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Abstract

Mobile edge computing is becoming a promising computing architecture to overcome the resource limitation of

mobile devices and bandwidth bottleneck of the core networks in mobile cloud computing. Although offloading

applications to the cloud can extend the performance for the mobile devices, it may also lead to greater processing

latency. Usually, the mobile users have to pay for the cloudlet resource or cloud resource they used. In this paper, we

bring a thorough study on the energy consumption, time consumption, and cost of using the resource of cloudlet

and cloud for workflow applications in mobile edge computing. Based on theoretical analysis, a multi-objective

optimization model is established. In addition, a corresponding multi-objective computation offloading method

based on non-dominated sorting genetic algorithm II is proposed to find the optimal offloading strategy for all the

workflow applications. Finally, extensive experimental evaluations are performed to show that our proposed method

is effective and energy- and cost-aware for workflow applications in MEC.

Keywords: Mobile edge computing, Computation offloading, Time consumption, Multi-objective, Energy

consumption, Cost

1 Introduction
With the development of computer network, cloud com-

puting, as well as wireless sensor network, mobile devices

(MDs) have become an indispensable part of people’s

daily lives [1–7]. In addition, the development of cyber-

physical-social systems and big data has further affected

people’s life [8–14]. However, compared to a traditional

device such as personal computer, a MD has certain lim-

itations in computing power, storage capacity, especially

for the battery capacity. Mobile cloud computing (MCC)

brings new services and facilities to mobile users (MUs)

to take full advantage of cloud computing [15–20]. How-

ever, the remote cloud is usually located far away from

the MUs, which may result in high network latency in

the process of data transmission. This inevitably reduces

the quality of user service (QoS), in particular, for some

applications, such as workflow applications (WAs), which
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generally have strict execution deadlines. The taskmay fail

to be finished if the transmission latency is too large.

To solve the issue of network latency, a new paradigm

called mobile edge computing (MEC) has been proposed

[21–23]. MEC has become a key technology for realiz-

ing the Internet of Things and 5G [24]. The MEC can be

regarded as a special example of MCC. A cloudlet is a

type of edge server that provides various services to users

in close proximity to MDs [25–27]. That means it can

reduce the latency and energy consumption by offloading

the WAs to cloudlet.

It is assumed that the resources of cloud are unlimited

in MCC. Meanwhile, the resources of the MEC are lim-

ited. If there are multiple MUs requesting services from

the cloudlet at the same time, a queue latency will occur.

When a MU requests a service that exceeds the ability

of a cloudlet, the cloudlet service cannot be obtained. In

order to ensure the successful execution of the WA, fur-

ther consideration needs to be taken to execute the task

locally or offload them to the cloud. Moreover, the execu-

tion of WA by cloudlet or cloud needs to meet the task
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deadline constraint, which further increases the difficulty

of computing offloading.

Although the computation offloading issue in MCC

has been well investigated (to list a few here [28–33],

they cannot be used directly in computation offload-

ing in MEC. The main reason is that MEC and MCC

have completely different architectures. Existing studies

on computation offloading in MEC have mainly focused

on the optimization of a single objective (time consump-

tion or energy consumption) [34, 35], but seldom con-

siders multi-objective optimization. It is still a challenge

to balance the multi-objective. Moreover, they focus on

general applications and pay little attention to computa-

tion offloading of WAs in MEC [36]. For WA, it is very

important to consider time constraints [37, 38].

Inspired by the idea that the MU has to pay for the

resources they used in cloudlet or the cloud [36], in

this study, we consider a joint energy consumption, time

consumption, and price-cost optimization for WAs in

MEC while the completion time of WA is considered as

a constraint condition. The main contributions can be

summarized as follows:

(1) The computation offloading for WAs in MEC has

been well investigated in this paper. Both the energy con-

sumption and time consumption, as well as the cost ofMU

by using cloudlet or cloud, are considered as the optimiza-

tion objectives. Besides, based on theoretical analysis, a

multi-objective optimization model is established.

(2) We propose a method named multi-objective com-

putation offloading method forWAs (MCOWA) based on

non-dominated sorting genetic algorithm for the solution.

Some parameters in the algorithm step are improved to

suit the needs of this problem.

(3) Compared to the other methods, such as the no

offloading method, full offloading to cloud method, and

full offloading to cloudlet method, extensive experiments

and simulations have shown that our proposed method is

effective and can provide optimization offloading strategy

for MUs.

