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Abstract. This note presents a limit analysis for normal materials based on energy

minimization. The class of normal materials includes some of those used to model ma-

sonry structures, namely, no–tension materials and materials with bounded compressive

strength; it also includes the Hencky plastic materials. Considering loads L(λ) that

depend affinely on the loading multiplier λ ∈ R, we examine the infimum I0(λ) of the

potential energy I(u, λ) over the set of all admissible displacements u. Since I0(λ) is a

concave function of λ, the set Λ of all λ with I0(λ) > −∞ is an interval. Each finite

endpoint λc ∈ R of Λ is called a collapse multiplier, and we interpret the loads corre-

sponding to λc as the loads at which the collapse of the structure occurs. We show that

the standard definition of collapse based on the collapse mechanism does not capture all

situations: the collapse mechanism is sufficient but not necessary for the collapse. We

then examine the validity of the static and kinematic theorems of limit analysis under

the present definition. We show that the static theorem holds unconditionally while the

kinematic theorem holds for Hencky plastic materials and materials with bounded com-

pressive strength. For no–tension materials it generally does not hold; a weaker version

is given for this class of materials.
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1. Introduction. Certain materials cannot support all stresses: in plastic materi-

als the stresses are delimited by the yield criteria, and masonry materials are incapable

of withstanding (all or large) tensile stresses. The bodies made of such materials then

cannot support all loads; certain loads lead to the collapse of the body. The goal of

the limit analysis is to determine the limit load, i.e., the largest possible load prior to

collapse. It is customary to assume that the loads depend affinely on a scalar parameter

λ, the loading multiplier, as described below, and the problem reduces to determining

the collapse multiplier, i.e., the value of λ corresponding to the limit load. Limit analysis

is traditionally based on the static and kinematic theorems, which determine the limit

load as the supremum of statically admissible multipliers and the infimum of kinemati-

cally admissible multipliers, respectively. The traditional definition identifies the collapse

multiplier as one with the collapse mechanism (as postulated in Definition 2.5(iv), below;

see also Remark 2.6(iv), below). The reader is referred to [4] for the proofs of the static

and kinematic theorems under this definition. Our definition of the collapse multiplier

is different since (as we argue in examples below) a collapse can occur without collapse

mechanisms and the collapse mechanism is only a sufficient condition for the collapse.

Our goal is to examine the validity of the static and kinematic theorems under our

definition of the collapse for bodies made of normal materials, with a particular attention

to masonry materials.

A normal material (called a normal linear elastic material in [3, Definition 3.3], [4,

Section III]) is completely characterized by a convex set of admissible stresses K (the

stress range), and by the tensor of elastic constants C. The response of a normal material

is nonlinear elastic as it is governed by the projections onto K. Normal materials include

Hencky plastic materials [17] (the deformation theory of plasticity) but our main interest

is in no–tension materials [2], [8], [3], [5], [12] (with the stress range the set of all negative

semidefinite symmetric tensors) and the materials of bounded compressive strength [11]

(with the stress range as in Definition 2.3(ii), below); these are used to model masonry

structures. If C possesses the major symmetry, which we assume, then the normal

material is hyperelastic, with the stored energy of at most a quadratic growth but possibly

with no growth at all in certain directions of the strain space.

Considering the loads L(λ) that depend affinely on the loading multiplier λ ∈ R, we

examine the potential energy I(u, λ) of the displacement u under the loads L(λ). For

I0(λ) the infimum of I(u, λ) over the set of all admissible displacements u, the function

λ �→ I0(λ) is concave and thus the set Λ of all λ with I0(λ) > −∞ is an interval (which

can be empty). We call each finite endpoint λc ∈ R of Λ a collapse multiplier, i.e., the

value at which the collapse occurs in parallel with the same definition in [17, Chapter I,

Section 5] in case of the Hencky plasticity. The definition has a dynamical motivation

in terms of processes of masonry bodies with dissipation [16]: if I0(λ) > −∞ then, for

large times, processes starting from arbitrary initial data stabilize and converge to the

set of equilibrium states; on the other hand, if I0(λ) = −∞, the processes blow up in the

sense of norms, i.e., the collapse occurs.

The existence of the collapse mechanism generally leads to the collapse in our sense

(Theorem 2.7). In general, the collapse multiplier λc can be such that I0(λc) > −∞ or

I0(λc) = −∞; this distinguishes our general normal material from the Hencky plasticity,
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for which Témam [17, Chapter I, Remark 5.1] shows that I0(λc) > −∞. We also prove

this assertion for any material with a bounded stress range (in particular for materials

with bounded compressive strength) but for a no–tension body it may happen that

I0(λc) = −∞ as our examples show. Generalizing the argument in [17, Chapter I,

Section 4] we show that λc, if it exists, is the supremum of all statically admissible loading

multipliers, i.e., of multipliers for which the loads can be equilibrated by an admissible

stressfield in the space L2(Ω, Sym) of square integrable stresses; this is essentially the

static theorem under the present notion of collapse. In contrast, the kinematic theorem

generally does not hold for no–tension materials, as our (very singular) example shows

despite the fact that it holds for the Hencky plasticity (as can be deduced from the

results in [18]) and for materials with bounded compressive strength (as we show below).

The reason for the failure in the case of no–tension materials is that the stress range is

a cone; this makes the variational problem of the kinematic theorem degenerate in the

sense that the effective domain of the involved function has empty interior. We introduce

a perturbed variational problem (with an extra parameter) that formally approaches the

variational problem of the kinematic theorem. The perturbed problem gives the correct

value of the collapse multiplier.

In Section 2 we introduce the constitutive equations of normal materials and basic

notions of the limit analysis and we summarize the general results. In Section 3 we

present additional results on no–tension materials and examples without proof. The rest

of the paper is devoted to a more detailed exposition and to the proofs.

Throughout we use the conventions for vectors and second-order tensors identical to

those in [9]. Thus Lin denotes the set of all second-order tensors on R
n, i.e., linear

transformations from R
n into itself, Sym is the subspace of symmetric tensors, Sym+

the set of all positive semidefinite elements of Sym; additionally, Sym− is the set of all

negative semidefinite elements of Sym and Sym0 is the space of all traceless elements of

Sym . The scalar product of A,B ∈ Lin is defined by A ·B = tr(ABT) and | · | denotes

the associated euclidean norm on Lin .

2. Limit analysis for normal materials. A normal material is completely deter-

mined by a fourth-order tensor of elastic constants C, interpreted as a linear transforma-

tion from Sym into itself, and by a stress range K ⊂ Sym, such that

E · CE > 0 for all E ∈ Sym,E �= 0,

E1 · CE2 = E2 · CE1 for all E1,E2 ∈ Sym,

}
(2.1)

and

K is a nonempty closed convex set. (2.2)

The elastic constants C and the stress range K determine the (nonlinear) response func-

tions T̂ , ŵ of a normal material via the following proposition.
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Proposition 2.1. Assume (2.1) and (2.2). If E ∈ Sym, there exists a unique triplet

(T ,Ee,Ea) of elements of Sym such that

E = Ee + Ea,

T = CEe,

T ∈ K,

(T − S) ·Ea ≥ 0 for each S ∈ K.

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

We define the stress T̂ (E) and the stored energy ŵ(E) by

T̂ (E) = T ,

ŵ(E) = T ·E − 1
2T · C−1T ≡ 1

2CE
e ·Ee + T ·Ea; (2.4)

the map T̂ : Sym → Sym is monotone and Lipschitz continuous. The function ŵ :

Sym → R is continuously differentiable, convex and Dŵ = T̂ .

Definition 2.2. The functions T̂ and ŵ constructed in Proposition 2.1 are called the

response functions of the normal material determined by C and K.

The definition is identical with that of normal linear elastic materials in [3, Definition

3.3], [4, Section III]; these are generalizations of materials considered in [17, Chapter I,

Subsection 3.3, Item ii)] to a general stress range K and to nonisotropic elastic constants.

By (2.3), the total strain E is decomposed into the elastic and anelastic parts Ee,Ea

in such a way that the stress T , depending linearly on the elastic strain, belongs to the

stress range K and Ea is in the normal cone to K at T . See Proposition 4.1 (below) for

additional properties of T̂ and ŵ.

Definitions 2.3. A normal material determined by C and K is said to be a

(i) no–tension material if K = Sym−;

(ii) material with bounded compressive strength if K = {T ∈ Sym− : T + σc1 ∈ Sym+}
where σc is a nonnegative number;

(iii)Hencky plastic material if K = {S − p1 : S ∈ K0, p ∈ R} where K0 ⊂ Sym0 is a

closed bounded convex set in Sym0 such that 0 is in the relative interior of K0.

We refer to [8], [2], [3], [5], [4], [10] for no–tension materials, to [11] and [12] for

materials with bounded compressive strength and to [18], [17] for the Hencky plastic

materials.

Let Ω be a reference configuration of a continuous body made of a normal material;

it is assumed that Ω is a bounded connected open set with Lipschitz boundary ∂Ω of

outer normal n in the sense of [1]. The body has a prescribed displacement d on an

area measurable subset D of ∂Ω while on S := ∂Ω \ D the body is subjected to surface

tractions depending on the loading multiplier as specified below. We assume that d is

the restriction of the trace of some element z ∈ W of the Sobolev space

W := W 1,2(Ω,Rn)

of R
n valued functions on Ω [1]. Given d, we choose and keep z fixed throughout the

paper. We admit the cases D = ∂Ω (the pure displacement problem) and S = ∂Ω (the
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pure traction problem). We define the affine space U of admissible displacements and

the linear space V of admissible variations of displacements by

U := {u ∈ W : u = d on D},
V := {v ∈ W : v = 0 on D}

where the equalities on D are understood in the sense of traces. We have

U = V + z.

We assume that the body is subjected to loads consisting of the surface traction on S
and a body force in Ω; both the surface traction and the body force depend affinely on

a real parameter λ called the loading multiplier. Thus for a given λ ∈ R, s(λ) : S → R
n

and b(λ) : Ω → R
n are given by

s(λ) = s0 + λs̄, b(λ) = b0 + λb̄,

where

s0, s̄ ∈ L2(S,Rn), b0, b̄ ∈ L2(Ω,Rn).

We call the pair L(λ) = (s(λ), b(λ)) the loads corresponding to λ. Denoting by 〈f ,v 〉
the value of an element f ∈ V ∗ of the dual V ∗ of V on v ∈ V , we define the work of the

loads L(λ) as an element l(λ) ∈ V ∗ given by

l(λ) = l0 + λl̄

where

〈 l0,v 〉 =

∫
Ω

b0 · v dLn +

∫
S
s0 · v dHn−1,

〈 l̄,v 〉 =

∫
Ω

b̄ · v dLn +

∫
S
s̄ · v dHn−1,

v ∈ V, with Ln and Hn−1 the volume and area measures. The potential energy of the

loads L(λ) is a function I(·, λ) : U → R given by

I(u, λ) = F (u) − 〈 l(λ),u− z 〉,
u ∈ U, where F : U → R is the internal energy given by

F (u) =

∫
Ω

ŵ ◦ Ê(u) dLn,

u ∈ U with Ê(u) := 1
2 (∇u + ∇uT) the infinitesimal strain tensor of u. The Lipschitz

continuity of the stress function (see Proposition 4.1, below) implies that |ŵ(E)| ≤
|E|2/2k for some k > 0 and all E ∈ Sym; hence −∞ < I(u, λ) < ∞ and −∞ < F (u) <

∞ for all λ ∈ R and all u ∈ U.

