (e.g., rtTA and Dox in the definition
of the mammalian doxycycline sensor) or leave them undefined
(e.g., the unidentified repressor in not), to be filled in during
the next stage, part mapping. Because they are network
fragment specifications, motifs are composable and can easily
be extended to represent more types of biological construct.
We have enhanced the prior BioCompiler work5 by allowing
type information to be attached to motifs (e.g., the boolean
labels in the primitive definitions). This enables better
optimization and is required for part mapping. We also now
include qualitative reactions (RXN statements) between
chemical species (e.g., the activation of rtTA by Dox).
To transform a dataflow graph to an AGRN, the Proto

BioCompiler first maps each dataflow operator to its associated
motif and each dataflow variable to an unknown regulatory
protein with an arbitrary unique identifier. These fragments are
then stitched together, replacing the motif input and output
variables with the proteins for the corresponding dataflow
variables.
The design complexity of this initial AGRN is then reduced

by applying a set of pattern-based optimizations, thereby
increasing the probability of successful execution in vivo by
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reducing the complexity of the regulatory network as well as the
size of the constructs that must be assembled. These pattern-
based optimizations are based on standard software compiler
optimizations such as dead code elimination, constant
elimination, algebraic simplification, and copy propagation.
Each transforms the AGRN to an equivalent but simpler
network, resulting in a reduced-complexity AGRN. For
example, copy propagation tests whether an activator is used
only to transfer a data value from one functional unit to
another; if so, the original input may be used directly instead.
This likely leaves the activator regulating nothing, which allows
it to be removed by dead code elimination. The optimizations
we use improve on the prior BioCompiler work5 by the
inclusion of additional optimizations and optimizations capable
of further reducing the network size based on type information
in the motifs.
The BioCompiler tests and applies this set of optimizations,

trying to apply each optimization at each location in the AGRN
until none of the optimizations can further reduce the AGRN.
The reduction in the size of the AGRN varies by program, but
it has been observed to reduce network size by up to 83% and
the optimized AGRN is often homologous to designs produced
by human experts.5

The Proto BioCompiler thus translates the behavioral
specification of the genetic program into a structural
description as an AGRN, which factors the desired behavior
into a collection of abstract biological parts that together should
produce the desired functionality.
Part Assignment. The part assignment stage of the TASBE

workflow fills in the underspecified elements of the AGRN to
produce first a fully specified genetic regulatory network, in
which each element is associated with an available DNA part,
and then a linearization of those parts into one or more
complete DNA sequences to be assembled. Our implementa-
tion of this stage is a new tool called MatchMaker (presented in
detail in Yaman et al.38) that solves this problem using a
database of available features, parts, and signal levels.
MatchMaker comprises three algorithms: the feature assign-
ment and signal matching algorithms transform an AGRN into
a GRN; the part assignment algorithm then transforms the
GRN into part sequences.
From AGRN to GRN: Feature Assignment and Signal

Matching. The AGRN specifies the regulatory relationships
required among parts to produce the desired behavior. We
need to match these requirements with the behaviors of
available genetic parts, whether those parts are designed de novo
or curated from natural organisms. We call the specific DNA
sequence associated with a particular behavior a feature. A
feature may be related to other features, e.g., the TetR-
repressible promoter feature is related to the TetR coding
feature due to their natural chemical repression relationship.
Given a database of such features and feature relationships and
a target AGRN to be instantiated, the feature assignment
algorithm maps the elements of the AGRN to a set of features
that match the desired regulatory relationships to features and
feature relationships. This is done by interpreting both AGRN
and feature database as directed graphs and searching the
feature database graph for subgraphs that precisely match the
structure of the AGRN. Any such subgraph is a fully specified
genetic regulatory network that has the qualitative regulatory
relationships specified by the AGRN.
Whether a design will function correctly cannot be

determined by only using the pairwise relationships between

features in isolation. The quantitative nature of these relations
(which must be characterized) may not match the context of
other relations that they link with, causing the network to fail
due to a mismatch of signal levels between relations.
The signal matching algorithm addresses this problem,

