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Abstract. The use of a phase field to describe interfacial phenomena has a long
and fruitful tradition. There are two key ingredients to the method: the transformation
of Lagrangian description of geometric motions to Eulerian description framework, and
the employment of the energetic variational procedure to derive the coupled systems.
Several groups have used this theoretical framework to approximate Navier-Stokes sys-
tems for two-phase flows. Recently, we have adapted the method to simulate interfacial
dynamics in blends of microstructured complex fluids. This review has two objectives.
The first is to give a more or less self-contained exposition of the method. We will briefly
review the literature, present the governing equations and discuss a numerical scheme
based on different numerical schemes, such as spectral methods. The second objective
is to elucidate the subtleties of the model that need to be handled properly for certain
applications. These points, rarely discussed in the literature, are essential for a realistic
representation of the physics and a successful numerical implementation. The advan-
tages and limitations of the method will be illustrated by numerical examples. We hope
that this review will encourage readers whose applications may potentially benefit from
a similar approach to explore it further.

Key words. Energetic variational formulation, phase field methods, Cahn-Hilliard
equation, two-phase flows, complex fluids, free interfacial motions.

AMS(MOS) subject classifications. 76A02, 76A15, 76A05, 76M30, 76T20,
76T10, 76R99, 76M45,76M22, 76D45, 76B10, 76D05

1. Introduction. Most complex fluids have complicated internal mi-

crostructures, whose conformation is coupled with the macroscopic dynam-

ics of the material [1]. On the one hand, this coupling gives rise to novel

flow behavior. On the other, it plays a central role in achieving desirable
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structure and property in advanced engineering materials. Complex fluids

are often used in composites, of which polymer-dispersed liquid crystals

and polymer blends are good examples [2, 3]. In these two-phase systems,

the components are separated by myriad interfaces that move and deform

with the flow; the interfacial morphology to a large extent determines the

dynamics of the mixture.

A fluid-mechanical theory for two-phase mixtures of complex fluids

has to contend with two difficulties: the moving internal boundaries (or

internal transition regions) and the complex rheology of the components.

The former is a well-known mathematical difficulty. The movement of

the interfaces is naturally amenable to a Lagrangian description, while the

bulk flow is conventionally solved in an Eulerian framework. A great deal

of effort has gone to reconciling these two considerations in a numerical

scheme [4]. The latter difficulty stems from the fact that the rheology of

each component depends on the internal microstructure, which is coupled

with the flow field [5, e.g.]. Thus, these materials feature dynamic coupling

of three disparate length scales: molecular or supra-molecular conformation

inside each component, mesoscopic interfacial morphology and macroscopic

hydrodynamics. The complexity of such materials has for the large part

prohibited theoretical and numerical analysis.

A conceptually straightforward way of handling the moving interfaces

is to employ a moving mesh that has grid points on the interfaces and de-

forms according to the flow on both sides of the boundary. This has been

implemented in boundary integral and boundary element methods [6–8],

finite-element methods [9–11] and a finite-difference method [12, 13]. Be-

sides the overhead in keeping track of the moving mesh, these methods

break down when large displacement of internal domains causes mesh en-

tanglement or when the interfaces undergo singular topological changes

such as breakup and coalescence. Thus, these methods have been lim-

ited mostly to single drops undergoing relatively mild deformations. As an

alternative, fixed-grid methods have been developed that regularized the

interface [4]. These include the volume-of-fluid (VOF) method [14,15], the

front-tracking method [16, 17] and the level-set method [18–20]. All these

approaches have the advantage of converting the Lagrangian description
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of a geometric motion into the Eulerian description. Instead of computing

the flow of the two components with matching boundary conditions on the

interface, these methods represent the interfacial tension as a body force

or bulk stress spread over a narrow region covering the interface. Then a

single set of governing equations can be written over the entire domain and

solved on a fixed grid in a purely Eulerian framework.

The phase-field method is also a fixed-grid method; it differs from

those aforementioned in that the interface is diffuse in a physical rather

than numerical sense. Thus, it is also known as the diffuse-interface model.

More precisely, the diffuse interface is introduced through an energetic

variational procedure that results in a thermodynamic consistent coupling

system. The basic idea was derived from the consideration that the two

components, though nominally immiscible, does mix in reality within a

narrow interfacial region. A phase-field variable φ is introduced, which can

be thought of as the volume fraction, to demarcate the two species and

indicate the location of the interface. A mixing energy is defined based on

φ which, through a convection-diffusion equation, governs the evolution of

the interfacial profile. The phase-field method can be viewed as a physically

motivated level-set method, and Lowengrub and Truskinovsky [21] have ar-

gued for the advantage of using a physically determined φ profile instead

of an artificial smoothing function for the interface. When the thickness of

the interface approaches zero, the diffuse-interface model becomes asymp-

totically identical to a sharp-interface level-set formulation. It also reduces

properly to the classical sharp-interface model in general.

The idea of diffuse interfaces can be traced back to van der Waals

[22–25], and has since been developed for numerous applications, e.g.,

phase transition and critical phenomena [26, 27], solidification and den-

dritic growth in alloys [28, 29], interfacial tension theories [30], phase-

separation [27,31,32] and two-phase flows [33–40]. Recently, Yue et al. [41]

has generalized the theoretical model to simulate interfacial dynamics in

complex fluids. Taking advantage of the energy-based formulation, they

are able to resolve the dual difficulties for complex fluid mixtures—moving

interfaces and complex rheology—in a unified framework. So far, Yue and

coworkers have applied the method to a number of problems on drop dy-

namics of viscoelastic and liquid crystalline fluids [42–46]. In the following,

we first give a brief but self-contained derivation of the theoretical model,

and describe a numerical algorithm using spectral methods. Then we will

illustrate the advantages and limitations of the model by numerical exam-

ples. We hope to convince the reader that the diffuse-interface idea can be

developed into a unique CFD tool for multi-phase and multi-component

complex fluids.
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2. An energy-based phase-field theory. The phase-field model

can be derived from the general procedure of Lagrangian mechanics [21,37].