Central to our considerations is the infimum energy of the loads L(λ) defined as

I0(λ) ∈ R ∪ {−∞} by

I0(λ) = inf{I(u, λ) : u ∈ U}. (2.5)

We say that u ∈ U is an equilibrium state for the loads L(λ) if I(u, λ) = I0(λ). Since

I(·, λ) is not coercive on U , the infimum in (2.5) need not be attained and it can happen

that I0(λ) = −∞. Our main concern is the relation I0(λ) > −∞, i.e., the boundedness

from below of I(·, λ) on U. One can have I0(λ) > −∞ even if there is no equilibrium
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state. The set of all equilibrium states from the Sobolev space W 1,2(Ω,Rn) may be

empty and yet there may be equilibrium states in BD(Ω) [2], [8], [17].

We denote by

Y = L2(Ω, Sym)

the space of all Sym valued square integrable functions with respect to Ln, endowed with

the L2 scalar product (A,B) =
∫
Ω
A ·B dLn; we further denote by

YK

the set of all T ∈ Y such that for Ln a.e. point of Ω the corresponding value of T is in

the stress range K. We say that T ∈ Y is an admissible stressfield if T ∈ YK ; we say

that T is an admissible equilibrating stressfield for the loads L(λ) if T is admissible and

equilibrates the loads L(λ) in the sense that(
T , Ê(v)

)
= 〈 l(λ),v 〉 (2.6)

for each v ∈ V [3], [4], [2], [8]. We denote by A(λ) the set of all admissible stressfields

equilibrating the loads L(λ). The loads L(λ) are said to be compatible [3] if A(λ) �= ∅.

Proposition 2.4.

(i) The loads L(λ) are compatible if and only if I0(λ) > −∞.

(ii) The function I0 : R → R ∪ {−∞} is concave and uppersemicontinuous, i.e.,

I0(αλ + (1 − α)μ) ≥ αI0(λ) + (1 − α)I0(μ)

for every λ, μ ∈ R and α ∈ [0, 1] and

I0(λ) ≥ lim sup
k→∞

I0(λk)

for every λ ∈ R and every sequence λk → λ. Hence the set

Λ = {λ ∈ R : I0(λ) > −∞} ≡ {λ ∈ R : A(λ) �= ∅} (2.7)

is an interval.

Since the notion of compatibility of loads is independent of the tensor of elastic con-

stants C, the finiteness of I0(λ) is also independent of C [within the class specified

by (2.1)], even though the concrete value of I0(λ) depends on C. We emphasize the

role of the square integrability requirement of the stressfield in the definition of com-

patible loads; Example 3.4 (below) shows that for no–tension bodies there are loads

L(λ) with I0(λ) = −∞ and yet with L(λ) being weakly equilibrated by a stressfield

T ∈ L1(Ω, Sym) \ L2(Ω, Sym) with values in K = Sym− .

Item (i) is an extension of [17, Theorem 4.1, Chapter I] to our more general case and

Item (ii) is implicit in [17, Proof of Proposition 4.1, Chapter I].

For a normal material with the stress range K we define the function m̂ : Sym →
R ∪ {∞} [17] by

m̂(E) = sup{T ·E : T ∈ K}, (2.8)
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E ∈ Sym. Clearly m̂ is convex, positively 1 homogeneous, lowersemicontinuous, and

bounded from below by an affine function (since K is nonempty); m̂ is finite valued if

and only if K is bounded. We furthermore define G : V → R ∪ {∞} by

G(v) =

∫
Ω

m̂ ◦ Ê(v) dLn,

v ∈ V.

Definitions 2.5. Let Λ be given by (2.7). A loading multiplier λ ∈ R is said to

(i) be statically admissible if λ ∈ Λ; otherwise λ is said to be statically inadmissible;

(ii) be a collapse multiplier if it is a finite endpoint of Λ;

(iii) be kinematically admissible if there exists a v ∈ V such that 〈 l̄,v 〉 = 1 and

λ = G(v) − 〈 l0,v 〉; (2.9)

(iv) admit a collapse mechanism if λ is kinematically admissible and λ ≤ sup Λ.

Remarks 2.6.

(i) For materials with bounded compressive strength and for Hencky plastic materials,

each collapse multiplier is statically admissible (see Theorem 2.9, below). For no–tension

materials, the collapse multiplier can be statically admissible as well as statically inad-

missible; see Remark 2.10 (below).

(ii) For a class of materials that includes no–tension materials, materials with bounded

compressive strength and Hencky plastic materials, the definition of a kinematically

admissible multiplier can be reformulated to a more standard form using normal cones

to YK ; see Remark 2.8, below.

(iii) If λ admits a collapse mechanism then there exists a v ∈ V with 〈 l̄,v 〉 = 1 and

〈 l(λ),v 〉 = G(v); each such v is said to be a collapse mechanism for the loads L(λ).

(iv) If λ admits a collapse mechanism and if additionally λ is statically admissible

then each admissible equilibrating stressfield for L(λ) is called a collapse stressfield. A

stronger version of the definition of collapse mechanism v in [4] requires that v be as

in (iii) and that additionally λ be statically admissible. Example 3.4 (below) provides a

statically inadmissible collapse multiplier with a collapse mechanism in our sense.

The number of collapse multipliers ranges from 0 to 2. In applications, one is interested

in the larger of the possibly two collapse multipliers. Motivated by this, we introduce

the multiplier

λ+
c := sup{λ ∈ R : λ is statically admissible}

−∞ ≤ λ+
c ≤ ∞; thus if λ+

c is finite, then λ+
c is a collapse multiplier, and if there are

two collapse multipliers, then λ+
c is the larger of these two. Motivated by the kinematic

theorem, we consider the multiplier

λ̄+
c = inf{λ ∈ R : λ is kinematically admissible};

equivalently ([17, Chapter I, Subsection 5.2], [18])

λ̄+
c := inf{G(v) − 〈 l0,v 〉 : v ∈ V, 〈 l̄,v 〉 = 1}.

For the relationships among λ+
c and λ̄+

c , see Theorem 2.11, below.
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Our first result shows that our definition of the collapse multiplier generalizes that

based on the collapse mechanism:

Theorem 2.7. If λ ∈ R admits a collapse mechanism, then λ = λ+
c .

We distinguish the following three special cases in the treatment below:

H1: K is a cone;

H2: K is bounded;

H3:

K = {S − p1 : S ∈ K0, p ∈ R} (2.10)

where K0 ⊂ Sym0 is compact.

Thus H1, H2 and H3 cover a no–tension material, materials with bounded compressive

strength, and Hencky plasticity, respectively.

Remark 2.8. If T ∈ YK , we define the normal cone N(YK ,T ) to YK at T by

N(YK ,T ) = {D ∈ Y : (D,T − S) ≥ 0 for each admissible stressfield S}

= {D ∈ Y : D · (T −U) ≥ 0 for every U ∈ K and Ln a.e. point of Ω}.
Let λ ∈ R.

(i) If one of H1–H3 holds, then λ is a kinematically admissible multiplier if and only if

there exist v ∈ V and T ∈ YK with

Ê(v) ∈ N(YK ,T ), 〈 l̄,v 〉 = 1 (2.11)

and

λ =
(
T , Ê(v)

)
− 〈 l0,v 〉; (2.12)

without the hypotheses H1–H3, Conditions (2.11) and (2.12) are only sufficient for

λ to be kinematically admissible.

(ii) If v ∈ V satisfies (2.11) and (2.12) for some T ∈ A(λ), then v is a collapse mechanism

for the loads L(λ).

Theorem 2.9. If the material satisfies either H2 or H3, then any collapse multiplier is

statically admissible; i.e., the interval Λ in (2.7) is closed.

Témam [17, Chapter I, Remark 5.1] proves the assertion for the Hencky plastic ma-

terials (covered by H3) under slightly stronger additional hypotheses on D and S; see

Remark 7.2 (below).

Remark 2.10. For no–tension materials, there are loads:

(i) with a statically admissible collapse multiplier without a collapse mechanism (see

Example 3.3, below);

(ii) with a statically inadmissible collapse multiplier with a collapse mechanism (see

Example 3.4, below).

Theorem 2.11. We have

(i)

λ+
c ≤ λ̄+

c ; (2.13)
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(ii) if λ+
c > −∞ and if, in addition, either H2 holds or H3 holds and

Ω is contained in a bounded Lipschitz set Σ ⊂ R
n with D ⊂ ∂Σ

and with R0 := {w |Ω : w ∈ W 1,2
0 (Σ,Rn)} dense in V ,

}
(2.14)

then

λ+
c = λ̄+

c . (2.15)

Here w |Ω denotes the restriction of w to Ω. Thus under the hypotheses of (ii) we have

the kinematic theorem of limit analysis. For no–tension materials, Example 3.5 (below)

shows that a strict inequality can hold in (2.13). Note, however, that if λ+
c admits a

collapse mechanism then λ+
c is kinematically admissible and thus (2.15) holds. Témam

[17, Theorem 5.1, Chapter I] proves (2.15) for Hencky plastic materials under slightly

stronger additional hypotheses on D and S; see Remark 7.2 (below). Recall that H3

covers Hencky plastic materials.

3. Loading no–tension bodies. In this section we consider a no–tension body Ω

and loads L(λ) = (s(λ), b(λ)). In this case YK is the set Y − of all T ∈ Y taking negative

semidefinite values for Ln a.e. point of Ω; we furthermore denote by Y + the set of all

E ∈ Y taking positive semidefinite values for Ln a.e. point of Ω.

If E ∈ Sym, we denote by E± the positive and negative parts of E, i.e., the unique

pair of tensors in Sym+ such that E = E+ − E− and E+ · E− = 0. If v ∈ V, we

define Ê
±

(v) to be the positive and negative parts of Ê(v) for Ln a.e. point of Ω; we

furthermore denote by Ê
e
(v), Ê

a
(v) the elastic and anelastic parts of the strain Ê(v)

as determined in Proposition 2.1. Recall the outer normal n to Ω; we say that a point

x ∈ S is a class 2 point if S is locally of class 2 in a neighborhood of x.

Proposition 3.1. Consider loads L(·) for a no–tension body. Then:

(i) the following three conditions are equivalent for any λ ∈ R :

(a) λ ∈ R is statically admissible;

(b) we have 〈 l(λ),v 〉 ≤ η |Ê−
(v)|Y for all v ∈ V and some η;

(c) we have 〈 l(λ),v 〉 ≤ η |Êe
(v)|Y for all v ∈ V and some η.

