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Abstract

As DenseNet conserves intermediate features with di-

verse receptive fields by aggregating them with dense con-

nection, it shows good performance on the object detection

task. Although feature reuse enables DenseNet to produce

strong features with a small number of model parameters

and FLOPs, the detector with DenseNet backbone shows

rather slow speed and low energy efficiency. We find the

linearly increasing input channel by dense connection leads

to heavy memory access cost, which causes computation

overhead and more energy consumption. To solve the ineffi-

ciency of DenseNet, we propose an energy and computation

efficient architecture called VoVNet comprised of One-Shot

Aggregation (OSA). The OSA not only adopts the strength

of DenseNet that represents diversified features with multi

receptive fields but also overcomes the inefficiency of dense

connection by aggregating all features only once in the last

feature maps. To validate the effectiveness of VoVNet as a

backbone network, we design both lightweight and large-

scale VoVNet and apply them to one-stage and two-stage

object detectors. Our VoVNet based detectors outperform

DenseNet based ones with 2× faster speed and the energy

consumptions are reduced by 1.6× - 4.1×. In addition

to DenseNet, VoVNet also outperforms widely used ResNet

backbone with faster speed and better energy efficiency. In

particular, the small object detection performance has been

significantly improved over DenseNet and ResNet.

1. Introduction

With the massive progress of convolutional neural net-

works (CNN) such as VGGNet [17], GoogleNet [19],
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(a) Dense Aggregation (DenseNet)

(b) One-Shot Aggregation (VoVNet)

Figure 1. Aggregation methods. (a) Dense aggregation of

DenseNet [8] aggregates all previous features at every subsequent

layers, which increases linearly input channel size with only a few

new outputs. (b) Our proposed One-Shot Aggregation concate-

nates all features only once in the last feature map, which makes

input size constant and enables enlarging new output channel. F

represents convolution layer and ⊗ indicates concatenation.

Inception-V4 [18], ResNet [6], and DenseNet [8], it has

become mainstream in object detector to adopt the mod-

ern state-of-the-art CNN models as feature extractor. As

DenseNet is reported to achieve state-of-the-art perfor-

mance in the classification task recently, it is natural to at-

tempt to expand its usage to detection tasks. In our exper-

iment (Table 4), we find that the DenseNet based detectors

with fewer parameters and FLOPs outperform the detectors

with ResNet, which is most widely used for the backbone

of object detections.

The main difference between ResNet and DenseNet is

the way they aggregate their features; ResNet aggregates

the features from shallower by summation while DenseNet

does it by concatenation. As mentioned by Zhu et al. [26],



information carried by early feature maps would be washed

out as it is summed with others. On the other hand, by

concatenation, information would last as it preserves orig-

inal forms. Several works [19, 12, 10] demonstrate that

the abstracted feature with multiple receptive fields can

capture visual information in various scales. As detection

task requires models to recognize an object in more vari-

ous scale than classification, preserving information from

various layers is especially important for detection as each

layer has different receptive fields. Therefore, preserving

and accumulating feature maps of multiple receptive fields,

DenseNet has better and diverse feature representation than

ResNet in terms of object detection task.

However, we also find in the experiment that detectors

with DenseNet which has fewer FLOPs and model parame-

ters spend more energy and time than those with ResNet.

This is because there are other factors than FLOPs and

model size that influence on energy and time consump-

tion. First, memory access cost (MAC) required to access-

ing memory for intermediate feature maps is crucial factor

of the consumptions [13, 22]. As illustrated in Figure 1(a),

since all previous feature maps in DenseNet are used as in-

put to the subsequent layer by dense connection, it causes

the memory access cost to increase quadratically with net-

work depth and in turn leads to computation overhead and

more energy consumption.

Second, with respect to GPU parallel computation,

DenseNet has the limitation of computation bottleneck. In

general, GPU parallel computing utilization is maximized

when operand tensor is larger [14, 23, 10]. However, due

to linearly increasing input channel, DenseNet is needed to

adopt 1×1 convolution bottleneck architecture for reducing

input dimension and FLOPs, which results in rather increas-

ing the number of layers with smaller operand tensor. As a

result, GPU-computation becomes inefficiency.