The abbreviations in this paper are shown in Table 1.

The remainder of this paper is recognized as follows. In

Section 2, system model and problem formulation are

introduced. Section 3 elaborates multi-objective compu-

tation offloading algorithm forWAs (MCOWA). Section 4

presents the comparison analysis and performance evalua-

tion. Section 5 summarizes the related work, and Section 6

concludes the paper and describes the future work.

2 Systemmodel and problem formulation
In this section, system model and problem formulation

are presented. The basic architecture of MEC is described

firstly. And then the basic mode is introduced. In addition,

the time consumption mode, the energy consumption

mode, and the cost mode are described.

Table 1 The abbreviations in this paper

Local area network LAN

Multi-objective computation offloading method for
workflow application

MCOWA

Mobile device(s) MD(s)

Mobile edge computing MEC

Mobile user(s) MU(s)

Non-dominated sorting genetic algorithm II NSGA-II

Quality of service QoS

Virtual machine(s) VMs

Workflow application(s) WA(s)

Wide area network WAN

The complete organization of MEC is shown in Fig. 1.

Cloud is a combination of data centers. MD could be

mobile phone or tablet. Each MD have one or more WAs

which need to be processed. In general, these applications

are time constrained. These applications can be executed

directly locally, and users can migrate a part of the appli-

cation or full application to cloudlet via local area network

(LAN) or cloud via wide area network (WAN) according

to their needs, to reduce user execution time or energy

consumption or both of them.

2.1 Basic mode

As shown in Fig. 2, the WA is modeled by a direct acyclic

graph Gf (V ,E), where f represents the f th WA(1 ≤ f ≤

F) and F represents the total number of the WAs. Each

application consists of multiple tasks and any node in

Fig. 2 can be seen as a task. V = {v1,f , v2,f , . . . , vN ,f } rep-

resents the set of tasks, and edge in E represents the set

of dependency between any two tasks. Each edge is asso-

ciated with a weight di,j which represents the size of data

transmission from task vi,f to task vj,f . Cloudlet is con-

figured as multiple virtual machines(VMs) for concurrent

processing the WAs, which is modeled by a 3-tuple and

denoted as CIT = (M, fcl, LLAN) . It is assumed that the

capacity of cloudlet equals to the number of VMs in the

cloudlet, thus M is the number of VMs in the cloudlet,

fcl is the processing capacity of the cloudlet and LLANis

the transmission latency in LAN. Each task vi,f inV is

modeled as a 2-tuple vi,f = (wi,f , si,f ) , where wi,f is the

average number of instructions of task vi,f , and si,f is the

offloading strategy for task vi,f which can be expressed as

a one-dimensional vector S = {si,f |i = 1, 2, . . . ,Nf , f =

1, 2, . . . , F}, where Nf represents the number of the tasks

in the f th WA and si,f = 0 represents the task vi,f is pro-

cessed locally, si,f = 1 represents vi,f is offloaded to the

cloudlet. Similarly, vi,f = 2 represents vi,f is offloaded to

the cloud.
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Fig. 1MEC architecture

2.2 Time consumptionmode

Thetotal time consumptionmainly contains three aspects,

namely, waiting time,processing time, and transmission time.

2.2.1 Average waiting time

It is assumed that the interval of the task arrival time obeys the

negative exponentialdistributionof the parameter λ, and the

service time of the cloudlet is subjected to the negative

exponential distribution of the parameter µ . Based on the

queuingtheory [39], thewaiting timemodecanbeestablished.

The probability that the cloudlet in idle is expressed as

p0 =

[

M−1
∑

n=0

+
ρM

M! (1 − ρM)

]−1

(1)

where ρ = λ
µ

indicates the utilization of cloudlets and

ρM=
ρ
M . Let pn be the probability that the queue size reaches

whenthecloudlet is running ina steady state.Then, pn is givenas

Fig. 2 Direct acyclic graph of workflow application

pn =

⎧

⎪

⎨

⎪

⎩

pn

M!Mn−M
· p0 n ≥ M

pn

n!
· p0 n < M

(2)

When n ≥ M , the probability of the tasks waiting in the

cloudlet is given as

Cw(M, ρ) =

∞
∑

n=M

pn =
ρM

M! (1 − ρM)
· p0 (3)