These conditions imply that

s(λ) · n ≤ 0 (3.1)

for Hn−1 a.e. class 2 point of S;

(ii) the multiplier λ ∈ R is kinematically admissible if and only if there exists a v ∈ V

with

Ê(v) ∈ Y + and 〈 l̄,v 〉 = 1 (3.2)

such that λ = −〈 l0,v 〉; hence

λ̄+
c = inf{−〈 l0,v 〉 : v ∈ V, Ê(v) ∈ Y +, 〈 l̄,v 〉 = 1}; (3.3)

(iii) if λ is statically admissible, then the following conditions are equivalent for each

v ∈ V :

(a) v is a collapse mechanism for λ;
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(b) v satisfies (3.2) and

T · Ê(v) = 0 (3.4)

for Ln a.e. point of Ω and some admissible stressfield T equilibrating the loads

L(λ);

(c) v satisfies (3.2) and (3.4) for every admissible stressfield T equilibrating the loads

L(λ).

As mentioned in Section 2, the kinematic theorem generally does not hold. The reason

is that the expression in (3.3) strictly excludes deformations v ∈ V with Ê
−

(v) �= 0, no

matter how small Ê
−

(v). A way to remedy the situation is to admit deformations with

Ê
−

(v) �= 0, but to penalize their occurrence. Motivated by this, we define

λ̂+
c = lim

η→∞
inf{η|Ê−

(v)|Y − 〈 l0,v 〉 : v ∈ V, 〈 l̄,v 〉 = 1}. (3.5)

The limit exists (possibly as ∞) since the infimum is a nondecreasing function of η; we

note that by formally exchanging the order of the limit and infimum in (3.5), one obtains

the problem (3.3). Also observe that the expression in (3.5) is not of the form of an

integral of some density over Ω because of the occurrence of the L2 norm | · |Y .

Theorem 3.2. For a no–tension body we have

λ+
c = λ̂+

c .

This can be interpreted as a weak version of the kinematic theorem of limit analysis

for no–tension bodies.

We now consider four examples to clarify the relationships among the notions of limit

analysis for masonry bodies. The first three of them deal with a rectangular panel in R
2

of the form

Ω = (0, b) × (0, h)

where b > 0, h > 0, made of a no–tension material while the last deals with a circular

ring made of a material with bounded compressive strength. In all examples we assume

that body is free from body forces,

b0 = b̄ = 0 in Ω, (3.6)

and subject to different loads s0, s̄ on S. We denote by r = (x, y) a general point of R
2

and by i, j the unit vectors in the x and y directions.

Example 3.3 (Statically admissible collapse multiplier without a collapse mechanism).

Assume that Ω has fixed base D = (0, b)×{0}, with d = 0 on D, its top T = (0, b)×{h} is

subjected to a constant permanent vertical load and to a tangential traction of a parabolic

shape while the lateral sides S \ T are free from forces; see Figure 1. We identify the

loading multiplier with the intensity of the tangential part of the load. Specifically, we

put

s0 = −pj on T ;

s̄(r) = −
(
4px(b − x)/b2

)
i if r = (x, y) ∈ T ,
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y

x

h

b

s

s0

–

Fig. 1. Parabolic tangential traction

where p > 0 is a fixed number and

s0 = s̄ = 0 on S \ T .

If λ ∈ R, then:

(i) λ is statically admissible if and only if |λ| ≤ λc := b/4h;

(ii) if λ ∈ (λc, 3λc), then λ is kinematically admissible. λc is not kinematically admissible;

hence λc is a statically admissible collapse multiplier which does not admit a collapse

mechanism.

Example 3.4 (Statically inadmissible collapse multiplier with a collapse mechanism).

Assume again that Ω has fixed base D = (0, b) × {0}, with d = 0 on D, its top T =

(0, b)×{h} is subjected to a permanent constant vertical load and to a tangential traction

of a linear shape while the lateral sides S\T are free from forces; see Figure 2. We identify

the loading multiplier with the slope of the linear tangential load. Accordingly,

s0(r) = −pj, s̄(r) = −xi if r = (x, y) ∈ T ,

s0 = s̄ = 0 on S \ T ,

where p is a given positive number. If λ ∈ R, then:

(i) λ is statically admissible if and only if |λ| < λc := p/h;

(ii) λ is kinematically admissible if and only if |λ| ≥ λc;

hence λc is statically inadmissible and kinematically admissible collapse multiplier [con-

sequently, λc admits a collapse mechanism in the sense of Definition 2.5(iv) and Remark

2.6(iii)]. Moreover, despite of the fact that there is no admissible stressfield equilibrating

the loads L(λc), there exists a stressfield T ∈ L1(Ω, Sym) \ L2(Ω, Sym) with values in
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Fig. 2. Linear tangential traction

Sym− such that

〈 l(λc),v 〉 =

∫
Ω

T · Ê(v) dL2 (3.7)

for every v ∈ V ∩ W 1,∞(Ω,R2). A similar statement holds for −λc.

Example 3.5 (Violation of the kinematic theorem). Let S = (0, b)×{h}, D = ∂Ω\S,

and d = 0 on D. Let the loads consist of a uniform pressure λ on S, i.e.,

s(λ) = λn on S;

see Figure 3. If λ ∈ R, then:

(i) λ is statically admissible if and only if λ ≤ 0;

(ii) there is no kinematically admissible multiplier;

hence 0 = λ+
c < λ̄+

c = ∞.

Example 3.6. Consider the ring

Ω = {r ∈ R
2 : a < |r| < b}

(0 < a < b) made of a material with bounded compressive strength under pure traction

conditions D = ∅,
S = Sa ∪ Sb, Sa = {r ∈ R

2 : |r| = a}, Sb = {r ∈ R
2 : |r| = b},

free from body forces as in (3.6), subject to a uniform fixed pressure p on the inner part

of its boundary and variable pressure λ on the outer part of its boundary, i.e.,

s0 = −pn, s̄ = 0 on Sa,

s0 = 0, s̄ = −n on Sb,
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h

y

x

b

s–

Fig. 3. Pulling load on the top

where p is a constant satisfying 0 ≤ p ≤ σc and n is the outer normal to Ω. Putting

λ−
c = ηp, λ+

c = ηp + σc(1 − η), η := a/b, (3.8)

we have the following assertions:

(i) The multiplier λ ∈ R is statically admissible if and only if

λ−
c ≤ λ ≤ λ+

c ;

(ii) the multiplier λ+
c is kinematically admissible and thus it admits a collapse mecha-

nism.

4. Proofs: normal materials. Here we prove Proposition 2.1 and the following

additional properties of normal materials. If F : W → R̄ := R ∪ {∞,−∞} is a function

on a topological linear space, then F ∗ : W ∗ → R̄ is the convex conjugate function defined

on the dual W ∗ of W by

F ∗(φ) = sup{〈φ,u〉 − F (u) : u ∈ W},

φ ∈ W ∗, where 〈 ·, · 〉 is the duality pairing between W ∗ and W [6, Part One].

Proposition 4.1. The response functions of a normal material satisfy

(T̂ (F ) − T̂ (E)) · (F −E) ≥ k|T̂ (F ) − T̂ (E)|2, (4.1)

|T̂ (F ) − T̂ (E)| ≤ k−1|F −E|, (4.2)

ŵ(F ) ≥ ŵ(E) + T̂ (E) · (F −E) + 1
2k|T̂ (F ) − T̂ (E)|2 (4.3)

for any E,F ∈ Sym where

k := inf{A · C−1A : A ∈ Sym, |A| = 1} > 0. (4.4)
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We have

ŵ∗(T ) =

{
1
2T · C−1T if T ∈ K,

∞ if T ∈ Sym \K.
(4.5)

Cf. [3, Proposition 4.4 and Lemma 5.1] for (4.1)–(4.3) in case K = Sym− and [17,

Chapter I, Eq. (3.41)] for (4.5) which defines ŵ∗ first and introduces ŵ as the convex

conjugate of ŵ∗ without giving the explicit form (2.4).

Proof of Propositions 2.1 and 4.1. We introduce the energetic scalar product on Sym

by (A,B)E = A·C−1B, A,B ∈ Sym, denote by P : Sym → K the orthogonal projection

onto K with respect to (·, ·)E, and put

T = PCE, Ee = C−1PCE, Ea = E − C−1PCE,

which leads immediately to (2.3) and to the equality between the second and third terms

in (2.4). To prove (4.1)–(4.3), let E,F ∈ Sym and put T = T̂ (E),U = T̂ (F ). From

(2.3)4 we obtain

(T −U) · (E − C−1T ) ≥ 0, (U − T ) · (F − C−1U) ≥ 0; (4.6)

summing these two inequalities and rearranging we obtain

(T −U) · C−1(T −U) ≤ (T −U) · (E − F );

using (4.4) we obtain (4.1). Using the Schwarz inequality on the left-hand side of (4.1)

we obtain (4.2). To prove (4.3), one finds that

ŵ(F ) − ŵ(E) − T · (F −E) − 1
2 |T −U |2E = (U − T ) · (F − C−1U).

The last expression is nonnegative by (4.6)2 and hence

ŵ(F ) − ŵ(E) − T · (F −E) − 1
2 |T −U |2E ≥ 0;

a reference to (4.4) then yields (4.3) and hence also the convexity of ŵ. To prove that ŵ

is continuously differentiable and T̂ is its derivative, we note that using (4.3) twice we

obtain

T̂ (F ) · (F −E) ≥ ŵ(F ) − ŵ(E) ≥ T̂ (E) · (F −E)

for any E,F ∈ Sym; dividing by |E − F |, letting F → E, using T̂ (F ) → T̂ (E) and

invoking the definition of the Fréchet derivative we obtain Dŵ(E) = T̂ (E). To prove

(4.5), let ĥ : Sym → R ∪ {∞} be the function defined by the right-hand side of (4.5).

We calculate the convex conjugate ĥ∗(E) of h at E ∈ Sym . We note that if (T ,Ee,Ea)

is the triple associated with E as in Proposition 2.1, then algebraic manipulations show

that (2.3)4 can be rewritten as

T ·E − ĥ(T ) ≥ S ·E − ĥ(S) + 1
2 (T − S) · C−1(T − S) (4.7)

for every S ∈ K with the equality if S = T . Since (4.7) also holds if S /∈ K as the

right-hand side is −∞ in that case, we have

T ·E − ĥ(T ) ≥ S ·E − ĥ(S)

for all S ∈ Sym and thus the definition gives ĥ∗(E) = T · E − ĥ(T ) ≡ ŵ(E) [by

(2.4)]. Then ŵ∗ = ĥ∗∗ = ĥ by [7, Theorem 4.92(iii)] since ĥ is lowersemicontinuous,
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convex and bounded from below by an affine (continuous) function. The proof of (4.5)

is complete. �

5. Proofs: compatibility of loads and collapse mechanisms. We base our con-

siderations on the following version of the Hahn Banach theorem [7, Theorem A.35]:

Theorem 5.1. Let H : X → R be a convex function on a vectorspace X and let

L0 : X0 → R be a linear function on a linear subspace X0 of X such that

L0(x) ≤ H(x) for every x ∈ X0.