testing each GRN to ensure a quantitative match between the
input and output expression ranges of each pair of regulatory
arcs with an input/output relation. The signal matching
algorithm relies on input/output characterization of per-cell
expression level mean and variance, obtained using a character-
ization protocol such as the one presented in Beal et al.51 To
signal match Boolean data values, thresholds for interpreting an
expression level as “true” or “false” are identified for the inputs
and outputs of each regulatory relation. The algorithm then
uses these thresholds and their variances to ensure that the
output signal of each regulatory element of a GRN is at a level
matched to the input threshold of the parts of the GRN driven
by it. Furthermore, the algorithm uses the per-cell expression
variation to select the GRNs with the maximal expected noise
margin, that is, the amount of variation that can be tolerated
without misbehavior.
Together, feature matching and signal matching thus map an

AGRN to one or more fully specified GRNs, optimized to
maximize the amount of variation that can be tolerated and still
correctly implement the AGRN.

From GRN to Part Sequence. The functional units of a
GRN, which have no particular ordering, now need to be
converted into one or more DNA sequences and an associated
set of available DNA samples, which when assembled produce
the DNA sequence of the GRN. Given a database of available
DNA samples, each sample associated with its constituent
genetic parts, and a fully specified GRN, the part selection
algorithm chooses a sequence of samples from the database that
form an exact cover of the set of parts assigned to the GRN, that
is, the ordering relations of the GRN are preserved, every part is
a member of precisely one sample, and no sample contains a
part other than the ones in the GRN. MatchMaker’s part
selection algorithm finds a single sequence of covering samples
using a greedy heuristic that attempts to minimize the number
of samples required.

Assembly. Assembly, the final stage of the TASBE
workflow, takes one or more part sequences and constructs
physical samples comprising that DNA. For this stage, we used
two different implementations: Puppeteer40 is a generalized
protocol automation system, whereas the prototype BioCAD
tool has been specialized for rapid assembly of large networks,
often important for mammalian systems where the size of the
DNA features is typically much larger than E. coli. For our end-
to-end validation, we thus use the more general Puppeteer
system to assemble DNA samples for E. coli and use BioCAD to
assemble DNA samples for HEK293 mammalian cells. Note,
however, that there is no tie between implementation and
platform; given appropriate configuration data and libraries of
samples, Puppeteer and BioCAD are both capable of
assembling the same constructs.

Assembly with Puppeteer. In Figure 6, which shows the
results of gel electrophoresis of the restriction mapped ligation
samples, lanes 1−3 and 4−6 contained samples from the
robotic ligation, and lanes 7−9 contained samples from
identical manual ligations. In each set, the first lane is the
uncut plasmid, and the other two lanes contain a single cut and
double cut plasmid, respectively. The identical bands indicate
that the robotic ligation step and, therefore, the robotic
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digestion step were both successful. Compared to the manual
control, we did, however, see a larger than expected variation in
the reaction volume in all three steps, and in the subsequent
colony count after the ligation step. For example, the ligation
reaction volume in the manual control was 20 μL, whereas the
volume in the two robotic trials was measured to be 14.8 and
16.8 μL. The plates from the manually ligated transformation
had more than 300 colonies, whereas the transformations from
the two trials of robotic ligations yielded 5 and 37 colonies,
respectively. We picked the same number of colonies from both
robotic trials and the manual trial, and the restriction map
(done manually) verified that they were all correct. We
conducted further tests and confirmed that variation in robotics
was the cause of the variation in the reaction volume. Since our
particular execution of the BioBricks protocol involved the
pipetting of liquid volumes as small as 1 μL, it is possible that
the robotic pipetting volume variation may have led to the
exclusion of a significant amount of a key ingredient of the
ligation reaction, e.g., the sample containing the backbone, or
the ligase buffer. This would explain the lower colony count. As
per robot vendor documents, the robotic pipetting is expected
to have a coefficient of variation within 10% when the pipetting
parameters for each liquid type being pipetted are tuned to
match the physical properties of the liquid. In our validation
experiment, we used the default set of parameters as a template
for all liquids and only minimally tuned the parameters. We
believe this is likely to explain the high variation we observed,
which therefore should be correctable by tuning pipetting
parameters.
The Puppeteer system40 is a software system for the