Based on the little theorem, the average waiting queue

length Lq and the average queue length LM are given as

Lq =

∞
∑

n=M+1

(n − M)pn =
pn · ρM

M!
·

∞
∑

n=M

(n − M)ρn−M
M

(4)

LM = Lq + ρ (5)

Overall, the average waiting time for tasks in the

cloudlet is given as

Wq =
LM

λ
−

1

µ
=

1

M · µ − λ
Cw(M, ρ) (6)

2.2.2 Processing time and transmission time

It is assumed that MD has a single CPU with processing

capacity fl, and the processing capacity of cloud is denoted

as fc. In addition, the processing capacity of each VMs in

cloudlet is denoted as fcl. If si,f = 0, the local processing

time for the task vi,f is given as
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Tpro(vi,f ) =
wi,f

fl
(7)

If si,f = 1, the processing time of the task vi,f is given as

Tpro(vi,f ) = Wq +
wi,f

fcl
+ LLAN (8)

where LLAN represents the transmission delay between

the MD and the cloudlet. If si,f = 2, the processing time of

the task vi,f is descried as

Tpro(vi,f ) =
wi,f

fc
+ LWAN (9)

where LWAN represents the transmission delay between

the MD and the cloud. Let R denote the data rate of the

wireless communication between theMD and the cloudlet

or cloud. The computation time of data transmitted from

the task vi,f to vj,f is given as

Ttrans(vi,f , vj,f ) =
di,j

R
(10)

It is assumed that if task vi,f and task vj,f are processed

at the same side, si,f = sj,f ,Ttrans = 0. If (si,f , sj,f ) ∈

{(0, 1), (1, 0)}, it means the data is communicated between

MD and cloudlet through LAN with the rate Rcl. If

(si,f , sj,f ) ∈ {(0, 2), (2, 0)}, it means the data is commu-

nicated between MD and cloud through WAN with the

rate Rc. If (si,f , sj,f ) ∈ {(1, 2), (2, 1)}, it means the data is

transmitted between cloudlet and cloud and the transmis-

sion time can be ignored, namely Ttrans = 0. Therefore,

the total time consumption of the f − th WA which

includes the average waiting time, the processing time and

transmission time is given as follows.

Twa,f (S) =

N
∑

i=1

Tpro(vi,f ) +

j−1
∑

i=1

N
∑

j

Ttrans(vi,f , vj,f ) (11)

2.3 Energy consumptionmodel

The total energy consumption of WA consists of the

energy consumption of processing and transmission.

Epro(vi,f ) indicates the energy consumption generated

during the processing of the task vi,f , while Etrans(vi,f , vj,f )

represents the energy consumption generated by the data

transmission from the task vi,f to the task vj,f onMDs. The

formulation is given as

Epro(vi,f ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

wi,f

fl
· pA si,f = 0

(

Wq +
wi,f

fcl
+ LLAN

)

· pI si,f = 1

(

wi,f

fc
+ LLAN

)

· pI si,f = 2

(12)

wherepA andpI , respectively, represent the power when the

MD is in the active state and idle state. The transmission

energy consumption fromtask vi,f to task vj,f is described as

Etrans(vi,f , vj,f ) =
di,j

B
· pT (13)

where, pT represents thetransmittedpowerof theMD.Therefore,

thetotalenergy consumptionof the f thWAisgivenas

Ewa,f (S) =
∑

vi,f ∈V

Epro(vi,f ) +

j−1
∑

i=1

N
∑

j

Etrans(vi,f , vj,f )

(14)

2.4 Cost mode

Additionally, the MU has to pay for the resources it used in

the cloudlet or thecloud. It is assumed that the per price for

the cloudlet is a and the remote cloud is 2a. The expression

means that if theuser’s task is processed locally and the cost

is 0. If the task is offloaded to the cloudlet for processing,

the cost will be a. Similarly, if the task is offloaded to the

cloud, the cost will be 2a. The average cost of WA is given

by Eq. (16), where N is the total nodes (tasks) of a WA.