Then L0 has a linear extension L : X → R such that

L(x) ≤ H(x) for every x ∈ X.

Proposition 5.2. Let H : Y → R be a continuous convex function, let λ ∈ R and

w ∈ W. Then we have

〈 l(λ),v 〉 ≤ H(Ê(v) + Ê(w)) + c for all v ∈ V and some c ∈ R (5.1)

if and only if there exists a stressfield T ∈ Y equilibrating the loads L(λ) such that

H∗(T ) < ∞. (5.2)

If these conditions are satisfied, then also

(T ,A) ≤ H(A) + (T , Ê(w)) + c for all A ∈ Y . (5.3)

The hypotheses on H are satisfied if

H(A) =

∫
Ω

h(A) dLn (5.4)

for all A ∈ Y where h : Sym → R is a convex function such that |h(E)| is bounded by

some quadratic function of |E| for all E ∈ Sym; Condition (5.2) then reads∫
Ω

h∗(T ) dLn < ∞. (5.5)

Proof. Let X0 := {Ê(v) : v ∈ V } so that X0 ⊂ Y and let L0 : X0 → R be defined by

L0(Ê(v)) = 〈 l(λ),v 〉 (5.6)

for each v ∈ V. Then (5.1) reads

L0(A) ≤ H(A + Ê(w)) + c for all A ∈ X0

and hence by Theorem 5.1 there exists a linear extension L : Y → R of L0 such that

L(A) ≤ H(A + Ê(w)) + c for all A ∈ Y. (5.7)

The continuity of H implies the continuity of L and hence L can be represented by an

element T ∈ Y as a scalar product in Y ; then (5.7) reads

(T ,A) ≤ H(A + Ê(w)) + c for all A ∈ Y. (5.8)

A replacement of A + Ê(w) by A then gives (5.3). Relation (5.6) then gives

(T , Ê(v)) = 〈 l(λ),v 〉
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for each v ∈ V and thus T equilibrates the loads L(λ). Relation (5.8) then gives H∗(T ) ≤
(T , Ê(w)) + c and hence (5.2). To prove the converse part of the statement, we let T be

a stressfield equilibrating the loads L(λ) satisfying (5.2). Then

∞ > H∗(T ) := sup{(T ,A) − H(A) : A ∈ Y }

from which

H(A) − (T ,A) ≥ −H∗(T ) for all A ∈ Y.

Taking A = Ê(v) + Ê(w) where v ∈ V , this is rewritten as (5.1) [with c = H∗(T ) −
(T , Ê(w))].

If H is of the form (5.4) with h satisfying the hypotheses of the proposition, then [7,

Theorem 5.9] shows that H is a continuous, finite-valued function on Y, convex by the

convexity of h. Furthermore, [6, Proposition IX.2.1] gives

H∗(T ) =

∫
Ω

h∗(T ) dLn

for all T ∈ Y and thus we have (5.5). �
Proof of Proposition 2.4. (i): Let λ be a loading multiplier such that I0(λ) > −∞.

We apply Proposition 5.2 with H given by (5.4) where h = ŵ is the stored energy of a

normal material and w = z. The hypotheses on h are satisfied in view of Proposition

4.1. The condition

F (v + z) − I0(λ) ≥ 〈 l(λ),v 〉 for all v ∈ V

is equivalent to Condition (5.1) with c = −I0(λ); by Proposition 5.2 this is equivalent to

the existence of a stressfield T ∈ Y equilibrating the loads L(λ) such that∫
Ω

ŵ∗(T ) dLn < ∞.

By (4.5) the last condition is satisfied if and only if the (essential) range of T is contained

in K, i.e., if and only if T is admissible. To summarize, the condition I0(λ) > −∞ is

equivalent to A(λ) �= ∅. The proof of (i) is complete.

(ii): The affine dependence of l(λ) on λ implies that the function λ �→ I(u, λ) is

affine for each u ∈ U ; thus the function λ �→ I0(λ), being the lower envelope of the

family of affine continuous functions over the parameter set {u ∈ U}, is concave and

uppersemicontinuous [6, Chapter I, Section 2]. �
Remark 5.3. Theorem 2.4(i) is proved in [18], [17] for Hencky plastic materials (Hy-

pothesis H3) and in [16] for no–tension materials (Hypothesis H1) by evaluating the dual

problem of the problem (2.5) in the sense of [6] and noting that the problem (2.5) is

regular in the sense of [17]. The same can also be applied in our general case. However,

we believe that the above proof is simpler and more direct.

Proof of Theorem 2.7. Since λ admits a collapse mechanism, λ is kinematically ad-

missible and hence there exists a v ∈ V with

〈 l̄,v 〉 = 1 and G(v) = 〈 l(λ),v 〉. (5.9)

It follows from the definition of G that(
T , Ê(v)

)
≤ 〈 l(λ),v 〉 for every admissible stressfield T . (5.10)
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Prove that if v ∈ V satisfies (5.10) then

I(u, λ) ≥ I(u + v, λ) (5.11)

for any u ∈ U. Indeed (4.3) gives

ŵ ◦ Ê(u) ≥ ŵ ◦ Ê(u + v) − T · Ê(v)

for a.e. point of Ω where T := T̂ ◦ Ê(u + v). Hence

F (u) ≥ F (u + v) −
∫
Ω

T · Ê(v) dLn ≥ F (u + v) − 〈 l(λ),v 〉

by (5.10) and consequently we have (5.11). Next prove that I0(μ) = −∞ for all μ > λ.

We have

I(u, μ) = I(u, λ) − (μ − λ)〈 l̄,u− z 〉
for any u ∈ U. In particular, letting t > 0 and putting u = tv + z where v is as in (5.9),

we obtain

I(tv + z, μ) = I(tv + z, λ) − t(μ − λ)〈 l̄,v 〉
and applying (5.11) with v replaced by tv,

I(tv + z, λ) ≤ I(z, λ)

and thus

I(tv + z, μ) ≤ I(z, λ) − t(μ − λ)〈 l̄,v 〉.
Letting t → ∞ and using μ > λ, 〈 l̄,v 〉 = 1 we thus obtain I(tv + z, μ) → −∞ as t → ∞
for all μ > λ. Hence λ+

c ≤ λ; on the other hand, λ ≤ λ+
c as part of the definition of the

multiplier admitting a collapse mechanism. �

6. Proofs: static admissibility of collapse multipliers.

Proof of Theorem 2.9. Assume that λc is a collapse multiplier. Then there exists a

sequence λk → λc such that all multipliers λk are statically admissible; i.e., there exists

a stressfield T k ∈ YK equilibrating the loads L(λk). If we manage to prove that there

is a sequence of admissible stressfields T k such that the sequence |T k|Y is bounded

independently of k, then (e.g., [7, Theorem A.52]) there is a T ∈ Y such that for some

subsequence of T k, again denoted by T k, we have T k ⇀ T in Y where ⇀ denotes

the weak convergence. From 〈 l(λk),v 〉 = (T k, Ê(v)) for all v ∈ V we deduce that

〈 l(λc),v 〉 = (T , Ê(v)) for all v ∈ V ; i.e., T equilibrates the loads L(λc). The set YK is

convex and closed under the norm convergence in Y ; hence it is also closed under the weak

convergence in Y (e.g., [7, Theorem A.47]). Consequently, T ∈ YK , i.e., T is admissible.

Hence under the assumption that there is a | · |Y bounded sequence T k of admissible

stressfields equilibrating the loads L(λk), we know that λc is statically admissible.

Let us verify the boundedness assumption if either H2 or H3 holds.

Assume that Hypothesis H2 holds. Since K is bounded, it follows that the family

|T k|Y of norms is uniformly bounded.

Assume that H3 holds. Then

T k = −pk1 + Sk (6.1)
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where pk ∈ L2(Ω,R), Sk ∈ L2(Ω, Sym0), Sk ranges (essentially) in K0, and

−(pk, div v) = −
(
Sk, Ê(v)

)
+ 〈 l(λk),v 〉 (6.2)

for each v ∈ V. If |v|V := |v|W 1,2(Ω,Rn) ≤ 1, then the first term on the right-hand side of

(6.2) is bounded independently of k since the sequence Sk is pointwise bounded as K0

is bounded; the second term is bounded as well in view of l(λk) = l0 + λk l̄. Thus

−(pk, div v) ≤ c (6.3)

for some c ∈ R, all k and all v ∈ V with |v|V ≤ 1. Testing (6.3) on v ∈ W 1,2
0 (Ω,Rn) ⊂ V,

we deduce that the sequence of W−1,2(Ω) norms of ∇pk is bounded: |∇pk|W−1.2(Ω,Rn) ≤ c

independently of k with the same constant c. By the theorem on negative norms ([14],

[15]) for each k there exists a constant ck ∈ R such that

|pk + ck|L2(Ω,R) ≤ c (6.4)

for all k and some c ∈ R. From (6.2) and (6.4) one deduces that

ck

∫
Ω

div v dLn ≤ c (6.5)

for some constant c ∈ R, all k, and all v ∈ V with |v|V ≤ 1. If there is a v ∈ V with∫
Ω

div v dLn �= 0, then (6.5) implies that the numerical sequence ck is bounded and hence

also the sequence pk is bounded in L2(Ω,R) by (6.4). If
∫
Ω

div v dLn = 0 for all v ∈ V ,

then calling by pk what was previously denoted by pk + ck we still have (6.1) giving

an admissible equilibrating stressfield for L(λk) and the new sequence pk is bounded

in L2(Ω,R) by (6.4). We thus summarize that in each case there exists an admissible

equilibrating stressfield T k for L(λk) such that |T k|Y is bounded. �

7. Proofs: kinematic theorem.

Proof of Remark 2.8. (i): If v,T are as in (i), then the definition of N(YK ,T ) gives

m̂ ◦ Ê(v) = Ê(v) · T for Ln a.e. point of Ω; hence G(v) =
(
T , Ê(v)

)
and (2.12)

reduces to (2.9). Thus λ is kinematically admissible. Next assume that one of H1–H3

holds, that λ is kinematically admissible, let v be as in the definition of a kinematically

admissible multiplier, and prove that there exists a T such that the couple v,T satisfies

the requirements stated in Condition (i). If H1 holds, then

m̂(E) =

{
0 if E ∈ K∗,

∞ otherwise,

E ∈ Sym, where

K∗ = {E ∈ Sym : E · T ≤ 0 for each T ∈ K}

is the cone dual to K. Equation (2.9) implies that G(v) < ∞ and thus we have m̂◦Ê(v) ≡
0 identically. Then Ê(v) ∈ K∗ for Ln a.e. point of Ω and the pair v,T ≡ 0 satisfies

the requirements stated in Condition (i). If H2 holds, then the definition of m̂, the

compactness of K and the theorem on a measurable selection ([6, Chapter VIII, Theorem

1.2]) implies the existence of a measurable T : Ω → K such that m̂ ◦ Ê(v) = Ê(v) · T
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for Ln a.e. point of Ω, and thus again the pair v,T satisfies the requirements stated in

Condition (i). If H3 holds, then

m̂(E) =

{
m̂0(E) if trE = 0,

∞ otherwise,
(7.1)

E ∈ Sym, where

m̂0(E) = sup{S ·E : S ∈ K0}
for each E ∈ Sym0. Hence G(v) < ∞ means that Ê(v) ∈ L2(Ω, Sym0) and the theorem

on a measurable selection then completes the proof as in Case H2. (ii): If there exists a

v,T as in Condition (ii) then λ is statically admissible and from (i) we deduce that λ is

also kinematically admissible; thus λ admits a collapse mechanism. �

Lemma 7.1. Assume (2.14) and let m : V → R be a continuous linear function such that

〈m,v 〉 = 0 for every v ∈ V with div v = 0. Then there exists a p ∈ L2(Ω,R) such that

〈m,v 〉 = −
∫
Ω

p div v dLn (7.2)

for every v ∈ V.