specification and automation of biological protocols. Puppeteer
accepts as input one or more composite parts, a collection of
associated samples, and a supported assembly method. These
are input to an assembly planner for the given assembly
method, which produces an optimized assembly plan, a
sequence of DNA concatenation steps that minimize the total
assembly cost by assembling intermediates that may be used
repeatedly in the set of parts to be assembled. This plan is
converted to a protocol plan by expanding each assembly step
into a sequence of protocol steps for the given assembly
method. Using a protocol library, each protocol step is then
expanded into a sequence of low-level protocol instructions
such as aspirate, dispense, shake, and incubate. These
instructions can be executed either manually or robotically;
where robotic execution is specified, Puppeteer translates these
instructions to robot-specific commands and executes them on
the robot.
For the work described in this paper, we configured

Puppeteer to use the BioBricks assembly method,56 selecting
that method for its frequent use and for the large number of
BioBrick parts available for free from the MIT Registry of
Standard Biological Parts, as well as for the closure property
that implies that any composition of BioBricks is also a
BioBrick. However, Puppeteer can also be applied to other
assembly methods such as Gibson assembly57 and Modular
Cloning assembly.58

Assembling two BioBrick parts into a composite part involves
isolating their plasmids from cell stocks, digesting the parts,
extracting the digested parts using gel electrophoresis, ligating
the digested parts, and transforming them into cells. Each of
these steps can be expressed as a protocol in the Puppeteer
language and saved in its protocol library. Except for the
extraction of a digested part from a gel and the isolation of

plasmids from cells, all steps can be executed on a liquid
handling robot with a basic grasping arm and a pipetting arm.
Complete automation of gel extraction and plasmid isolation
steps requires that the robot have access to a robot-compatible
gel imaging and cutting station and a centrifuge. Our
configuration of Puppeteer executed Puppeteer-generated
restriction digestion and ligation protocol steps on the robot
and all other protocol steps manually.
For BioBrick assembly, Puppeteer generates optimal plans

using the dynamic programming algorithm from Densmore et
al.,59 annotating them with the necessary protocol steps from
the BioBricks protocol library. This plan is represented as a
multitree data structure, where the leaves are the initial parts,
each edge is translated into a restriction digestion protocol with
the appropriate front or back insert or vector cuts,56 and every
branch node is translated into a ligation protocol step. This
annotated assembly graph is then translated by the Puppeteer
compiler40 into an intermediate-level program with specific
pipetting instructions for executing the complete assembly plan
(see Supporting Information for details). These instructions
can be used to execute the assembly plan manually, or further
translated for robotic execution by the same process of protocol
expansion.

Assembly with BioCAD. BioCAD is a new prototype tool
that has been specialized to a two-level multiway assembly
method for rapid assembly of large networks. This is often
important for mammalian systems, where the sizes of DNA
features are typically much larger than in E. coli. The first level
uses three-way Gateway Assembly60 of promoter and gene
entry vectors with positional destination vectors. The second
level uses multiway Gibson Assembly57 to compose the
Gateway expression vectors into large composite parts. This
composite protocol is based on work in Li,61 in which similar
mammalian network assembly of up to 60 Kb has been
demonstrated. BioCAD includes an additional optimization
that permutes Gibson positions to minimize the number of
Gateway reactions required, useful in cases where positional
effects on network functionality are negligible. BioCAD also
supports the Golden Gate and BioBrick assembly protocols.
As with Puppeteer, BioCAD is configured using lab-specific

information, in this case a library file that designates lab-specific
well locations for input parts (Gateway entries) and vectors (for
both Gateway and Gibson steps). It then uses this information
and an interface to laboratory robotics to control laboratory
robotics for automation assistance: Gibson steps and gel
electrophoresis for validation are carried out robotically,
whereas at present the remainder of the protocols are carried
out manually.
Gibson assembly is performed by mixing plasmids contain

transcriptional units with Gibson master mix and a vector
(referred to as the carrier, since the resulting plasmid will be
used for mammalian transfection). Challenges in implementing
Gibson assembly correctly include pipetting small volumes,
keeping the reaction cool (near 0 °C) during setup, and
incubation at 50 °C while minimizing evaporative loss.
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