C =

⎧

⎪

⎨

⎪

⎩

0 si,f = 0

a si,f = 1

2a si,f = 2

(15)

Ewa,f (S) =
1

N
·

∑

vi,f ∈V

C (16)

2.5 Problem formulation

The object in this study is to optimize the energy con-

sumption and time consumption, as well as cost of allWAs

while meeting the deadline constraint given by WAs. It

can be formulated as follows

Min Twa,f (S), ∀f ∈ {1, 2 . . . F} (17)

Min Ewa,f (S), ∀f ∈ {1, 2 . . . F} (18)

Min Cwa,f (S), ∀f ∈ {1, 2 . . . F} (19)

s.t. Twa,f (S) ≤ D(f ), ∀f ∈ {1, 2 . . . F} (20)

si ∈ {0, 1, 2} (21)

where D(f ) represents the deadline of the f th WA which

is given in advance.
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3 Multi-objective computation offloading
algorithm for workflow applications (MCOWA)

In this section, the details of MCOWA are described.

We firstly introduce the main steps of the MCOWA

in Section 3.1, and then the description and the corre-

sponding algorithm pseudocode of MCOWA are shown

in Section 3.2.

3.1 The main steps of mCOWA

In this paper, our objective is to optimize the energy con-

sumption, time consumption, and cost for multi-WA. The

computation offloading problem is defined as a multi-

objective problem. NSGA-II [40] is used to obtain the

optimal computation offloading strategies for all WAs.

Compared to the traditional genetic algorithm, NSGA-

II can find the global optimal solutions among the feasible

solutions quickly and accurately. The implementation of

NSGA-II is shown in Fig. 3, which consists of five steps.

Notice that the detail implementation of step 4 is shown

in Algorithm 1 and we also introduce how it will be called

by Algorithm 2 in Section 3.2. The details of each step are

shown as follows.

3.1.1 Step 1: Encoding

The WA is numbered by using the results of a topologi-

cal with an integer index and starts from {0, 1, . . . ,}. The

gene denotes the value of each decision variable and also

represents the offloading strategy of each task of WA.

Multiple genes form a complete chromosome which can

also be seen as an individual, representing one solution to

the optimization problem. Numbers of individuals form

a population, which indicates the diversity of solution.

Each chromosome represents a computational offloading

strategy for F WAs. The integer coding method is used,

namely, each offloading strategy is encoded as {0, 1, 2}.

The number 0 indicates that each task of WA is processed

by MD itself and the number 1 represents the task of WA

is offloaded to the cloudlet. Similarly, the number 2 repre-

sents the task of WA is offloaded to the cloud on the basis

of the offloading strategies.

As shown in the Fig. 4, an example of encoding is given.

Each box on the lower chromosome represents a gene

and also indicates a task of the WA. The possible value

of each gene is {0, 1, 2} and denoted as vi = 0 vi = 1

ovi = 2, which is represented above the gene. In addition,

the gene with the same color means that they have the

same offloading strategy.

3.1.2 Step 2: Fitness functions and constraints

Fitness function is the criterion for evaluating individual

quality, which is given by Eqs. (17), (18), and (19). The

three fitness functions of the computing offloading model

(17), (18), (19) represent the time consumption, the energy

consumption and the cost, respectively. It is necessary to

make tradeoffs among the multiple objective functions.

Namely, we need to obtain the best offloading strategy to

make these three fitness functions well.

Additionally, for each WA, the completion time is

obtained according to the computation offloading strat-

egy. If the time constraint of formula (20) is not satisfied,

the chromosome represented by the offloading strategy

will not be considered in the selection process. The chro-

mosome that satisfies the time constraint is called the

valid chromosome.

Fig. 3 The implementation of NSGA-II
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Fig. 4 An example of encoding

3.1.3 Step 3: Initialization, selection, crossover, mutation

To generate initialized population P0 randomly and then

the binary tournament selection, crossover and mutation

are performed on P0 to obtain new population Q0.

The crossover operation is to cross the corresponding

genes of two individuals and select two points on chro-

mosome based on the gene fragments which enhance the

adaptability, i.e., crossover point, to exchange the middle

part of gene value vi. An example of crossover operation is

shown in Fig. 5.

A mutation operation based on enhancing population

adaptability is proposed in MCOWA. Each gene value of

each individual is mutated with the mutation probability,

which is given in advance. And the gene fragment with an

added value of 1 is mutated. An example of mutation is

given in Fig. 6.

3.1.4 Step 4: Non-dominated sort

Form a new group population Rt = Pt
⋃

Qt , where t =

0. Additionally, the non-dominated front-end F1, F2, . . . is

obtained by non-dominated sort of Rt .