Proof. Let

L̃ = {divw : w ∈ W 1,2
0 (Σ,Rn)},

which is a subspace of L2(Σ,Rn). Let P : L̃ → R be defined by

〈P, divw 〉 = 〈m,w |Ω 〉

for each w ∈ W 1,2
0 (Σ,Rn). We note that P is well defined due to the hypothesis on m.

Since m is continuous, we have

〈P, divw 〉 ≤ c|w|Ω|W 1,2(Ω,Rn) ≤ c|w|W 1,2
0 (Σ,Rn) (7.3)

for some c and all w ∈ W 1,2
0 (Σ,Rn). This means that the W−1,2(Σ,R) norm of the

distributional derivative of P is bounded and hence by the theorem on negative norms

([14], [15]) there exists a p̃ ∈ L2(Σ,R) such that

〈P, divw 〉 = −
∫
Σ

p̃divw dLn

for every w ∈ W 1,2
0 (Σ,Rn). Note that the function p̃ is determined to within an additive

constant. The definition of P gives 〈P, divw 〉 = 0 if sptw ⊂ Σ \ Ω; thus the right-hand

side of (7.3) vanishes for all such w. This in turn implies that p̃ is (essentially) constant,

of value d, on Σ \ Ω. Thus replacing p̃ by p̃ − d we have p̃ = 0 on Σ \ Ω and accordingly

we replace the integration range Σ by Ω. This gives

〈m,w|Ω 〉 = −
∫
Ω

p̃ div
(
w |Ω

)
dLn

for every w ∈ W 1,2(Σ,Rn); in other words, we have (7.2) for every v ∈ R0 where p = p̃|Ω.

The assumed density of R0 in V then extends (7.2) to all v ∈ V. �
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Remark 7.2. Témam proves (2.15) for Hencky plastic materials (Definition 2.3(iii))

under the following hypotheses on ∂Ω, D and S. He assumes that

the boundary of Ω ⊂ R
3 is of class 2, and

D and S are relatively open subsets of ∂Ω,

}
(7.4)

such that the common boundary Γ∗ := ∂Ω \ (D ∪ S) of D and S has the following

property (cf. [17, Equation (2.105), Chapter I]): for each x ∈ Γ∗ there exists a class 2

diffeomorphism from some neighborhood Ox of x onto R
3 which maps

Ox onto (−1, 1)3,

S ∩ Ox onto (−1, 1)2 × {0},
Γ∗ ∩ Ox onto (−1, 1) × {(0, 0)}.

⎫⎬
⎭ (7.5)

Let us show that these assumptions imply our hypothesis (2.14), which is therefore less

restrictive. It is shown in [17, Section I.2] that under (7.4) and (7.5), the set

S0 := {v ∈ V : the trace of v on ∂Ω vanishes in some neighborhood of clD}

is dense in V ; here ‘neighborhood’ means a relative neighborhood in ∂Ω. Equation (7.5)

implies that Ω is contained in some Lipschitz region Σ ⊂ R
3 with D ⊂ ∂Σ such that S

is in the interior of Σ. Let us show that, for each such Σ, the set R0 defined in (2.14)2 is

dense in V. For this it suffices to show that S0 ⊂ R0. Given v ∈ S0, standard extension

theorems give an extension t ∈ W 1,2
0 (R3,R3) of v; since v vanishes in some neighborhood

U of clD, there exists ϕ ∈ C∞
0 (Σ,R) such that ϕ = 1 on ∂Ω\U . Then ϕt ∈ W 1,2

0 (Σ,R3)

and (1 − ϕ)t|Ω ∈ W 1,2
0 (Ω,R3); hence w : Σ → R

3 given by

w =

{
v = ϕt + (1 − ϕ)t on Ω,

ϕt on Σ \ Ω,

is the required extension.

Proof of Theorem 2.11. To prove (2.13), we note that the assumption λ̄+
c < λ+

c implies

that there exists a λ ∈ (λ̄+
c , λ+

c ) which admits a collapse mechanism; Theorem 2.7 then

gives a contradictory statement λ = λ+
c .

We now prove (2.15) under Hypothesis H2 and λ+
c > −∞. From H2 follows that m̂

is a finite-valued function bounded from above by some multiple of the norm on Sym

and bounded from below by some affine function on Sym . Then G is a finite-valued

continuous convex function on V. If l̄ = 0 then either all λ ∈ R are statically admissible

or no λ ∈ R is statically admissible, leading, respectively, to λ+
c = ∞ and λ+

c = −∞.

The last possibility is excluded by the hypothesis; thus λ+
c = ∞ and then (2.13) gives

(2.15). It remains to prove (2.15) under the assumption l̄ �= 0. This implies that there is

a v ∈ V such that 〈 l̄,v 〉 = 1; hence λ̄+
c < ∞. Since −∞ < λ+

c ≤ λ̄+
c we have λ̄+

c ∈ R.

The definition of λ̄+
c gives

〈 l(λ̄+
c ),v 〉 ≤ G(v) (7.6)

for each v ∈ V with 〈 l̄,v 〉 = 1. The positive 1 homogeneity and continuity of G then

extends (7.6) to all v ∈ V with 〈 l̄,v 〉 ≥ 0. Let us now prove that (7.6) holds also for all
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v ∈ V with 〈 l̄,v 〉 ≤ 0. By the definition of λ̄+
c for each ε > 0 there exists a v = vε ∈ V

with 〈 l̄,v 〉 = 1 such that

λ̄+
c + ε + 〈 l0,v 〉 > G(v). (7.7)

Let v̄ := −v and let u ∈ V be such that 〈 l̄,u 〉 = 0. Adding the term G(u + v̄) to the

two sides of (7.7) and using the convexity and positive 1 homogeneity of G to infer that

G(u + v̄) + G(v) ≥ G(u), we obtain

λ̄+
c + ε + 〈 l0,v 〉 + G(u + v̄) ≥ G(u). (7.8)

Observing that for u the inequality (7.6) reduces to G(u) ≥ 〈 l0,u 〉, we deduce from

(7.8) that

G(u + v̄) ≥ 〈 l0,u + v̄ 〉 − λ̄+
c − ε;

since the set {u + v̄ : u ∈ V, 〈 l̄,v 〉 = 0} coincides with the set of all w ∈ V with

〈 l̄,w 〉 = −1, we have

G(w) ≥ 〈 l0,w 〉 − λ̄+
c − ε

for all such w. The arbitrariness of ε > 0 gives G(w) ≥ 〈 l0,w 〉 − λ̄+
c for all w ∈ V with

〈 l̄,w 〉 = −1; in other words, we have (7.6) for all v ∈ V with 〈 l̄,v 〉 = −1. The positive 1

homogeneity and continuity extends (7.6) to all v ∈ V with 〈 l̄,v 〉 ≤ 0. Thus (7.6) holds

for all v ∈ V. We now apply Proposition 5.2 with H given by (5.4) with h = m̂ and

with w = 0 and λ = λ̄+
c . Inequality (7.6) then implies Condition (5.1) with c = 0, and

Proposition 5.2 then says that there exists a stressfield T ∈ Y equilibrating the loads

L(λ̄+
c ) such that ∫

Ω

m̂∗(T ) dLn < ∞.

From (2.8) one finds that

m̂∗ =

{
0 on K,

∞ on Sym \K
and hence the (essential) range of T is contained in K; i.e., T is admissible. Thus the

loads L(λ̄+
c ) are compatible and hence λ̄+

c is statically admissible. Hence λ̄+
c ≤ λ+

c and

a combination with (2.13) gives (2.15).

If H3 holds, then Proposition 5.2 cannot be applied directly since G takes infinite

values in view of (7.1). If v ∈ V , then G(v) < ∞ if and only if v ∈ V0 where

V0 = {v ∈ V : tr Ê(v) = 0} ≡ {v ∈ V : div v = 0}.

Then

λ̄+
c = inf{G0(v) − 〈 l0,v 〉 : v ∈ V0, 〈 l̄,v 〉 = 1} (7.9)

where G0 is the restriction of G to V0, with

G0(v) =

∫
Ω

m̂0(Ê(v)) dLn

for every v ∈ V0. Assume now that H3 and (2.14) hold and λ+
c > −∞, and prove (2.15).

If λ+
c = ∞ then (2.15) follows from (2.13). Since it is assumed that λ+

c > −∞, only the

case λ+
c ∈ R remains to be considered. Let us first show that 〈 l̄,v 〉 �= 0 for some v ∈ V0.