The goal of this paper is to improve DenseNet to be more

efficient while preserving the benefit from concatenative ag-

gregation for object detection task. We first discuss about

MAC and GPU-computation efficiency and how to con-

sider the factors in architecture designing stage. Secondly,

we claim that the dense connections in intermediate layers

of DenseNet are inducing the inefficiencies and hypothe-

size that the dense connections are redundant. With these

thoughts, we propose a novel One-Shot Aggregation (OSA)

that aggregates intermediate features at once as shown in

Figure 1(b). This aggregation method brings great bene-

fit to MAC and GPU computation efficiency while it pre-

serves the strength of concatenation. With OSA modules,

we build VoVnet1, energy efficient backbone for real-time

detection. To validate the effectiveness of VoVNet as back-

bone network, we apply VoVNet to various object detectors

such as DSOD, RefineDet, and Mask R-CNN. The results

1It means Variety of View Network

show that VoVNet based detectors outperform DenseNet or

ResNet based ones with better energy efficiency and speed.

2. Factors of Efficient Network Design

When designing efficient network, many studies such as

MobileNet v1 [7], MobileNet v2 [15], ShuffleNet v1 [25],

ShuffleNet v2 [13], and Pelee [20] have focused mainly

on reducing FLOPs and model sizes by using depthwise

convolution and 1×1 convolution bottleneck architecture.

However, reducing FLOPs and model sizes does not al-

ways guarantee the reduction of GPU inference time and

real energy consumption. Ma et al. [13] shows an exper-

iment that ShuffleNet v2 with a similar number of FLOPs

runs faster than MobileNet v2 on GPU. Chen et al. [2] also

shows that while SqueezeNet has 50x fewer weights than

AlexNet, it consumes more energy than AlexNet. These

phenomena imply that FLOPs and model sizes are indirect

metrics to measure practicality and designing the network

based on the metrics should be reconsidered. To build ef-

ficient network architectures that focus on a more practical

and valid metrics such as energy per image and frame per

second (FPS), besides FLOPs and model parameters, it is

important to consider other factors that influence on energy

and time consumption.

2.1. Memory Access Cost

The first factor we point out is memory accesses cost

(MAC). The main source of energy consumption in CNN

is memory accesses than computation [22]. Specifically,

accessing data from the DRAM (Dynamic Random Access

Memory) for an operation consumes orders of magnitude

higher energy than the computation itself. Moreover, the

time budget on memory access accounts for a large pro-

portion of time consumption and can even be the bottle-

neck of the GPU process [13]. This implies that even under

the same number of computation and parameter if the total

number of memory access varies with model structure, the

energy consumption will be also different.

One reason that causes the discrepancy between model

size and the number of memory access is the intermediate

activation memory footprint. As stated by Chen et al. [1],

the memory footprint is attributed to both filter parameter

and intermediate feature maps. If the intermediate feature

maps are large, the cost for memory access increases even

with the same model parameter. Therefore, we consider

MAC, which covers the memory footprint for filter param-

eter and intermediate feature map size both, to an impor-

tant factor for network design. Specifically, we follow the

method of Ma et al. [13] to calculate MAC of each convo-

lutional layers as below

MAC = hw(ci + co) + k
2
cico (1)



The notations k, h, w,ci, co denote kernel size, height/width

of input and output response, the channel size of input, and

that of output response, respectively.

2.2. GPU­Computation Efficiency

The network architectures that reduce their FLOPs for

speed is based on the idea that every floating point operation

is processed on the same speed in a device. However, this

is incorrect when a network is deployed on GPU. This is

because of GPU parallel processing mechanism. As GPU

is able to process multiple floating processes in time, it is

important to utilize its computational ability efficiently. We

use the term GPU-computation efficiency for this concept.

GPU parallel computing power is utilized better as the

computed data tensor becomes larger [23, 10]. Splitting a

large convolution operation into several fragmented smaller

operations makes GPU computation inefficient as fewer

computations are processed in parallel. In the context of

network design, this implies that it is better to compose net-

work with fewer layers if the behavior function is same.

Moreover, adopting extra layers causes kernel launching

and synchronization which result in additional time over-

head [13].

Accordingly, although the technique such as depthwise

convolution and 1×1convolution bottleneck can reduce the

number of FLOPs, it is harmful to GPU-computation effi-

ciency as it adopts additional 1×1 convolution. More gener-

ally, GPU-computation efficiency varies with the model ar-

chitecture. Therefore, for validating computation efficiency

of network architectures, we introduce FLOPs per Second

(FLOP/s) which is computed by dividing the actual GPU

inference time from the total FLOPs. High FLOP/s implies

the architecture utilize GPU power efficiently.

3. Proposed Method

3.1. Rethinking Dense Connection

The dense connection that aggregates all intermediate

layers induces inevitable inefficiency, which comes from

that input channel size of each layer increases linearly as

the layer proceed. Because of the intensive aggregation, the

dense block can produce only a few features with FLOPs

or parameters constraint. In other words, DenseNet trades

the quantity of features for the quality of features via the

dense connection. Although the performance of DenseNet

seems to prove the trade is beneficial, there are some other

drawbacks of the trade in perspective of energy and time.