The main steps are shown as follows [40, 41]

(1) The parameters are initialed, and the population

size SCALE is determined at the same time. In addition,

the attribute of the individual chromosomes dominated

the number of those in the tagged population is set, if

dominated = 0, then the individual chromosome set the

individual dominated empty.

(2) An individual chromosome is selected sequentially

in the population, which is compared to other individu-

als in the population based on the dominance relation. If

the compared individual dominate the selected individual

chromosome, let dominated = dominated + 1; if the

Fig. 5 An example of crossover
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Fig. 6 An example of mutation

compared individual is dominated by the selected indi-

vidual, add the compared individual to the individual set

which is dominated by the chromosome.

(3) Repeat (2) until processing the dominated attribute

of theN chromosomes and their dominated individual set.

(4) The population is traversed and the chromosome

whose dominated attribute is 0 is added to the rank 1.

(5) The individual chromosome in the rank established

is selected sequentially in (2), meanwhile, all of the indi-

viduals’ attribute in the set of individuals is operated by

auto-decrement, and thus, dominated = dominated − 1.

If dominated = 0, add the individual to the rank of next

level.

(6) Repeat (5) until it is empty that the dominated

individual set of the individual chromosome is.

The pseudo-code of the fast non-dominated sorting

approach is shown in Algorithm 1.

3.1.5 Step 5: Crowding distance calculation

All Fi are sorted according to the crowding distance com-

parison operation ≺n, and the best N individuals are

selected to form a population Pt+1. The congestion dis-

tance formula is shown in (22)

id = iTd + iEd + iCd =

F
∑

f=1

(

|T i+1
wa,f (S) − T i−1

wa,f (S)|
)

+

F
∑

f=1

(

|Ei+1
wa,f (S) − Ei−1

wa,f (S)|
)

F
∑

f=1

(

|Ci+1
wa,f (S) − Ci−1

wa,f (S)|
)

(22)

where id represents the crowding distance of the its

offloading strategy, si,f represents the f th WA. iTd , i
E
d , and

Algorithm 1 Fast Non-dominated Sort(R)

Input: The population of 2Npop size;

Output: Non-dominated sets;

1: for each r ∈ R do

2: Sr = ∅

3: nr = 0

4: for each q ∈ R do

5: if (r ≺ q) then

6: Sr = Sr ∪ q

7: else if (q ≺ r) then

8: nr = nr + 1

9: end if

10: end for

11: if nr = 0 then

12: rrank = 1

13: H1 = H1 ∪ {r}

14: end if

15: end for

16: i = 1

17: while Hi 
= ∅ do

18: Q = ∅

19: for each r ∈ Hi do

20: for each q ∈ Sr do nq = nq − 1

21: if nq = 0 then

22: qrank = i + 1

23: Q = Q ∪ q

24: end if

25: end for

26: i = i + 1

27: Hi = Q

28: end for

29: end while

30: return En;
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iCd represent the objective functions, respectively. T i+1
wa,f (S)

represents the value of the offloading strategy si+1,f to

the objective function Twa,f (S). In addition, Ei+1
wa,f (S) rep-

resents the value of the offloading strategy si+1,f to the

objective function Ewa,f (S). Similarly, Ci+1
wa,f (S) represents

the value of the offloading strategy si+1,f to the objective

function Cwa,f (S).

The population Pt+1 is subjected to replication,

crossover, and mutation operations to form a population

Qt+1. If the termination condition is true (the maximum

number of iterations is met), then it ends. Otherwise, t =

t + 1 and goes to Step 2.

3.2 MCOWA pseudocode

The pseudocode of MCOWA method is shown in Algo-

rithm 2. The input of the Algorithm 2 are multiple

WA. The algorithm starts from the first iteration (Line

1). Firstly, the population is initialized, the chromo-

somes whose complete time does not satisfy the deadline

Algorithm 2MCOWA

Input: WAs, population size N,the maximum number of

iterations Generationmax

Output: Optimal computation offloading strategy

St ,energy consumption E,time consumption T,cost C

1: Gen = 1, t = 1

2: while Gen ≤ Generationmax do

3: Initialize the populationPt
4: for every chromosome inPt do

5: if each WA completion time meets the time

constraintD(f ) then

6: P,t = Pt − M ‖ P,tvalid chromosome

7: end if

8: end for

9: Qt =selection, crossover and mutationP,t
10: Rt = P,t + Qt

11: F =Algorithm 1(Rt)