We write out the Lagrangian (action functional) of the system based on

its free energy, and carry out variations with respect to the field variations

(and the flow map). This amounts to following the “least-action principle”

and various dynamical laws, and will lead to evolution equations for these

variables (including the momentum equation — force balance equations).

The dissipative portions of these equations need to be derived separately,

for instance via irreversible thermodynamics [47]. The entire procedure

has been demonstrated previously for Newtonian, viscoelastic and nematic

liquid-crystalline fluids [37,41,48], and even for fluid-structure interactions

(with the help of a Eulerian description of elasticity) [49]. In the following,

we will use an example of a Newtonian-nematic blend with planar anchoring

for illustration.

For an immiscible blend of a nematic liquid crystal and a Newtonian

fluid, there are three types of free energies: mixing energy of the inter-

face, bulk distortion energy of the nematic, and the anchoring energy of

the liquid crystal molecules on the interface. We introduce a phase-field

variable φ such that the concentration of the two components is (1 + φ)/2

and (1 − φ)/2, respectively. We express the mixing energy density in the

Landau-Ginzburg form:

fmix(φ,∇φ) =
λ

2
|∇φ|2 +

λ

4ǫ2
(φ2 − 1)2, (2.1)

where the parameter λ is the mixing energy density, and ǫ is a capillary

width representative of the thickness of interface. The gradient energy term

λ|∇φ|2/2 and the bulk energy term f0 = λ(φ2 − 1)2/(4ǫ2) represent the

“philic” and “phobic” tendencies between the species, their competition

giving rise to the equilibrium φ profile. Note that fmix is the diffuse-

interface counterpart of the interfacial tension. In fact, one can relate the

conventional interfacial tension σ to the parameters in the mixing energy.

For instance, from an equilibrium hyperbolic-tangent φ profile that is the

1D energy minimizer, one obtains [34,41]

σ =
2
√

2

3

λ

ǫ
. (2.2)
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The orientation of the nematic liquid crystal is described by the direc-

tor field n(x). The Frank distortion energy expresses the energy penalty

for distorting the orientation [50]:

fbulk = K

[

1

2
∇n : (∇n)T +

(|n|2 − 1)2

4δ2

]

, (2.3)

where K is the elastic constant. The second term on the right-hand side

regularized the original Frank energy to allow defects [51]. The nematic

prefers to orient on the interface along an easy axis [50]; any deviation from

it is penalized by an anchoring energy. Here we assume that the easy axis

is any direction in the tangential plane, and write the anchoring energy as

fanch =
A

2
(n · ∇φ)2, (2.4)

with the positive constant A representing the anchoring strength. This is

the diffuse-interface counterpart of the Rapini-Popoular energy [52]. Unlike

in the sharp-interface picture, both fmix and fanch are volumetric energy

densities. Finally, the total free energy density for the two-phase material

is written as:

f(φ,n,∇φ,∇n) = fmix +
1 + φ

2
fbulk + fanch (2.5)

where (1+φ)/2 is the volume fraction of the nematic component, and φ = 1

in the purely nematic phase.

Variation of the system’s action functional with respect to the phase-

field variable φ, the nematic director n and the displacement leads to evo-

lution equations for φ, n and the momentum equation. Augmented by the

dissipative effects, the governing equations of the system are:

∂φ

∂t
+ v · ∇φ = γ1∇2 δF

δφ
(2.6)

∂n

∂t
+ v · ∇n = γ2h, (2.7)

∇ · v = 0, (2.8)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+ ∇ ·
[

µ(∇v + ∇vT ) + σe

]

, (2.9)
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where γ1 is the interfacial mobility and γ2 determines the relaxation time

of n. F =
∫

fdΩ is the total free energy of the system, whose variations

produce

δF

δφ
= λ

[

−∇2φ+
φ(φ2 − 1)

ǫ2

]

+
1

2
fbulk −A∇ · [(n · ∇φ)n] , (2.10)

and the molecular field

h = −δF
δn

= K

[

−∇ ·
(

1 + φ

2
∇n

)

+
1 + φ

2

(n2 − 1)n

δ2

]

+A(n · ∇φ)∇φ.
(2.11)

Note that the right-hand side of the dynamic equation (2.6) dictates

the relaxation of the phase-field variable φ, with a relaxation time propor-

tional to 1/γ1. In the limit of γ1 approaching zero, we recover the kinematic

condition for the interface. Moreover, as ǫ approaches zero, the dynamics

of φ will preserve the profile of the transition (hyperbolic-tangent in this

case), a key advantage of phase field approach. The last two terms in

equation (2.10) represent coupling between the phase field and the Frank

distortion energy and anchoring energy. When the interface is thin, fbulk

is dominated by the mixing energy near the interface and therefore neg-

ligible. The last term may have an effect on the interfacial φ profile for

strong anchoring. But it is a higher order effect, negligible if the effects

of interfacial tension and surface anchoring are assumed to be additive (cf.

equation (2.12) below). Thus for simplicity, the last two terms on the

right-hand-side of equation (2.10) are neglected hereafter. There are ap-

plications, e.g. [28], where the interface is relatively thick and the φ profile

has physical consequences.