First, dense connections induce high memory access cost

which is paid by energy and time. As mentioned by Ma

et al. [13], the lower boundary of MAC, or the number

of memory access operation, of a convolutional layer can

be represented by MAC ≥ 2
√

hwB

k2 + B

hw
when B =

k2hwcico is the number of computation. Because the lower

Figure 2. The average absolute filter weights of convolutional lay-

ers in trained DenseNet [8] (top) and VoVNet (middle, bottom).

The color of pixel (i, j) encodes the average L1 norm of weights

connecting layer s to l. OSA module (x/y) indicates that the OSA

modules consist of x layers with y channels.

boundary has its ground on mean value inequality, MAC

can be minimized when the input and output have the same

channel size under fixed number of computation or model

parameter. Dense connections increase input channel size

while output channel size remains constant, and as a result,

each layer has imbalanced input and output channel sizes.

Therefore, DenseNet has high MAC among the models with

the same number of computations or parameters and con-

sumes more energy and time.

Second, the dense connection imposes the use of bot-

tleneck structure which harms the efficiency of GPU paral-

lel computation. The linearly increasing input size is criti-

cally problematic when model size is big because it makes

the overall computation grows quadratically with respect to

depth. To suppress this growth, DenseNet adopts the bot-

tleneck architecture which adds 1×1 convolutional layers to

maintain the input size of 3 × 3 convolutional layer con-

stant. Although this solution can reduce FLOPs and param-

eters, it harms the GPU parallel computation efficiency as

discussed. Bottleneck architecture divides one 3 × 3 con-

volutional layer into two smaller layers and causes more

sequential computations, which lowers the inference speed.

Because of these drawbacks, DenseNet becomes ineffi-



cient in terms of energy and time. To improve efficiency, we

first investigate how dense connections actually aggregate

the features once the network is trained. Hu et al. [8] illus-

trate the connectivity of the dense connection by evaluating

normalized L1 norm of input weights to each layer. These

values show the normalized influences of each preceding

layer to corresponding layers. The figures are represented

in Figure 2 (top).

In Dense Block3, the red boxes near the diagonal show

that aggregations on intermediate layers are active. How-

ever, in the classification layer, only a small proportion of

intermediate features is used. In contrast, in Dense Block1

transition layer aggregates the most of its input feature well

while intermediate layers do not.

With the observations, we hypothesize that there is a neg-

ative relation between the strength of aggregation on inter-

mediate layers and that of final layers. This can be true if

the dense connection between intermediate layers induces

correlation between features from each layer. This means

that dense connection makes later intermediate layer pro-

duce the features that are better but also similar to the fea-

tures from former layers. In this case, the final layer is not

required to learn to aggregate both features because they

are representing redundant information. As a result, the in-

fluence of the former intermediate layer to the final layer

becomes small.

As all intermediate features are aggregated to produce

final feature in the final layer, it is better to produce inter-

mediate features that can complement each other, or less

correlated. Therefore, we can extend our hypothesis to that

the effect of dense connections in intermediate feature is

relatively little with respect to the cost. To verify the hy-

potheses, we redesign a novel module that aggregates its

intermediate features only on the final layer of each block.

3.2. One­Shot Aggregation

We integrate previously discussed thoughts into efficient

architecture, one-shot aggregation (OSA) module which ag-

gregates its feature in the last layer at once. Figure 1(b)

illustrates the proposed OSA module. Each convolution

layer is connected by two-way connection. One way is con-

nected to the subsequent layer to produce the feature with a

larger receptive field while the other way is aggregated only

once into the final output feature map. The difference with

DenseNet is that the output of each layer is not routed to all

subsequent intermediate layers which makes the input size

of intermediate layers constant.

To verify our hypotheses that there is a negative relation

between the strength of aggregation on intermediate layers

and that on final layer, and that the dense connections are re-

dundant, we conduct the same experiment with Hu et al. [8]

on OSA module. We designed OSA modules to have the

similar number of parameter and computation with dense

block which is used in DenseNet-40. First, we investigate

the result on the OSA module with the same number of lay-

ers with the dense block, which is 12 (Figure 2 (middle)).

The output is bigger than that of dense block as the input

size of each convolution layers is reduced. The network

with OSA modules shows 93.6% accuracy on CIFAR-10

classification which is slightly dropped by 1.2% but still

higher than ResNet with similar model size. It can be ob-

served that the aggregations in final layers become more

intense as the dense connections on intermediate layers are

pruned.