12: Pt+1 = ∅

13: i = 0

14: while len(Pt+1) + len(F[ i] ) < N do

15: crowdingdistanceassignment(F[ i] ) by

formula 22

16: Pt+1+ = F[ i]

17: i = i + 1

18: Pt+1+ = F[ i] [ 0 : N − len(Pt+1)]

19: Qt+1=make new generation(Pt+1)

20: t = t + 1

21: gen = gen + 1

22: end while

23: end while

24: return St ,energy consumption E,time consumption

T,cost C

constraint are removed from the population, and the new

generation is denoted as P
′

t (Line 3 to 8). Two popula-

tions P
′

t and Ot of size N are randomly generated and

form a population Rt with a population size of 2N (Line

9 to 10). The population Rt is divided into multiple non-

dominated layers by calling Algorithm 1(Line 11). F is

prepared for the selection operation, and population Pt+1

is set to empty and store the new generation of the popu-

lation (Line 12). Additionally, the excellent individuals are

selected to fill in a new population of size N according

to crowding distance (Line 13 to 18). Then the offspring

population is generated after the crossover and mutation

and put into Qt+1 (Line 19). The offspring population

is merged with the parent population and iterated again

until the algorithm ends (Line 2 to 22). Finally, the opti-

mal offloading strategies, the time consumption, energy

consumption, and cost of all WAs are output (Line 23).

4 Experimental evaluation
In this section, a comprehensive simulation and exper-

iment are carried out to evaluate the performance of

the proposed MCOWA method. Specifically, the simula-

tion setup is introduced firstly, including the experimental

parameter settings and other comparative methods. Then,

the influence of different WA scales on the energy con-

sumption performance, time consumption performance,

and cost performance of the compared methods and

MCOWA is evaluated.

4.1 Experimental settings

In order to make a comparative analysis, we propose

some other computation offloading methods in addition

to our MCOWA method. The comparative methods are

introduced as follows.

Table 2 Parameter settings

Parameter Value

The power of MDs when CPU is idle state 0.001 W

The power of MDs when CPU is active state 0.5 W

The transmission power of MDs 0.1 W

The processing capacity of MDs 500 MHZ

The processing capacity of the cloudlet 2000 MHZ

The processing capacity of the cloud 3000 MHZ

The latency of LAN 1 ms

The latency of WAN 30 ms

The bandwidth of LAN 100 kb/s

The bandwidth of WAN 50 kb/s

The average waiting time of tasks in the cloudlet 20 ms

The cost of cloudlet for each task 2

The cost of cloud for each task 4
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(a) (b)

(c)

Fig. 7 The energy consumption, time consumption, and cost of each method where WAs = 2. a Energy consumption. b Time consumption. c Cost

(a) (b)

(c)

Fig. 8 The energy consumption, time consumption, and cost of each method where WAs = 3. a Energy consumption. b Time consumption. c Cost
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(a) (b)

(c)

Fig. 9 The energy consumption, time consumption, and cost of each method where WAs = 4. a Energy consumption. b Time consumption. c Cost

No offloading (NO): All tasks of a WA are processed on

the MD. There is no transmit overhead between any two

tasks. In addition, there is no cost of using resources of

cloudlet of cloud, named as NO.

Full offloading to cloud (FOC): All computation tasks of

WAs are moved from the local MD to the remote cloud

for processing, named as FOC.

Full offloading to cloudlet (FOCL): All computation

tasks ofWAs are moved from the local MD to the cloudlet

for processing, named as FOCL.

MCOWA: With the help of the MCOWA, all tasks are

partitioned into three sets, one for local processing on the

MD and another for remote processing on cloud, and the

other for cloudlet processing.

We use the same parameter settings with reference [42]

and the value of some new parameters are presented. The

details are shown in Table 2. The methods are imple-

mented base on JAVA language by using the tool of Eclipse

on a PC machine with 2 Intel Core i5-5200U 2.20GHz pr

ocessors and 4GB RAM. The operating system isWin7 64.

Table 3 The number of WAs = 2

Location NO FOCL FOC MCOWA

Local 26 0 0 0

Cloudlet 0 26 0 24

Cloud 0 0 26 2

4.2 Performance evaluation

We have received different results under the different

parameters of WAs number. Fifty experiments are per-

formed in the case of convergence for each WA scale.