In the variation with respect to displacement, we have assumed equal

density between the two species. A small density mismatch may be handled

by the Boussinesq approximation [37]. In the more general situation, the

mass-averaged mixture velocity becomes non-solenoidal within the interfa-

cial region, and a theory for compressible mixtures can be constructed [21].

The pressure is a Lagrange multiplier for the constraint of incompressibility.

The elastic stress tensor is derived as part of the variational procedure [41],

and in this case can be written out as

σe = −λ(∇φ⊗∇φ) −K
1 + φ

2
(∇n) · (∇n)T −A(n · ∇φ)n ⊗∇φ. (2.12)
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3. Numerical scheme. While the coupled nonlinear system (2.6–

2.9) are adequate mathematical models for the mixtures of complex fluids,

it is a challenging task to construct a numerical scheme which is capable of

correctly capturing, at a reasonable cost, the complex spatial and temporal

features of these two-phase flows.

We propose to discretize the coupled nonlinear system (2.6–2.9) in time

with a stabilized semi-implicit second-order scheme. The guiding principle

here is that we only want to solve decoupled, constant-coefficient elliptic

equations at each time step while preserving the overall second-order time

accuracy and having a reasonably large stability region.

To simplify the presentation, we shall only describe our approach for

the Cahn-Hilliard equation

∂φ

∂t
+ γ∇2(∇2φ− (|φ|2 − 1)φ

ǫ2
) = h1, (3.1)

and for the time-dependent Stokes equations

∂v

∂t
− ν∆v + ∇p = h2,

∇ · v = 0,
(3.2)

where the forcing functions h1 and h2 would include all the extra nonlinear

terms in (2.6–2.9) which will be treated explicitly to avoid solving nonlin-

ear equations at each time step. The treatment for the nematic director

equation 2.7) is very similar.

Let us consider first the Cahn-Hilliard equation (3.1). A main diffi-

culty associated with the numerical approximation of (3.1) is that a stan-

dard semi-implicit scheme leads to a very stiff system (when ǫ≪ 1) which

dictates a very small time step. This difficulty can be alleviated by using

the following shifted semi-implicit scheme:

3φk+1 − 4φk + φk−1

2∆t
+ γ(∆2 − Cs

ǫ2
∆)φk+1 = 2hk

1 − hk−1
1

+
γ

ǫ2
∆[2(|φk|2 − (1 + Cs))φ

k

− (|φk−1|2 − (1 + Cs))φ
k−1];

(3.3)
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where Cs is a stabilizing parameter typically in the range of [1, 5]. Ample

numerical results indicate that the above stabilized semi-implicit scheme

allows much larger time step than the standard semi-implicit scheme does.

We observe that (3.3) is a fourth-order equation for φk+1 with constant

coefficients.

Next, we describe our approach for solving the time-dependent Stokes

problem (3.2).

• If the boundary conditions are periodic, the pressure in (3.2) can

be easily eliminated using the divergence-free conditions so (3.2)

can be efficiently solved by using a Fourier-spectral method [37].

• If the velocity satisfies a free-slip boundary condition (cf. [53]),

then, the time discrete approximation of (3.2) can be split into

a sequence of Poisson-type equations for the velocity and for the

pressure.

• If the boundary conditions in all but one direction are periodic,

(3.2) can be reduced into a sequence of one-dimensional fourth-

order equations using a Fourier expansion in all but one direction

[54].

• Finally, for the general cases, we shall use a projection type scheme

(see the recent review paper [55]) to decouple the computation

of the velocity from the pressure. For example, we may use the

new consistent splitting scheme introduced in [56]. To be specific,

we assume here that the velocity is subjected to a homogeneous

Dirichlet boundary condition:

3vk+1 − 4vk + vk−1

2∆t
− ν∆vk+1 + ∇(2pk − pk−1)

= 2h2

k − h2

k−1,

vk+1|∂Ω = 0,

(3.4)

(∇ψk+1,∇q) = (
3vk+1 − 4vk + vk−1

2∆t
,∇q), ∀q ∈ H1(Ω), (3.5)

pk+1 = ψk+1 + 2pk − pk−1 − ν∇ · vk+1, (3.6)

Note that (3.4) is a Poisson-type equation for vk+1 while (3.5) is

a Poisson equation (with homogeneous Neumann boundary condi-

tions) in the weak form for ψk+1.
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Hence, after a time discretization to the coupled nonlinear system

(2.6–2.9), we only need to solve, at each time step, a sequence of constant-

coefficient elliptic equations which can be efficiently handled by one of the

many existing numerical methods using finite difference, finite elements or

spectral methods. Since we shall confine ourselves to simple geometries in

this study, we choose to use the well-conditioned and fast spectral-Galerkin

methods developed in [54, 57, 58] which are capable of solving constant-

coefficient elliptic equations in simple geometries with quasi-optimal com-

putational complexity, i.e., the number of operations per time step is of

order O(N logN), N being the number of unknowns. The high resolution

property of the spectral method and the efficiency of the fast spectral-

Galerkin algorithms allow us to numerically solve the coupled nonlinear

system (2.6–2.9) at a reasonable cost. For example, with a 750 MHz Sparc-

v9 processor, the two-dimensional problems with a spatial resolution of

1024 × 1024 or 2048 × 1024 typically take about 1 minute of CPU time

per time step. For all the simulations reported below, we have carried out

grid and time-step refinements to ensure convergence. If we take 4.164ǫ

to be a nominal interfacial thickness (cf. [41]), this layer typically requires

7–10 grids to resolve. Coarser grids will generate spurious oscillations in

the solution, especially in the vicinity of the interface.