Indeed, otherwise we have 〈 l̄,v 〉 = 0 for all v ∈ V0, the functional m := l̄ satisfies the

hypothesis of Lemma 7.1 and hence there exists a p ∈ L2(Ω,R) such that (7.2) holds
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for all v ∈ V. Since λ+
c ∈ R, there exists a statically admissible multiplier λ0 ∈ R with

the admissible equilibrating stressfield T 0. From (2.10) one finds that for every λ ∈ R

the stressfield T λ := T 0 − (λ− λ0)p1 is admissible and clearly T λ equilibrates the loads

L(λ). Thus all λ are statically admissible and hence λ+
c = ∞ in contradiction with the

hypothesis. Thus 〈 l̄,v 〉 �= 0 for some v ∈ V0, which in turn implies that λ̄+
c < ∞ by

(7.9). Repeating the steps of the proof in Case H2 and using the obvious modification

of Proposition 5.2 one obtains that there exists an S ∈ L2(Ω, Sym0) with the (essential)

range in K0 such that 〈 l(λ̄+
c ),v 〉 = (S, Ê(v)) for each v ∈ V0. Let m : V → R be a

linear function defined by

〈m,v 〉 = 〈 l(λ̄+
c ),v 〉 − (S, Ê(v)) (7.10)

for each v ∈ V0. Then 〈m,v 〉 = 0 if div v = 0 and hence there exists a p ∈ L2(Ω,R)

such that (7.2) holds, which together with (7.10) gives that T = −p1+S is an admissi-

ble stressfield equilibrating the loads l(λ̄+
c ). Thus λ̄+

c is statically admissible and (2.15)

follows in the same way as in Case H2. �

8. Proofs: no–tension bodies.

Proof of Proposition 3.1. (i): We prove the equivalence of Conditions (a)–(c) as fol-

lows. Assume that (a) holds, i.e., that 〈 l(λ),v 〉 =
(
T , Ê(v)

)
for all v ∈ V and some

T ∈ Y −. Letting Ê
◦
(v) stand for Ê

−
(v) or for Ê

e
(v), we obtain

〈 l(λ),v 〉 ≤ −
(
T , Ê

◦
(v)

)
≤ |T |Y |Ê

◦
(v)|Y

for all v ∈ V . Thus Conditions (b) and (c) hold. Conversely, assume that one of (b) or

(c) holds and prove (a). We apply Proposition 5.2 with H : V → R defined by

H(E) = η |E◦|Y

for each E ∈ Y, where E◦ stands either for the negative part E− of E or for Ee with

Ee and Ea the decomposition of E as in Proposition 2.1. One easily finds that H is a

convex continuous function, and (b) or (c) implies Condition (5.1). Proposition 5.2 then

gives the existence of a stressfield T ∈ Y equilibrating the loads such that Condition

(5.2) holds, which reads

(T ,A) ≤ η |A◦|Y for all A ∈ Y.

If A ∈ Y +, the last condition reduces to (T ,A) ≤ 0. Thus T ∈ Y −; i.e., T is an

admissible stressfield equilibrating the loads L(λ). Thus each of (b) and (c) is equivalent

to (a).

To prove (3.1), we can assume that S is a class 2 surface; put ŝ = s(λ). For each point

of S there exists a neighborhood N of that point and a class 2 function δ : N → R with

∇δ �= 0 on N such that

Ω ∩ N = {x ∈ N : δ(x) > 0}, S ∩ N = {x ∈ N : δ(x) = 0}.
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For each ε > 0 let Lε = {x ∈ N : 0 < δ(x) < ε} and let ωε : R → R be given by

ωε(t) =

⎧⎪⎨
⎪⎩

1 if t ≤ 0,

1 − t/ε if 0 < t < ε,

0 if t ≥ ε,

t ∈ R. Let ϕ ∈ C∞
0 (N,R) be any nonnegative function, put σε := ωε ◦ δ and let vε : Ω →

R
n be given by

vε =

{
ϕσε∇δ on N,

0 on Ω \ N.

We have vε ∈ V,

vε|∂Ω =

{−ϕ|∇δ|n on S,

0 on D,

and

∇vε =

{
σε∇(ϕ∇δ) − ε−1ϕ∇δ ⊗∇δ on Lε,

0 on Ω \ Lε .

If T is an admissible equilibrating stressfield for the loads L(λ), then (2.6) reads

Aε − ε−1

∫
Lε

ϕT · (∇δ ⊗∇δ) dLn = −
∫
S
|∇δ|ϕŝ · n dHn−1

where

Aε =

∫
Lε

(
σε T · ∇(ϕ∇δ) − vε · b(λ)

)
dLn.

Since σε and vε are bounded independently of ε and Ln(Lε) → 0 as ε → 0, we have

Aε → 0 and hence

lim
ε→0

ε−1

∫
Lε

ϕT · (∇δ ⊗∇δ) dLn =

∫
S
|∇δ|ϕŝ · n dHn−1.

Since T is negative semidefinite and ϕ nonnegative, the limit on the left-hand side is

nonpositive and thus ∫
S
|∇δ|ϕŝ · n dHn−1 ≤ 0.

The arbitrariness of ϕ then gives the assertion.

(ii): As in the proof of Remark 2.8, we have G(v) < ∞ if and only if Ê(v) ∈
L2(Ω, Sym+) and then G(v) = 0, which gives the assertion.

(iii): By Remark 2.6(iii) and (ii) above, we have 0 = G(v) = 〈 l(λ),v 〉 and Ê(v) ∈ Y +

for each collapse mechanism for the loads L(λ). Thus if T is an admissible equilibrating

stressfield for L(λ), we have
(
T , Ê(v)

)
= 0. Since Ê(v) ∈ Y + and T ∈ YK , we have

Ê(v) · T = 0 for Ln a.e. point of Ω; thus we have (3.2) and (3.4) for every admissible

stressfield T equilibrating the loads L(λ). If we have (3.2) and (3.4) for some admissible

stressfield T equilibrating the loads L(λ), then 0 =
(
T , Ê(v)

)
= 〈 l(λ),v 〉 and thus v is

a collapse mechanism for the loads L(λ) by Remark 2.6(iii) and (ii) above. �
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Proof of Theorem 3.2. Let λ̂ : (0,∞) → R be defined by

λ̂(η) = inf{η|Ê−
(v)|Y − 〈 l0,v 〉 : v ∈ V, 〈 l̄,v 〉 = 1},

η > 0. If η > 0 then

λ̂(η) ≤ η|Ê−
(v)|Y − 〈 l0,v 〉

for every v ∈ V satisfying 〈 l̄,v 〉 = 1, which can be rewritten as

〈 l(λ̂(η)),v 〉 ≤ η|Ê−
(v)|Y ;

thus the loads l(λ̂(η)) are compatible by Proposition 3.1(i) and hence λ̂+
c ≤ λ+

c . Con-

versely, if λ is statically admissible, then

λ + 〈 l0,v 〉 ≤ η|Ê−
(v)|Y

for all v ∈ V with 〈 l̄,v 〉 = 1 and some η by Proposition 3.1(i); thus λ ≤ λ̂(η), and hence

λ+
c ≤ λ̂+

c . �
The admissible equilibrated stressfields for Examples 3.3 and 3.4 were determined in

[13] by the method of characteristics of the equilibrium equations in R
2. For bodies

free from body forces the characteristics are straight lines that coincide with the active

isostatic lines of T , i.e., lines tangential to the eigenvectors of T corresponding to the

negative eigenvalue of T . We summarize and extend the essence of the method in case

of vanishing body forces in the following definition of a regular family of straight lines

and in Proposition 8.2, below.

Let l be a system of straight lines in R
2, let Ω ⊂ R

2 be a bounded open convex set and

let T ⊂ ∂Ω. We say that l is (Ω, T ) regular if the following four conditions are satisfied:

(i) if l1, l2 ∈ l and l1 �= l2, then l1 ∩ l2 ∩ (Ω ∪ T ) = ∅. If l ∈ l, then Ω ∩ l �= ∅;
(ii) Ω′ := Ω ∩

⋃
{l : l ∈ l} is an open set with Lipschitz boundary;

(iii) there exists a c such that for each t ∈ S
1 := {t ∈ R

2 : |t| = 1} the set of all lines l ∈ l

tangent to t has at most c elements;

(iv) there exists a class 2 function t : Ω′ → S
1 such that for each r ∈ Ω′ the value t(r) is

a tangent to the line l ∈ l with r ∈ l; moreover, t and ∇t have continuous extensions to

cl Ω′.

We put (a, b)⊥ = (−b, a) for any (a, b) ∈ R
2. If l is an (Ω, T ) regular system, we denote

by a = −t⊥ the normals to the lines from l and by M = {a(r) : r ∈ Ω′} the set of

all normals associated with the lines from l. For each r ∈ Ω′ ∪ T we denote by l̂(r) the

unique line in l that contains r.

Lemma 8.1. If l is an (Ω, T ) regular system of lines, then there exists a ϕ ∈ C1(Ω′,R)

such that

∇a = ϕt⊗ a; (8.1)

we have

∇ϕ = a(∇ϕ · a) + tϕ2. (8.2)

If ϕ �= 0 everywhere on Ω′ and if w := a/ϕ, then

Ê(w) = −(∇ϕ · a)a⊗ a/ϕ2. (8.3)
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Proof. Since a is the same on each line l ∈ l, we have ∇a = p ⊗ a for some vector

function p on Ω′ and since a is unit, we have ∇aTa = 0, which gives p ·a = 0 and hence

p = ϕt. We thus conclude that (8.1) holds. From (8.1) we deduce

∇2a = t⊗ a⊗∇ϕ − ϕ2a⊗ a⊗ a + ϕ2t⊗ t⊗ a

and hence the interchangeability of the second partial derivatives gives

a⊗∇ϕ + ϕ2t⊗ a = ∇ϕ ⊗ a + ϕ2a⊗ t;

the multiplication by a from the right gives (8.2). To prove (8.3), we differentiate using

(8.1) to obtain

∇w = (−a⊗∇ϕ + ϕ2t⊗ a)/ϕ2

and hence

2Ê(w) =
(
(ϕ2t−∇ϕ) ⊗ a + a⊗ (ϕ2t−∇ϕ)

)
/ϕ2.

A combination with (8.2) provides (8.3). �
In the next proposition we consider the loads L(·) with s(λ) : S → R

2 and b(λ) = 0

on Ω. We fix λ and write ŝ = s(λ).

Proposition 8.2. Assume that ŝ = 0 on S \ T for some subset T of S and that there

exists an (Ω, T ) regular family of lines l and a function τ : l → R satisfying

τ ◦ l̂ ϕ ≤ 0 and τ ◦ l̂ ϕ t(t · n) = ŝ (8.4)

for H1 a.e. point of T . Then the stressfield T : Ω → Sym defined by

T =

{
τ ◦ l̂ ϕ t⊗ t on Ω′,

0 on Ω \ Ω′
(8.5)

is in L1(Ω, Sym−) and T equilibrates the loads (ŝ,0) in the sense that∫
Ω

T · Ê(v) dL2 =

∫
T
v ·ŝ dH1 (8.6)

for every v ∈ V ∩ C1(cl Ω,R2).

The family l, if it exists, is uniquely determined by condition (8.4)2 as the family of

lines through points r ∈ T of tangent t = ±ŝ(r)/|̂s(r)|.
Proof. For simplicity we assume that for each a ∈ M there exists a unique l ∈ l

whose normal is a. The general case with several lines in l of the same normal is treated

similarly; the only difference is the occurrence of the multiplicity functions in the change

of variables formulas to be used below.

Let τ̃ : Ω′ ∪ T → R be defined by τ̃ = τ ◦ l̂. Our simplifying assumption yields that

there exists a function η : M → R such that τ̃(r) = η(a(r)) for each r ∈ Ω′ ∪ T .