Firstly, we discuss how MCOWA balance the three

objectives.

As shown in Fig. 7, we can see that MCOWA is effec-

tive for two mobile users. Similary, it also can be used for

the scenario of three users and more users based on the

experimental results which are shown in Figs. 8, 9, 10, 11,

and 12. More specifically, we can conclude that each user

can obtain the best results from the perspective of energy

consumption and time consumption.

We can conclude that MCOWA is effective with the

increasing of number of WAs. More specially, a WA con-

sists of 13 tasks. So two WAs are 26 tasks and so on.

Additionally, as shown in Figs. 7, 8, 9, 10, 11, and 12, com-

pared to FOC and FOCL, MCOWA has a smaller cost. If

we only consider the cost factor, there is no cost for local

processing and it seems that MCOWA is not better than

Table 4 The number of WAs = 3

Location NO FOCL FOC MCOWA

Local 39 0 0 2

Cloudlet 0 39 0 35

Cloud 0 0 39 2
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Table 5 The number of WAs = 4

Location NO FOCL FOC MCOWA

Local 52 0 0 4

Cloudlet 0 52 0 47

Cloud 0 0 52 1

NO.However,MCOWAminimizes the time consumption

and energy consumption of WA while ensures the cost

is within a certain acceptable range. Overall, MCOWA

is effective as the offloading strategy make these three

objects better, not just to make one of them work best.

Secondly, we discuss how MCOWA provide effective

strategy to balance three offloading destinations, namely

local, cloudlet, and cloud. As shown in Tables 3, 4, 5, 6, 7,

and 8, as the cost is in an acceptable range, the task is

mainly offloaded to the cloudlet. That means the cloudlet

is the optimal offloading destination. If the number of

tasks exceeds the processing capacity of the cloudlet,

some tasks will be offloaded to the cloud in order to

reduce the queue latency while meeting the deadline

constraint of task. In addition, as the number of WAs

increases, the number of corresponding tasks increases.

The competition for computing resources of cloudlet

among WAs will be more intense as cloudlet is still

the first choice to offload. Considering the limitations

of cloudlet resources and the cost processing tasks in

cloud, the number of tasks which are executed locally

will increase and the number of tasks which are offloaded

to the cloud will be decreased, which also proves that

our method strategy is effective and can balance each

offloading destinations well.

5 Related work
MCC brings new services and facilities to MUs to take

full advantage of cloud computing. However, the remote

cloud is usually located far away from theMUs, whichmay

result in high network latency. This inevitably reduces

QoS of MUs. In addition, MUs have to pay for the

resources of cloud they use. MEC is a new paradigm

can be seen as a example of MEC. Different from the

MCC, MEC is a three-layer architecture. The edge server

is a bridge which well connects the MU and cloud.

MU can connect to edge server or cloud according to

requirement of service. There are many kinds of edge

servers [43]. Cloudlet is a type of edge server, which has

been widely used in LAN and WMAN [25–27, 44–46].

Table 6 The number of WAs = 5

Location NO FOCL FOC MCOWA

Local 65 0 0 7

Cloudlet 0 65 0 56

Cloud 0 0 65 2

Table 7 The number of WAs = 6

Location NO FOCL FOC MCOWA

Local 78 0 0 11

Cloudlet 0 78 0 66

Cloud 0 0 78 1

Cloudlet is a low-cost infrastructure with rich computer

resources, high bandwidth, and sufficient power. With the

help of cloudlet, MU can improve QoS by computation

offloading.

Computation offloading was originally studied in MCC

[28–33]. The offloading mode in MEC is similar with the

mode in MCC, but the main difference is the location

of offloading. It is commonly assumed that the offload-

ing destination of computation offloading for MCC is the

remote cloud, while the offloading destination of MEC

is a edge server such as cloudlet. Different from the

cloudlet, it is assumed that the resources in remote cloud

are unlimited. Besides, MCC can be seen as a two-layer

architecture, while MEC can be seen as a three-layer

architecture.

Jia et al. [28] made a thorough study on how to divide

and migrate applications in MCC by using heuristic algo-

rithm. The relationship between tasks in the WA is

abstracted into serial and parallel, and the general WA

is seen as a combination of the two. The core idea is

to reduce the total processing latency of the task by

increasing the parallelism between the local and the cloud.