4. Advantages of the diffuse-interface model. Needless to say,

the greatest payoff of adopting a diffuse-interface picture is the ease with

which moving interfaces can be handled. Compared with the traditional

sharp-interface view of internal boundaries, there is no longer a need to

track the position of the interface, and to impose matching boundary con-

ditions for solving the flow inside each component separately. As mentioned

earlier, the interfacial tension is now represented by an elastic stress tensor

concentrated in the interfacial region. The cost is the additional dynamics

for φ; we have to deal with the physics of the convection-diffusion process

as well as the numerical burdens of an additional equation. These will

be discussed in the next section among the subtle issues that need special

consideration.

The diffuse-interface formulation also brings about several “side bene-

fits” that may be of great importance to the physical applications at hand.

Here, we illustrate in some detail three of such benefits that we have noted

in our simulations. These advantages reflect the fact that the phase-field

idea transforms the Lagrangian description of a geometric motion into Eu-

lerian coordinates, and easily represents the competition between various

energy functionals for the multiphase material.
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4.1. Short-range molecular forces during topological changes.

For the same reason that the phase-field method handles moving interfaces

easily, so it does singular topological changes such as breakup and coa-

lescence. In the sharp-interface convention, such events require an ad hoc

treatment. For filament breakup and drop coalescence, for example [59,60],

the thinning neck or film has to be artificially removed once its thickness

reaches a prescribed threshold. In contrast, the diffuse-interface is repre-

sented by the contour of φ = 0, which deforms and reconnects smoothly

during flow. Thus, no artificial trigger is needed for drop breakup and

coalescence. As an example, Fig. 1 illustrates the head-on collision and

subsequent coalescence of two Newtonian drops in a Newtonian matrix.

The draining film develops a “dimple” in the middle [61] and the rupture

occurs toward the outside of the film, trapping some matrix fluid inside.

In reality, film rupture is effected by short-range forces such as van

der Waals force [62]. Interestingly, the phase-field model is rooted in the

physics of molecular interaction between the two species, and thus contains

short-range molecular forces. To see this, consider the simple situation in

Fig. 2, with a liquid film (F) of uniform thickness h sandwiched between

semi-infinite domains of another fluid (A). For a thick film, the phase-field

variable at the center approaches the bulk value, say φ0 → −1, at the

center. For a thin film, however, conceivably φ inside F will differ from

the bulk value: φ0 > −1. From the elastic stress tensor due to the mixing

energy (cf. [42]), one may calculate the disjoining pressure in the diffuse-

interface model:

Πφ = −λf0 = −λ(φ2
0 − 1)2

4ǫ2
. (4.1)

which implies an attractive force between the interfaces as with van der

Waals force. If we estimate φ0 based on a hyperbolic tangent φ-profile as

in a one-dimensional equilibrium interface [41],

φ0 = − tanh

(

h

2
√

2ǫ

)

, (4.2)

Then the disjoining pressure in Eq. (4.1) can be shown to be of the same

order of magnitude as the van der Waals force. As the film thickness

approaches zero, however, the van der Waals force goes to infinity while Πφ

remains finite. A more detailed comparison can be found in Ref. [42]. On

a fundamental level, the discrepancy between van der Waals force and Πφ

stems from the truncation of the Cahn-Hilliard free energy at the quadratic

term |∇φ|2. An elegant explanation has been given by Pismen [63].
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Fig. 1. Collision and coalescence of two Newtonian drops in a Newtonian
matrix. The Reynolds number, defined using D and U , is Re = 33.6, and the
Weber number is We = 12. Other parameters are: ǫ = 0.01 and γ = 3.365×10

−5

(after Yue et al. [41], c©Cambridge University Press.)

Fig. 2. A cartoon for a draining film and the corresponding φ profile.

4.2. Complex rheology. Because of its energy-based formalism, our

diffusive interface method incorporates complex rheology easily. The non-

Newtonian rheology is typically due to microstructures whose conformation
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deviates from equilibrium under deformation. The conformation of the mi-

crostructure is often governed by a free energy, e.g., the Frank distortion

energy for a liquid crystal or the free energy of a polymer chain. In Sec-

tion 2, we showed how this microstructural energy can be added to the

mixing energy to form the total free energy of the multi-phase system,

which will give rise to the proper constitutive equation for the microstruc-

tured fluids in addition to the evolution equation of the phase field variable.

Thus, interfacial dynamics and complex rheology are included in a unified

theoretical framework.

This procedure is general in that various types of constitutive relations

can be derived by the same procedure. As a second example, we consider

here the important case of a viscoelastic polymer solution modeled as a sus-

pension of Hookean dumbbells in a Newtonian solvent [64]. Instead of the

least-action principle, we follow a formally different but essentially equiv-

alent “virtual-work principle” [5]. For a single dumbbell with a connector

Q, its elastic energy is 1
2HQ · Q, where H is the elastic constant. For an

ensemble of dumbbells with configuration distribution Ψ(Q), the average

energy can be written as

fd =

∫

R3

(

kT lnΨ +
1

2
HQ · Q

)

ΨdQ, (4.3)

where k is the Boltzmann constant and T is the temperature, and the

integration is over all possible configurations of Q. Now the total free

energy density of the two-phase system is:

f = fmix +
1 + φ

2
nfd, (4.4)

where n is the number density of the dumbbells. Since the stress tensor

due to fmix has been derived (cf. equation 2.12 and [41]), we will only

consider the elastic stress due to the dumbbell energy fd. We impose a

virtual displacement δx on the material, which takes place instantaneously

so that the dumbbells deform affinely with no slip between the bead and the

surrounding fluid. The corresponding change in the distribution function Ψ

can be obtained from the Fokker-Planck equation for Ψ [64]. Now we may
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calculate the resultant variation in the dumbbell free energy. Omitting the

intermediate steps [42], we eventually arrive at:

δfd =

∫

R3

(

kT lnΨ + kT +
H

2
Q : Q

)

δΨdQ

= (−kTI +H < QQ >) : (∇δx)T, (4.5)

where < · >=
∫

R3 ·ΨdQ and I is the identity tensor. Thus the dumbbell

stress tensor is:

τ d = −nkTI + nH < QQ >, (4.6)

which obeys the Maxwell equation. This is exactly the Kramers expression

for the polymer elastic stress tensor [64]. The same procedure can be

followed for other microstructural free energies, such as the Marrucci-Greco

nematic potential energy for liquid-crystalline polymers [5, 65].

4.3. Energy conservation. An additional advantage of the phase-

field method over other interface-regularizing methods is its energy con-

servation: a solution to the governing equations in Section 2 obeys an

energy law. For example, multiplying equation (2.9) by the velocity v,

equation (2.6) by the chemical potential δF/δφ and equation (2.7) by the

molecular field δF/δn, integrating over the entire domain and summing

the results, we obtain:

d

dt

∫

Ω

(ρ

2
|v|2 + f

)

dΩ = −
∫

Ω

(

µ∇v : ∇vT + γ1

∣

∣

∣

∣

∇δF

δφ

∣

∣

∣

∣

2

+ γ2

∣

∣

∣

∣

δF

δn

∣

∣

∣

∣

2
)

dΩ,

(4.7)

where f is the system’s potential energy density (cf. equation 2.5), and

surface work has been omitted. Physically, the law states that the total

energy of the system (excluding thermal energy) will decrease from in-

ternal dissipation. Based on such energy laws, Lin and Liu [66, 67] have

established the existence of classical and weak solutions for Leslie-Ericksen

fluids. In general, energy laws play an important role in the convergence

of finite-dimensional approximations to partial differential equations, espe-

cially when the solution is not smooth [51]. This constitutes one of the

advantages of our method over previous methods that do not maintain the

system’s total energy budget. In VOF simulations, density is the labeling
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function subjected to smoothing. The level-set method renormalizes the

distance function. In either case, the conservation of energy cannot be

maintained.

Note that the energy conservation holds exactly when all the coupling

terms in equation (2.10) are kept. For numerical conveniences, we have

omitted such terms in applications where the interface will remain thin

and the coupling terms have at most a localized effect. This omission

will violate the energy conservation. When the geometry is simple and the

solution is smooth, non-conservation of energy usually does not compromise

the quality of the solution. But difficulties may arise in the presence of rapid

spatial variations, which are characteristic of microstructured fluids with

internal boundaries and/or defects [1, 43].

5. Physical and numerical subtleties. Although the convergence

of the phase-field model to the sharp-interface model has been established

by asymptotic expansion for regular velocity fields [21,24,25,33,37,39,40],

there are some subtle issues that merit further discussion. One such issue,

for example, concerns incompressibility. While the phase-field formulation

imposes incompressibility throughout the domain (hence also on the inter-

face), the sharp-interface model satisfies this condition only weakly on the

interface. In fact, the system would be over-determined with such a con-

straint on the interface. For phase-field models, we are allowed to impose

∇ · v = 0 everywhere thanks to the diffused transition layer. The same

holds for VOF and level-set methods through the introduction of an artifi-

cial transition layer. Physically, one may consider the sharp interface and

the diffuse interface different approximations of the real physical situation,

the former by relaxing incompressibility on the interface and the latter by

introducing the transition layer.

The phase-field method can be viewed from two complementary an-

gles: as a representation of the microscopic physics on the interface or

as a numerical device for simulating moving boundary problems without

tracking the interface. Depending on the applications, one or the other

viewpoint may be more appropriate. For applications such as solidification

of alloys [28, 29] and near-critical systems [26, 33], it is essential to ensure

14



that the phase-field equation captures the dynamics at the interface be-

cause the interfacial profile is of direct interest. On the other hand, the

two-phase flow problems we have simulated involve “immiscible” compo-

nents with interfacial thickness on the order of tens of nanometers. Beyond

indicating the position and movement of the interface, the φ profile has lit-

tle direct bearing on the macroscopic properties of interest. Thus, there is

a degree of freedom or ambiguity in choosing the dynamics of the phase

field and the parameter values. In particular, the interfacial thickness in

the model can be much thicker than in reality; there is no need, nor perhaps

the capability, to resolve the interface down to nanometer scales. From this

an array of subtle issues arise, which must be handled with care for the

model to be physically sound and numerically efficient.

5.1. Cahn-Hilliard and Allen-Cahn dynamics. As long as our

physical problem conceptually consists of sharp interfaces, the diffusion

dynamics of the phase-field variable is to a large extent fictitious. Thus,

one can choose Cahn-Hilliard, Allen-Cahn or other types of dynamics. We

can view all such choices as a relaxation or approximation of the kinematic

transport equations. Based on similar considerations, we have neglected

certain coupling terms in the Cahn-Hilliard equation due to presence of

microstructures (cf. equation 2.10). One requirement on the diffusion

dynamics is that they maintain the integrity of the interface. In other

words, the “phobic” and “philic” tendencies should be balanced such that

the transition layer neither smoothes out nor steepens into a shock wave.

The Cahn-Hilliard equation follows from the physical argument that

the flux be proportional to the gradient of a generalized chemical potential.