Moreover, the weights of transition layer of OSA mod-

ule show the different pattern with that of DenseNet: fea-

tures from shallow depth are more aggregated on the tran-

sition layer. Since the features from deep layer are not in-

fluencing strongly on transition layers, we can reduce the

layer without significant effect. Therefore, we reconfigure

OSA module to have 5 layers with 43 channels each (Fig-

ure 2 (bottom)). Surprisingly, with this module, we achieve

error rate 5.44% which is similar to that of DenseNet-40

(5.24%). This implies that building deep intermediate fea-

ture via dense connection is less effective than expected.

Although the network with OSA module has slightly de-

creased performance on CIFAR-10, which does not neces-

sarily imply it will underperform on detection task, it has

much less MAC than that with dense block. By follow-

ing Eq. (1), it is estimated that substituting dense block of

DenseNet-40 to OSA module with 5 layers with 43 chan-

nels reduces MAC from 3.7M to 2.5M. This is because

the intermediate layers in OSA have the same size of input

and output which leads MAC to the lower boundary. This

means that one can build faster and more energy efficient

network if the MAC is the dominant factor of energy and

time consumption. Specifically, as detection is performed

on a higher resolution than classification, the intermediate

memory footprint will become larger and MAC will reflect

the energy and time consumption more appropriately.

Also, OSA improves GPU computation efficiency. The

input sizes of intermediate layers of OSA module are con-

stant. Hence, it is unnecessary to adopt additional 1×1 conv

bottleneck to reduce dimension. Moreover, as the OSA

module aggregates the shallow features, it consists of fewer

layers. As a result, the OSA module is designed to have

only a few layers that can be efficiently computed in GPU.

3.3. Configuration of VoVNet

Due to the diversified feature representation and effi-

ciency of the OSA modules, our VoVNet can be constructed

by stacking only a few modules with high accuracy and fast

speed. Based on the confirmation that the shallow depth

is more aggregated in Figure 2, we can configure the OSA

module with a smaller number of convolutions with larger

channel than DenseNet. There are two types of VoVNet:



Type Output Stride VoVNet-27-slim VoVNet-39 VoVNet-57

Stem

Stage 1

2

2

2

3× 3 conv, 64, stride=2

3× 3 conv, 64, stride=1

3× 3 conv, 128, stride=1

3× 3 conv, 64, stride=2

3× 3 conv, 64, stride=1

3× 3 conv, 128, stride=1

3× 3 conv, 64, stride=2

3× 3 conv, 64, stride=1

3× 3 conv, 128, stride=1

OSA module

Stage 2
4

[

3× 3 conv, 64, ×5
concat & 1×1 conv, 128

]

×1

[

3× 3 conv, 128, ×5
concat & 1×1 conv, 256

]

×1

[

3× 3 conv, 128, ×5
concat & 1×1 conv, 256

]

×1

OSA module

Stage 3
8

[

3× 3 conv, 80, ×5
concat & 1×1 conv, 256

]

×1

[

3× 3 conv, 160, ×5
concat & 1×1 conv, 512

]

×1

[

3× 3 conv, 160, ×5
concat & 1×1 conv, 512

]

×1

OSA module

Stage 4
16

[

3× 3 conv, 96, ×5
concat & 1×1 conv, 384

]

×1

[

3× 3 conv, 192, ×5
concat & 1×1 conv, 768

]

×2

[

3× 3 conv, 192, ×5
concat & 1×1 conv, 768

]

×4

OSA module

Stage 5
32

[

3× 3 conv, 112, ×5
concat & 1×1 conv, 512

]

×1

[

3× 3 conv, 224, ×5
concat & 1×1 conv, 1024

]

×2

[

3× 3 conv, 224, ×5
concat & 1×1 conv, 1024

]

×3

Table 1. Overall architecture of VoVNet. Downsampling is done by 3 × 3 max pooling with a stride of 2 at the end of each stage. Note

that each conv layer has the sequence Conv-BN-ReLU.

lightweight network, e.g., VoVNet-27-slim, and large-scale

network, e.g., VoVNet-39/57. VoVNet consists of a stem

block including 3 convolution layers and 4 stages of OSA

modules with output stride 32. An OSA module is com-

prised of 5 convolution layers with the same input/output

channel for minimizing MAC as discussed in Section 3.1.

Whenever the stage goes up, the feature map is downsam-

pled by 3 × 3 max pooling with stride 2. VoVNet-39/57

have more OSA modules at the 4th and 5th stage where

downsampling is done in the last module.