Prove that T ∈ L1(Ω, Sym). We pass from the variable r ∈ Ω′ to the variable θ(r) :=

(a(r), d(r)) ∈ S
1×R where d(r) = |r− l̂(r)∩S|. We denote by Ω̃′ the image of Ω′ under

θ, which is a relatively open subset of S
1 × R. For a given point r ∈ Ω,

∇θ =
[
ϕt⊗ a,∇d

]T
, ∇θT =

[
ϕa⊗ t,∇d

]
;

consequently

∇θT∇θ = ϕ2a⊗ a + ∇d ⊗∇d.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



738 MASSIMILIANO LUCCHESI, CRISTINA PADOVANI, AND MIROSLAV ŠILHAVÝ

Since a and ∇d are unit orthogonal tensors, the jacobian of the transformation is given

by J = | det∇θ | = |ϕ|. Hence the change of variables formula gives

|T |L1(Ω) =

∫
Ω′

|τ̃ ||ϕ| dL2 =

∫
Ω̃′

|η(a)| dμ(a, t), (8.7)

where μ = H1
S
1 ⊗ L1 is the area measure on the cylinder S

1 × R and (a, t) ∈ Ω̃′ is

the integration variable. Noting that η depends only on the a variable, we infer from the

boundedness of Ω̃′ that to prove the finiteness of the expressions in (8.7), it suffices to

prove that ∫
M

|η(a)| dH1(a) < ∞.

Consider a change h of variables from r ∈ T to a(r) ∈ S
1. The surface gradient ∇h at

a general point r ∈ S satisfies

∇h = ϕt⊗ o, ∇hT = ϕo⊗ t,

where o is the projection of a onto the tangent space of T at r. Hence ∇hT∇h = ϕ2o⊗o

and the jacobian J of h is J = |ϕ||o| = |ϕ||t · n|. Thus∫
M

|η| dH1 =

∫
T
|τ ||ϕ||t · n| dH1 =

∫
T
|̂s| dH1

by (8.4) and the last integral is finite since ŝ ∈ L2(S,R2). Thus T ∈ L1(Ω, Sym).

Prove that T is negative semidefinite. In view of (8.5) this amounts to proving that

η(a(r))ϕ(r) ≤ 0 (8.8)

for every r ∈ Ω′. By the nonpositivity of τ this is true if r ∈ T . Thus the proof of (8.8)

will be complete if we show that ϕ does not change its sign on each line segment of the

form l ∩ Ω where l ∈ l. Letting γ be the restriction of ϕ to l and denoting by prime the

differentiation with respect to the length parameter starting from the point on l ∩ T , we

obtain by multiplying (8.2) by t the equation γ′ = γ2 from which γ(s) = γ(0)/(1−sγ(0)).

Thus γ can change its sign only at the point of singularity of γ; however, γ is regular on

l ∩ Ω and thus of constant sign which completes the proof of (8.8).

We finally prove (8.6). Assume first that the function η : N → R is of class C1 so that

also T is of class 2 on Ω′. If v ∈ V ∩C1(cl Ω,R2) then the use of the divergence theorem

gives∫
Ω

T · Ê(v) dL2 =

∫
Ω′

T · Ê(v) dL2 = −
∫
Ω′

v · divT dL2 +

∫
∂Ω′

v · Tν dH1, (8.9)

where ν is the outer normal to ∂Ω′. From T = τ̃ϕt⊗ t = η ◦ aϕt⊗ t we obtain

divT = τ̃ div(ϕt⊗ t) + ϕt(t · ∇τ̃ ) = 0

since div(ϕt⊗ t) = 0 as a consequence of ∇t = −ϕa⊗ a (see (8.1)) and t · ∇τ̃ = 0 as a

consequence of τ̃ = η ◦ a. Thus (8.9) reduces to∫
Ω

T · Ê(v) dL2 =

∫
∂Ω′

v · Tν dH1.
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To see that the right-hand side reduces to∫
T
v ·ŝ dH1,

we note that Tν = 0 on ∂Ω′∩Ω since ν ·t = 0; on the other hand, ν = n on ∂Ω′∩∂Ω and

thus it suffices to note that Tn = ŝ on S as a consequence of (8.4)2. The general case of

a nonsmooth η is obtained by applying the above smooth case to smooth approximations

of η. �
Remark 8.3. Let n = 2 and let A ∈ Sym− be orthogonal to the tensor e⊗ e, where

e is a unit vector. Then A = σe⊥ ⊗ e⊥ where σ ≤ 0. Indeed, if t ∈ R and a ∈ R
2,

then 0 ≥ A(a + te) · (a + te) = Aa · a + 2tAe · a; as t and a are arbitrary, we obtain

Ae = 0. �

Proposition 8.4. Let l be an (Ω, T ) regular system, let D ⊂ ∂Ω be such that

D = {l ∩ D : l ∈ l} (8.10)

and let ϕ �= 0 for L2 a.e. point of Ω and for H1 a.e. point of D. If v ∈ V satisfies

Ê(v) = αa⊗ a, v = 0 on D (8.11)

where α : Ω → R is some function, then v = 0 on Ω.

Proof. Differentiating the function v ·t at r ∈ Ω in the direction t(r) and using (8.11),

we obtain

∇(v · t)t = 0.

Integrating along a line l ∈ l containing r from q := D∩ l to r and using that v · t = 0 at

q, we obtain v · t = 0 at r and thus there exists a function β : Ω → R such that v = βw

for every r ∈ Ω where w = a/ϕ. Hence

Ê(v) = 1
2 (w ⊗∇β + ∇β ⊗w) + βÊ(w).

A multiplication by t from the right and the use of (8.11) and (8.3) gives ∇β · t = 0 on

Ω. The integration along lines l ∈ l gives that there exists a function τ : l → R such that

β(r) = τ (l̂(r))

for L2 a.e. point of Ω and hence

v(r) = τ (l̂(r))a(r)/ϕ(r).

The boundary condition v = 0 on D and (8.10) then yields τ = 0 on l identically. �
Proof of Example 3.3. It suffices to consider only nonnegative values of the loading

multiplier; the considerations about negative values can be converted to those for positive

values by changing the orientation of the x axis.

(ii): If ω : R → R is any nonincreasing C1 function vanishing on (b/h,∞) that does

not vanish identically on (0, b/h) then v : Ω → R
2, given by

v(r) = ω(x/y)r⊥, (8.12)

r = (x, y) ∈ Ω, r⊥ := (−y, x), satisfies v ∈ V and Ê(v) ∈ Y +. Indeed, one finds that

v ∈ W 1,2(Ω,R2) and since ω vanishes on (b/h,∞), v vanishes on

Ω− := {r ∈ Ω : x/y > b/h}
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and thus in particular on D (in the sense of trace). Hence v ∈ V. Furthermore,

Ê(v)(r) = −y−2ω′(x/y)r⊥ ⊗ r⊥ (8.13)

r ∈ Ω, and as ω′ ≤ 0 we have Ê(v) ∈ Y +. One has

〈 l0,v 〉 = −p

∫
T

ω(x/y)x dH1(r) = −p

∫ b

0

ω(x/h)x dx

〈 l̄,v 〉 = 4pb−2

∫
T

ω(x/y)yx(b − x) dH1(r) = 4pb−2h

∫ b

0

ω(x/h)x(b − x) dx;

noting that the last expression and the hypotheses on ω imply that 〈 l̄,v 〉 > 0, we thus

deduce that the value

λ = −〈 l0,v 〉/〈 l̄,v 〉 = 4−1b2
∫ b

0

ω(x/h)x dx/

∫ b

0

ω(x/h)hx(b − x) dx (8.14)

is a kinematically admissible multiplier. Fixing ε ∈ (0, b/h) and taking a sequence of the

functions of the type of ω that converges to the function ωε, given by

ωε(t) =

{
1 if t ≤ ε,

0 otherwise,

t ∈ R, we deduce from (8.14) by evaluating the integrals that the value

λ = b2/4h(b − 2hε/3)

is kinematically admissible. Varying ε ∈ (0, b/h) we obtain the interval (λc, 3λc). This

completes the proof of the first part of (ii); the proof of the second part will be given

later.

(i): For the rest of the proof we put the origin of the coordinate system to the middle

of the top of the panel with the positive x axis pointing to the left and the positive y

axis pointing down. Thus

Ω = I × (0, h), I := (−b/2, b/2),

D = I × {h}, T = I × {0},
s0(r) = pj, s̄(r) =

(
p(b2 − 4x2)/b2

)
i if r = (x, y) ∈ T ,

s0 = s̄ = 0 on S \ T .

Let λ > 0 be fixed and consider the family

l = {lρ : ρ ∈ I}

of lines

lρ := {(x, y) ∈ R
2 : y = b2(x − ρ)/λ(b2 − 4ρ2)}

where ρ ∈ I. The line lρ passes through the point q := (ρ, 0) ∈ T and the tangent to lρ
is s(λ)(q)/|s(λ)(q)|; thus it satisfies (8.4)2. If ρ1, ρ2 ∈ I, ρ1 �= ρ2, then the lines lρ1

and

lρ2
share a common point (x, y) where

x = (4ρ1ρ2 + b2)/4(ρ1 + ρ2), y = b2/4(ρ1 + ρ2)λ.
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One finds that if λ ≤ λc, then the intersection point (x, y) is outside Ω for all values

ρ1, ρ2 ∈ I, ρ �= ρ2. Under the same condition on λ, one finds that the family l is (Ω, T )

regular with Ω′ = Ω. One finds that the tangent to lρ at q = (ρ, 0) is

t =
(
λ(b2 − 4ρ2), b2

)
/ω,

where

ω =
√

λ2(b2 − 4ρ2)2 + b4.

A differentiation with respect to ρ and a comparison with the formula

ty,x = −ϕ(a⊗ a)i · j = −ϕaxay

(see (8.1)) gives

ϕ = 8λρ/ω;

hence ϕ �= 0 everywhere on T except at the point q = 0. Thus there exists a function τ

as in (8.4), viz.,

τ (lρ) = pω3/8ρλb4.

The stressfield (8.5) is given by [13]

T (r) = σ
(
κ2i⊗ i + κ(i⊗ j + j ⊗ i) + j ⊗ j

)
for any r = (x, y) ∈ Ω, where

σ = −bp/ζ, κ =
bζ + 8λxy − b2

8λy2
, ζ :=

√
−16λxy + 16λ2y2 + b2.

One finds that if λ < λc, then T is bounded on Ω while if λ = λc, then T is unbounded

but T ∈ L2(Ω, Sym). This proves that if 0 < λ ≤ λc, then λ is statically admissible. On

the other hand, if λ > λc, then λ is not statically admissible by the first part of (ii).

This completes the proof of (i).

We finally complete the proof of (ii) by showing that λc is not kinematically admissible.

Assume that v ∈ V is a collapse mechanism for λc. By Proposition 3.1(iii) we have

T · Ê(v) = 0 for L2 a.e. point of Ω and for any admissible stressfield equilibrating the

loads corresponding to λc. Taking for T the stressfield from (8.5) and combining with

Remark 8.3 we deduce that Ê is of the form (8.11) and as the hypotheses of Proposition

8.4 are satisfied, we obtain that v = 0; hence, v is not a collapse mechanism. �
Proof of Example 3.4. It suffices to consider only nonnegative values of the loading

multiplier; the considerations about negative values can be converted to those for positive

values by changing the orientation of the x axis.