This differs from the conventional Fick’s law, which leads to the Allen-Cahn

dynamics. The advantage of the Cahn-Hilliard equation is the following

conservation of total system “mass”:

d

dt

∫

Ω

φ(x, t) dx = 0, (5.1)

if the following no-flux boundary condition is imposed.

∂

∂n

(

δFmix

δφ

)

= 0, (5.2)
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where n is the normal direction to the boundary.

A disadvantage of the Cahn-Hilliard equation is that its higher (4th)

order causes numerical complications. Shen [54] and Yue et al. [41] used

a procedure of splitting it into two second-order Helmholtz equations.

The Allen-Cahn equation is easier to handle numerically but does not

automatically ensure conservation of mass; a Lagrange multiplier can be

introduce to enforce it as a constraint [68]:

∂φ

∂t
+ v · ∇φ = γ1(−

δF

δφ
+ σ), (5.3)

with
∫

Ω
φ(x, t) dx =

∫

Ω
φ(x, 0) dx.

Another possibility is the “advected field” method [69], which is a

compromise between phase-field and level-set approaches. To impose mass

conservation on the Allen-Cahn equation, an additional term proportional

to the local curvature is added:

∂φ

∂t
+ v · ∇φ = γ1

[

df0
dφ

− (∆φ+ c|∇φ|)
]

, (5.4)

where c is the curvature of interface. In the sharp-interface limit, the new

term cancels the diffusion flux incurred by the Allen-Cahn dynamics, thus

mass is conserved. On the downside, the ad hoc term prevents interfacial

tension to be incorporated into the momentum equation via the phase field.

Instead, it has to be added “by hand” through a spread-out delta function

as in level-set and VOF methods.

Finally, we must point out that the phase-field dynamics do play a

central role in a special class of two-phase flow problems where the interface

undergoes topological changes such as breakup or coalescence [42]. The

length scale of such critical processes approaches that of the interfacial

thickness. In reality, these processes are dominated by short-range forces.

As illustrated in the last section, the Cahn-Hilliard dynamics does contain

a type of short-range force; it produces a disjoining pressure comparable

to the van der Waals force. Then the question arises as to how closely this

type of short-range force approximates reality in a particular experiment.

The answer likely depends on the complex details of the experiment, as

short-range forces from several sources can take part, typically imparting

a stochasticity to the problem [70,71].
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5.2. Interfacial relaxation. Secondary to the ambiguity in interfa-

cial dynamics is the determination of parameter values. For the diffuse

interface to reproduce the macroscopic behavior of a sharp-interface, the

model parameters must be judiciously chosen. In particular, the parameter

γ1 determines the rate of relaxation of the φ field. However, there is little

experimental information on γ1 for the thin-interface two-phase flows that

we are interested in. Jacqmin [34] juxtaposed two considerations on this:

“straining flows can thin or thicken an interface and this must be resisted

by a high enough diffusion. On the other hand, too large a diffusion will

overly damp the flow”. We will discuss several manifestations of interfacial

relaxation in the following.

One interesting effect of interfacial relaxation is the initial “contrac-

tion” of a drop in a quiescent fluid. As an initial condition, we impose the

hyperbolic tangential φ profile at the interface (equation 4.2), with φ = ±1

in the two bulk phases. On commencing the simulation, however, we notice

a very small shift in φ such that the interface φ = 0 shrinks slightly, and φ

deviates from ±1 slightly in the bulk (Fig. 3). The reason for this artificial

shrinkage is that the initial φ field is not the equilibrium one that minimizes

the total free energy in 2D. Thus, the interface tends to shrink to reduce the

mixing energy. Since
∫

Ω
φdΩ is conserved by the Cahn-Hilliard equation

with the zero-flux boundary condition (equation 5.2), the shrinking inter-

face causes the bulk φ value to change slightly, incurring an energy penalty

in the bulk energy f0. The competition between the bulk and interfacial

energies results in a slightly relaxed φ field that has a lower energy than

our initial condition. For a circular drop of radius r, one can calculate the

shift in the bulk value of φ analytically if ǫ/r ≪ 1:

δφ =
√

2ǫ/6r. (5.5)

In general, such a formula will not be available. But one may always choose

a sufficiently small ǫ so that the initial shift is insignificant to the accuracy

of the results.

Another important consequence of interfacial relaxation is the change

in apparent interfacial tension [41,43]. To simulate an experiment with two

immiscible fluids, one chooses appropriate values for the mixing energy λ
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Fig. 3. A diagram showing the initial contraction of a drop in a quiescent matrix
fluid.

and capillary width ǫ so as to match λ/ǫ to the experimental interfacial

tension σ according to a formula based on some equilibrium φ profile [34,41].

As φ evolves during flow, the matching formula no longer holds. Yue et al.

[41] have shown an example of drop deformation in shear flows, where the

deviation of the φ profile from the equilibrium one increases the effective

interfacial tension. As a result, the drop deformation is underpredicted.

Since the rate of relaxation is controlled by γ1, it has an effect on the drop

deformation as well. In this case, Fig. 4 shows that a smaller γ1 increases

the drop deformation slightly.