According to the unstable wireless channel and unstable

service node in the MCC, Wu et al. [29] proposed a min-

cost offload partitioning algorithm to find the best par-

titioning plan and minimize processing time and energy

consumption. In view of the sequence of task processing in

the WA, dynamic voltage and frequency scaling is used to

set a number of flag bits to construct a joint optimization

function of latency and energy consumption in [30]. The

task scheduling strategy based on simulated annealing

algorithm is proposed to optimize the processing time

consumption and energy consumption of the WA.

There are many studies on WA schedule in MCC.

Deng et al. [31] propose a novel offloading system to

design robust offloading decisions for mobile services.

The dependency relations among component services

are taken into consideration. The objectives of them

are to optimize execution time and energy consump-

tion of mobile services. Xu et al. [32] propose an energy

Table 8 The number of WAs = 7

Location NO FOCL FOC MCOWA

Local 91 0 0 14

Cloudlet 0 91 0 74

Cloud 0 0 91 3
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(a) (b)

(c)

Fig. 10 The energy consumption, time consumption, and cost of each method where WAs = 5. a Energy consumption. b Time consumption. c Cost

consumption model for applications deployed across

cloud computing platforms, and a corresponding energy-

aware resource allocation algorithm for VMs scheduling

to accomplish scientific workflow executions. Aiming at

the problem of scientific WA scheduling with deadline

constraints inmulti-cloud environment, an adaptive discrete

particle swarm optimization algorithm is proposed in

[33], which can reduce the processing cost of WA while

meeting the deadline ofWA. AsMEC andMCChave differ-

ent architectures, the computation offloading methods in

MCC cannot be used for the MEC scenario directly.

Jia et al. [34] proposed a computational offloading algo-

rithm for augmented reality applications in MEC environ-

ment. They hold the opinion that such applications are

multi-user participation and have high latency require-

ments. They have established a multi-user augmented

reality game system model and proposed a corresponding

multi-user computing offloading algorithm. Li et al. [35]

proposed a migration algorithm that divides the applica-

tion into multiple parts and migrates them to multiple

cloudlets to minimize task computation latency. How-

ever, their methods mainly focus on latency optimization.

Liu et al. [36] utilize a queuing theory to study on the

energy consumption, processing latency, and price cost

of offloading process in MEC system. The secularization

scheme and interior point method are used to address the

formulated problem. They are mainly for general applica-

tions in the MEC and do not consider the computation of

WAs in the MEC.

Zhang et al. [47] propose an energy-efficient offload-

ing strategy for home automation applications in MEC.

An improved particle swarm optimization algorithm is

implemented to schedule mobile services which mini-

mizes the total energy consumption of the WAs within a

given constant deadline. However, their approach focuses

on the single-user and single-objective optimization sce-

nario. Huang et al. [48] proposed a computation offload-

ing method for multimedia workflows with deadline

constraints in cloudlet-based mobile cloud. The objec-

tive of them is to minimize the energy consumption with

the constraints of meeting the deadline of each multime-

dia workflow. In addition, a multi-objective computation

offloading method for WA is proposed in terms of energy

consumption and time consumption [42].

Different from the existing research, we investigate the

multi-objective computation offloading for WAs in terms

of time consumption, energy consumption, and cost for

WAs in MEC.
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(a) (b)

(c)

Fig. 11 The energy consumption, time consumption, and cost of each method where WAs = 6. a Energy consumption. b Time consumption. c Cost

(a) (b)

(c)

Fig. 12 The energy consumption, time consumption, and cost of each method where WAs = 7. a Energy consumption. b Time consumption. c Cost
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6 Conclusion
In this paper, we investigate the multi-objective compu-

tation offloading method for WAs in MEC. To tackle

the problem, we have proposed a computation-offloading

algorithm (MCOWA) that finds the optimal application

strategy while meeting the deadline-constrained of WAs.

Extensive experimental evaluations have conducted to show

the efficiency and effectiveness of our proposed method.

In future work, we will focus on multi-objective opti-

mization computation offloading from the perspective of

edge servers in MEC. For one thing, the computation

offloading forWAs inmulti-cloudlet scenario will be stud-

ied [49, 50]. For another, the revenue of the edge server

will be investigated [51].
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