(i): We shall prove that λ is statically admissible if 0 ≤ λ < λc by showing that

A(λ) �= ∅ for these values of λ; then we shall show that λc is kinematically admissible by

exhibiting the v required by the definition of a kinematically admissible multiplier and

use v to show that λc is statically inadmissible. Then the inadmissibility of all λ > λc is

a consequence of Proposition 2.4. For λ = 0 there is an admissible equilibrated stressfield

T = −pj⊗ j. Assume that 0 < λ < λc. Employing Proposition 8.2 in the same way as in
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the proof of Example 3.3, we find that an admissible equilibrating stressfield T ∈ A(λ)

is given by [13]:

T (r) =

{
c(r − αj) ⊗ (r − αj)/(y − α)3 if (y − α)/x ≤ (h − α)/b,

0 otherwise,
(8.15)

r ∈ Ω, where

c = −p2/λ, α = h − p/λ.

Clearly, T is bounded on Ω and hence in Y.

Next prove that λ = λc is kinematically admissible by showing that if ω : R → R is

any nonincreasing C1 function vanishing on (b/h,∞) such that

h

∫ b

0

ω(x/h)x dx = 1, (8.16)

then v : Ω → R
2 defined in (8.12) satisfies v ∈ V, Ê(v) ∈ Y + (see the proof of Example

3.3) and

λc = −〈 l0,v 〉, 〈 l̄,v 〉 = 1 (8.17)

since

−〈 l0,v 〉 = p

∫
T

ω(x/y)x dH1(r) = p/h = λc,

〈 l̄,v 〉 =

∫
T

ω(x/y)xy dH1(r) = 1

by y = h on T and by (8.16). Thus λc is kinematically admissible and hence no λ > λc

can be statically admissible.

We now complete the proof of (i) by showing that A(λc) = ∅. We reason by contradic-

tion, assuming that there is a T ∈ A(λc) and deducing that T cannot be in A(λc). Thus

let T ∈ A(λc). Let v ∈ V be defined through ω as above, but assume additionally, as we

can, that ω′(t) < 0 for every t ∈ (0, b/h). Then
(
T , Ê(v)

)
= 〈 l(λc),v 〉 = 0 with the first

equality since T equilibrates the loads and the second by (8.17). By Proposition 3.1(iii)

then, T · Ê(v) = 0 for L2 a.e. point of Ω. We have ω′(x/y) �= 0 for every point of

Ω+ := {r ∈ Ω : x/y < b/h}.
By (8.13) then, T (r) · (r⊥ ⊗ r⊥) = 0 for a.e. point of Ω+ and by Remark 8.3, T (r) must

be proportional to r ⊗ r; hence, we write

T (r) = ϕ(r)r ⊗ r/y3

for L2 a.e. r = (x, y) ∈ Ω+, where ϕ : Ω+ → R is a L2 measurable function. Let

0 ≤ α < β ≤ b and 0 < s < t < h and put

S1 = {r = (x, h) ∈ S : α < x < β},
U = {r ∈ Ω+ : r = τq, q ∈ S1, s < τ < t}.

Since T balances the loads and the body force vanishes, the weak divergence of T van-

ishes; letting p > 0, denoting the p mollification of T by Tp and using that clU ⊂ Ω,

we find that if p is sufficiently small, then divTp = 0 on U. The divergence theorem

therefore yields
∫
∂U

Tpo dH1 = 0, where o denotes the normal to U. Since Tp converges
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to T for L2 a.e. point of Ω, we obtain that for L1 a.e. α, β, s, t, the product Tpo converges

to To, these α, β, s, t being determined by the requirement that H1 a.e. point of ∂U is a

Lebesgue L2 point of To. Thus we have∫
∂U

To dH1 = 0 (8.18)

for all such α, β, s, t. The form of T shows that To is nonzero only on the subsets sS1

and tS1 of ∂U, where o = ± j, respectively. Then (8.18) reads

s−2

∫
sS1

ϕ(r)r dH1(r) = t−2

∫
tS1

ϕ(r)r dH1(r)

which by a change of variables reduces to∫
S1

ϕ(sr)r dH1(r) =

∫
S1

ϕ(tr)r dH1(r).

As this must hold for L1 a.e. α, β, s, t, we deduce that ϕ(sr) = ϕ(tr) for L1 a.e. s, t and

H1 a.e. r ∈ T where, it will be recalled, T = (0, b) × {h}. Thus by changing ϕ on a set

of L2 measure 0, we have

ϕ(tr) = ϕ(r)

for all t ∈ (0, 1) and L2 a.e. r ∈ Ω. Then H1 a.e. point of T is a L2 Lebesgue point of T ,

and employing the mollification argument as before, we obtain∫
Ω+

T · Ê(v) = h−2

∫
T

ϕ(r)r · v(r) dH1(r)

for all v ∈ W 1,2(Ω,R2). Letting v ∈ V with v = 0 on Ω \ Ω+, we find that the relation

〈 l(λc),v 〉 = (T , Ê(v)) reads

h−2

∫
T

ϕ(r)r · v(r) dH1(r) = −p/h

∫
T
r · v(r) dH1(r).

From the arbitrariness of v subject to conditions listed above, we deduce that

ϕ(r) = −ph

for H1 almost all r ∈ T and hence for L2 almost all r ∈ Ω+. Thus

T (r) = −phr ⊗ r/y3,

r ∈ Ω+. In particular, Tyy(r) = −ph/y for r ∈ Ω+ and one easily finds that Tyy /∈
L2(Ω+,R). Thus T /∈ Y and hence A(λc) = ∅.

(ii): Prove that each λ ≥ λc is kinematically admissible. Let v1 : Ω → R
2 be given by

v1(r) = (0, y)

for each r = (x, y) ∈ Ω. One has v1 ∈ V, Ê(v1) ∈ Y + and

−〈 l0,v1 〉 = ph, 〈 l̄,v1 〉 = 0. (8.19)

Let vλ = v + (λ − λc)v1/ph, where v is as in the proof of (i). One has vλ ∈ V and

Ê(vλ) ∈ Y + for λ ≥ λc. From (8.17) and (8.19) one finds that

−〈 l0,vλ 〉 = λ, 〈 l̄,vλ 〉 = 1.
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To prove the last statement in the example, viz., there exists a stressfield T ∈
L1(Ω, Sym) \ L2(Ω, Sym) with values in Sym− such that (3.7) holds for every v ∈
V ∩ W 1,∞(Ω,R2), we let T : Ω → Sym be defined by

T (r) =

{
−phr ⊗ r/y3 if r = (x, y) ∈ Ω+,

0 otherwise,

r ∈ Ω, and T λ be defined by the right-hand side of (8.15) for λ < λc. We find that

T λ ⇀ T in L1(Ω, Sym) as λ → λc; thus if v ∈ V ∩ W 1,∞(Ω,R2) then the limit in

〈 l(λ),v 〉 =

∫
Ω

T λ · Ê(v) dL2

as λ → λc gives (3.7). One easily finds that T ∈ L1(Ω, Sym) and we already know that

T /∈ L2(Ω, Sym). �
Proof of Example 3.5. (i): If λ ≤ 0, then T = λ1 on Ω is an admissible equilibrating

stressfield for the loads L(λ); if λ > 0, then s(λ) does not satisfy (3.1). (ii): Prove that

{v ∈ V : Ê(v) ∈ Y +} = {0}. Indeed, if v = (vx, vy) ∈ V satisfies Ê(v) ∈ Y +, then

vx,x ≥ 0, vy,y ≥ 0, (vx,y + vy,x)2 ≤ 4vx,xvy,y. (8.20)

Condition (8.20)1 and the boundary condition vx(0, y) = vx(b, y) = 0 give 0 = vx(0, y) ≤
vx(b, y) = 0 and thus vx,x = 0; i.e., vx is a function of y only, which, by invoking the

boundary condition again, gives vx = 0 identically. Then the condition (8.20)3 gives

vy,x = 0 and thus vy is a function of y only and the boundary condition vy(0, y) =

vy(b, y) = 0 leads to vy = 0 identically. Thus v ≡ 0. Proposition 3.1(ii) then shows that

there is no kinematically admissible multiplier. �
Proof of Example 3.6. (i): Assume that λ is statically admissible. Because of the

rotational symmetry of the loads one can prove that if the loads are equilibrated by

an admissible stressfield, then they are also equilibrated by a rotationally symmetric

stressfield, i.e., a stressfield of the form

T (r) = α(ρ)1 + (β(ρ) − α(ρ))r ⊗ r/ρ2 (8.21)

r ∈ Ω, where α, β are functions on (a, b) and ρ = |r|. The eigenvalues of T are α

and β, and we have T ∈ L2(Ω, Sym) if and only if α, β ∈ L2((a, b),R). The stressfield

equilibrates the loads L(λ) if and only if β is absolutely continuous on [a, b] and

(ρβ)′ = α a.e. on (a, b) and β(a) = −p, β(b) = −λ; (8.22)

T is admissible if and only if

−σc ≤ α ≤ 0, −σc ≤ β ≤ 0 (8.23)

a.e. on (a, b). From (8.22) and (8.23) then, −σc ≤ (ρβ)′ ≤ 0; the integration from a to b

using the boundary conditions gives

σc(a − b) ≤ ap − bλ ≤ 0

and these inequalities imply (3.8). Conversely, assume that (3.8) hold and show that the

stressfield (8.21) with

α = (λ−
c − λ)/(1 − η), β =

(
(λ − p)a/ρ + λ−

c − λ
)
/(1 − η) (8.24)
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is admissible and equilibrates the loads. These functions satisfy (8.22) and thus T equili-

brates the loads. To show that T is admissible, we have to verify the inequalities (8.23).

One finds that the first pair of inequalities in (8.23) is equivalent to the inequalities

in (3.8). To verify the second pair of inequalities in (8.23), we note that since β is a

monotone function of ρ, it suffices to verify this pair of inequalities at the endpoints

ρ = a, b. There the function β is equal to −p,−λ, respectively, and thus we have to verify

0 ≤ p ≤ σc, which we assume, and 0 ≤ λ ≤ σc, which follows from (3.8). (ii): The ad-

missible equilibrating stressfield T+ as in (8.21), (8.24) corresponding to the multiplier

λ+
c is given by

T+ = −σc1 + (σc − p)ar ⊗ r/ρ3;

putting

v+(r) = −r/2πbρ,

r ∈ Ω, we find that

Ê(v+) = −r⊥ ⊗ r⊥/2πbρ3.

We have Ê(v+) · T+ = σc/2πbρ and thus if S ∈ K, then the inclusion S − σc1 ∈ Sym+

provides

(S − T+) · Ê(v+) ≤ 0

for every S ∈ K and almost every point of Ω. Hence v+ satisfies (2.11)2. One easily

finds that v+ also satisfies (2.11)1; thus v+ is a collapse mechanism for the loads L(λ+
c )

by (2.12). �
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