5.3. Interfacial thickness. The capillary width ǫ is another param-

eter that needs to be chosen carefully. This is a well-recognized issue in

phase-field models for alloy solidification [29]. In our simulations of two-

phase flows, the interfacial thickness h, defined for example by 90% of the

jump in φ, is typically on the order of 4ǫ. The smallest h that one can

resolve depends on the macroscopic length scale and the computational
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Fig. 4. Effect of the mobility parameter γ1 on the deformation of a drop after
startup of a simple shear. The drop is Newtonian while the matrix is a viscoelastic
Oldroyd-B fluid. (after Yue et al. [41], c©Cambridge University Press.)

capacity. But it is typically much thicker than the nano-scale real inter-

faces. Thus, it is a delicate task to pick an ǫ within one’s computational

reach that produces approximately the correct macroscopic behavior of a

much thinner interface. As mentioned before, ǫ affects the effective interfa-

cial tension, the relaxation of the interface and the short-range molecular

forces. The philosophy behind choosing an appropriate value is perhaps

best illustrated by a situation involving drastic topological changes.

Figures 5 and 6 show simulations with a larger or smaller ǫ than in

Fig. 1 with all other parameters unchanged. The early stage of the simula-

tions, say for t ≤ 1.342, is identical with Fig. 1. This is before the interfacial

profiles of the two drops overlap. For a larger ǫ, the interfaces of the two

drops overlap at an earlier time during their approach, and the ensuing coa-

lescence occurs more readily (Fig. 5). Note that the interface does not have

time to develop the dimpled shape, and no matrix fluid is trapped inside

the drop. On the other hand, a smaller ǫ prolongs the coalescence process

19



Fig. 5. Collision and coalescence of two Newtonian drops in a Newtonian matrix
with a thicker interface. The parameters are the same as Fig. 1 except for ǫ = 0.02.
(after Yue et al. [42], c©Elsevier.)

Fig. 6. Collision and coalescence of two Newtonian drops in a Newtonian matrix
with a thinner interface. The parameters are the same as Fig. 1 except for ǫ = 0.005.
(after Yue et al. [42], c©Elsevier.)

(Fig. 6). As compared with Fig. 1, the points of rupture are more toward

the ends of the film. This produces a less pronounced waist in the resultant

compound drop, and the entrapped matrix filament does not break up but

retracts into a droplet. The optimal ǫ cannot be determined by an a priori

criterion. Rather, it needs to reflect the range of the molecular forces at

work in the particular experiment to be simulated. Owing to a degree of

randomness in the short-range forces, the coalescence time in experiments

often exhibits a Gaussian distribution [70, 71]. Obviously, such intricate

details cannot be reproduced by the disjoining pressure in a phase-field
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formulation. Instead, one may hope to capture the macroscopic dynamics

in some average sense by using optimal values for the model parameters.

Note that the effect of ǫ is not to be confused with numerical resolution

of the interface. For each ǫ value tested here, mesh refinement has confirmed

that the grid used is adequate for resolving the interface (see also [41]).

5.4. Adaptive mesh refinement. We argue that adaptive mesh re-

finement is capable of addressing all aforementioned issues. As has been

established before, the diffuse-interface model will stay close to the sharp-

interface model, with the conventional interfacial tension, when the interfa-

cial thickness tends to zero [33,37]. Note that the φ profile as a solution to

equation (2.6) is “nontrivial” only within the interfacial layer, whose thick-

ness scales with ǫ. Therefore, for sufficiently small transition thickness ǫ and

elastic relaxation time γ, the effect of interfacial relaxation becomes negli-

gible, and the difference between Cahn-Hilliard and Allen-Cahn dynamics

becomes irrelevant. In fact, they represent two different regularizations of

the kinematic transport of the phase field.

However, in some cases, such as those involving surfactant monolayers,

the interfacial profile needs to be numerically resolved for accurate evalua-

tion of the interfacial stress. The disparity between small ǫ and the global

length scale implies the need for a locally refined grid inside the interfacial

region.

Although procedures for dynamically adaptive meshing seem to be

available [72,73], they have not been used in a diffuse-interface framework as

we are aware. So far, we have used spectral methods with structured grids;

the resolution of the interface is the numerical bottleneck [41] that must

be tackled before the method can be used for large-scale flow simulations

in three dimensions. Such an adaptive meshing scheme seems to be most

conveniently implemented within a finite-element formulation. In addition,

moving-mesh schemes may serve the same purpose. Code development

along both directions is underway, and will be reported in the near future.
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5.5. Topological control. So far we have considered it an advan-

tage that the phase-field method automatically handles topological changes

such as merging and rupture of interfaces. This is the case when the na-

ture of the short-range forces are understood and more or less adequately

represented by the phase-field dynamics [42]. In certain applications, how-

ever, this may become a liability [74]. For instance, surface-active agents

greatly modify the behavior of interfaces, stabilizing drops in emulsions

and bubbles in foams against coarsening [1]. Membranes may prevent vesi-

cles in contact from coalescing. If one chooses to use a phase-field model

in such situations, it is desirable to retain some control of the topological

events within the model. This consists of retrieving topological information

from the phase field formulation, monitoring the occurrence of topological

events, and even using the information to design a criterion for prohibiting

unphysical changes of topology.

Du et al. [75] have recently developed a method for topological control

in a phase-field model via the Euler number. The idea, briefly outlined

below, applies equally well to other simulation methods for free boundary

and interface problems such as the level-set methods.

Given an oriented (regular) compact (i.e., without boundary) surface

Γ, the well-known Gauss-Bonnet formula states that
∫

Γ

K ds = 2πχ, (5.6)

where K = k1k2 is the Gaussian curvature of the surface in R3, ds is the

area element and χ/2 in 3D or χ in 2D is the Euler number [76]. The

number χ is a commonly used topological quantity. For some frequently

encountered surfaces, we have χ = 2 for a sphere, χ = 0 for a torus and

χ = −2 for a torus with 2 holes. For 2D curves, K is the curvature and

χ = 1 for a circle.

Such a concept can be generalized to the cases involving singularities,

as illustrated in Figure 7. For instance, in 2 dimensional cases, we will have

that:

2πη =

∫

Γ

K ds+
n
∑

i=1

(π − αi) = 2πχ+
n
∑

i=1

(π − αi), (5.7)

22



Fig. 7. Singular cases in 2-D. The inner intersect angles are π, 0, π/2 for cases
a, b and c respectively. The Euler number χ is 2, 1 and 1.5. The Euler-Poincaré index
number η is always 2.

where αi are the inner angle at each vertices. And η, the Euler-Poincaré

index number, is the topological integer, the genus of the surface.

In [75], we derived a phase-field representation of χ. Let Γ be a smooth

oriented compact surface of a domain Ω in R3 (note that Γ is allowed to

have multiple disconnected pieces). Let p be a monotonically increasing

function defined from R to R with p(0) = 0. We define the phase-field

function as φ(x) = p(d(x)) where the signed distance function d(x) =

dist(x,Γ) is defined to be positive inside Ω and negative outside Ω. The

level sets of φ are denoted by Γµ = {x ∈ Ω|φ(x) = µ}. In particular, we

have Γ = Γ0. We also define Ω′ = {x ∈ Ω | b < φ(x) < a}, which forms a

banded (layered) neighborhood around the surface for b < 0 < a. Further

define Λ(M) = λ1(M)λ2(M) = Λ(∇2d(x)) for a singular matrix M with

λ1, λ2 being the two non-zero eigenvalues of M = ∇2d(x). Since we can

view that k1, k2 remain close to constant along the normal directions in the

thin layer region Ω′, we have that

χ

2
=

1

4π

∫

Γ

k1(x)k2(x) ds

=
1

4π(a− b)

∫ p−1(a)

p−1(b)

p′(τ)dτ

∫

Γ

k1(x)k2(x) ds

=
1

4π(a− b)

∫

Ω(a,b)

p′(d(x))k1(x)k2(x) dx (5.8)

=
1

4π(a− b)

∫

Ω(a,b)

p′(d(x))Λ(∇2d(x)) dx

=
1

4π(a− b)

∫

Ω(a,b)

1

p′(d(x))
Λ(∇2φ− p′′∇id∇jd) dx . (5.9)
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In practice, the function p and the constants a, b will be chosen such that p′

is relatively small outside of the transition layer. Now, since p(x) is mono-

tone, hence we have that p′(d(x)) = |∇φ(x)| and p′′(d(x)) = ∇|∇φ|2·∇φ

2|∇φ|2 . In

the end we have the following theorem [75]:

Theorem 5.1. If φ = φ(x) of Ω as φ(x) = p(d(x)) where the signed

distance function d(x) = dist(x,Γ). For any monotone increasing function

p, there exists b < 0 < a, such that the following matrix M , where

M(x)ij =
1

2
√

π(a− b)|∇φ|
(∇i∇jφ− ∇|∇φ|2 · ∇φ

2|∇φ|4 ∇iφ∇jφ) , (5.10)

is a singular matrix for ∀x ∈ Ω(a, b) in the sense that it always has a zero

eigenvalue, and the Euler number of Γ can be obtained as:

χ

2
=

∫

Ω(a,b)

F (x) dx (5.11)

where F denote the coefficient of the linear term of the characteristic poly-

nomial of M .

Numerical simulations, such as that in Figure 8 and Figure 9, show

that the Euler number thus computed indeed captures the occurrence of

critical topological events [75].

Fig. 8. Coalescence of two bubbles in a Newtonian fluid with the time valued at
0.00, 0.10, 0.18, 0.22, 0.24, 0.28. (after Du et al. [75].)

Besides detecting the occurrence of critical topological events, this

quantity also provides an important tool in designing a scheme to prevent

topological changes from happening. For instance, one may use a Lagrange

multiplier to enforce the constancy of the Euler number over the entire do-

main. Since the constraint will involve a cost functional of high derivatives,

more detailed analysis and numerical studies are needed in this area.
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Fig. 9. A plot of the Euler number in time with the annihilation of the small
bubble. (after Du et al. [75].)

6. Concluding remarks. This article aims to introduce the ener-

getic variation based phase-field approach to readers interested in the fluid

dynamics of immiscible complex fluids. Although various versions of the

model have been used in the past to great degrees of success, we highlight

the generic advantages inherent in the formalism. More importantly, per-

haps, we discuss several detailed key crucial issues (challenges) with the

method whose proper treatment is prerequisite to a physically realistic and

numerically practicable implementation of the model.

We emphasize that the diffuse-interface treatment can alternatively

be seen as a physical model or a numerical device. It can be viewed as

a physics motivated approximation (regularization) of the sharp interface

models. The employment of the phase field method changes the Lagrangian

description of the interface motion into Eulerian description. The energetic

variational procedure ensures that the resulting coupling system will still

preserve the overall energy law. The method seems to be more appropriate

for the drop dynamics problems that we have simulated, although there

are other applications where the opposite is true. As such, the interfacial
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dynamics and model parameters do not directly correspond to measurable

quantities and their determination is a delicate matter. We have advocated

the view that the criterion should be that the diffuse-interface model accu-

rately predict the macroscopic dynamics of the two-phase system, including

drastic changes of the interfacial morphology. Several numerical experi-

ments are shown to illustrate these issues and how they can be resolved to

a satisfactory degree of accuracy. The inherent ambiguity vanishes as the

interfacial thickness shrinks. Thus, we suggest adaptive mesh refinement

as the solution when a thin interface has to be resolved. It is also necessary

for computing large-scale 3D flows of blends of rheologically complex fluids.
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