Since the semantic information in high-level is more im-

portant for object detection task, we increase the proportion

of high-level features relative to low-level ones by growing

the output channels at different stages. Contrary to the lim-

itation of only a few new outputs in DenseNet, our strategy

allows VoVNet to express better feature representation with

fewer total layers (e.g., VoVNet-57 vs. DenseNet-161). The

details of VoVNet architecture are shown in Table 1.

4. Experiments

In this section, we validate the effectiveness of the

proposed VoVNet as backbone for object detection in

terms of GPU-computation and energy efficiency. At first,

for comparison with lightweight DenseNet, we apply our

lightweight VoVNet-27-slim to DSOD [16] that is the first

detector using DenseNet. Then, we compare with state-

of-the-art lightweight object detectors such as Pelee [20]

that also uses a DenseNet-variant backbone and SSD-

MobileNet [7].

Furthermore, to validate the possibility of generalization

to large-scale models, we extend the VoVNet to state-of-

the-art one-stage detector, e.g., RefineDet [24], and two-

stage detector, e.g., Mask R-CNN [5], on more challeng-

ing COCO [11] dataset. Since ResNet is the most widely

used backbone for object detection and segmentation task,

we compare VoVNet with ResNet as well as DenseNet. In

particular, we compare the speed and accuracy of VoVNet-

39/57 with DenseNet-201/161 and ResNet-50/101 as they

have similar model sizes.

4.1. Experimental setup

Speed Measurement. For fair speed comparison, we

measure the inference time of all models in Table 2, 4 on

the same GPU workstation with TITAN X GPU (Pascal

architecture), CUDA v9.2, and cuDNN v7.3. It is noted

that Pelee [20] merges batch normalization layer into

convolution for accelerating the inference time. As the

other models also have batch normalization layers, we

compare Pelee without merge-bn trick for fair comparison.

Energy Consumption Measurement. We measure the

energy consumption of both lightweight and large-scale

models during object detection evaluation of VOC2007

test images (e.g., 4952 images) and COCO minival

images (e.g., 5000 images), respectively. GPU power us-

age is measured with Nvidia’s system monitor interface

(nvidia-smi). We sample the power value with an in-

terval of 100 millisecond and compute average of the mea-

sured power. The energy consumption per image can be

calculated as below

Average Power [Joule/Second]

Inference speed [Frame/Second]
(2)

We also measure total memory usage that includes not only

model parameters but also intermediate activation maps.

The measured energy and memory footprint in Table 2.

4.2. DSOD

To validate the effectiveness of backbone part, except

for replacing DenseNet-67 (referred to DSOD [16] as

DS-64-64-16-1) with our VoVNet-27-slim, we follow the

same hyper-parameters such as default box scale, aspect

ratio, and dense prediction and the training protocol such

as 128 total batch size, 100k max iterations, initial learning

rate, and learning rate schedule. DSOD with VoVNet

is trained on the union of VOC2007 trainval and

VOC2012 trainval(”07+12”) following [16]. As the

original DSOD with DenseNet-67 is trained from scratch,

we also train our model without ImageNet pretrained
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Figure 3. Comparisons of lightweight models in terms of the computation and energy efficiency. (a) shows speed vs. accuracy. (b), (c),

and (d) illustrate comparison of GPU-computation-efficiency, energy-efficiency and GPU-computation vs. energy efficiency, respectively.

Detector Backbone
FLOPs

(G)

FPS

(img/s)

#Param

(M)

Memory

footprint

(MB)

Energy

Efficiency

(J/img)

Computation

Efficiency

(GFLOP/s)

mAP

SSD300 MobileNet [7] 1.1 37 5.7 766 2.3 42 68.0

Pelee304 PeleeNet [20] 1.2 35 5.4 1104 2.4 43 70.9

DSOD300 DenseNet-67 [16] 5.3 35 5.9 1294 3.7 189 73.6

DSOD300 VoVNet-27-slim 5.6 71 5.9 825 0.9 400 74.8

Table 2. Comparison with lightweight object detectors. All models are trained on VOC 2007 and VOC 2012 trainval set and tested on

VOC 2007 test set.

Backbone
FLOPs

(G)

GPU

time

(ms)

#Param

(M)

Memory

footprint

(MB)

mAP

VoVNet-27-slim 5.6 14 5.9 825 74.8

+ w/ bottleneck 4.6 18 4.8 895 71.1

Table 3. Ablation study on 1×1 convolution bottleneck.

model. We implement DSOD with VoVNet-27-slim based

on DSOD original Caffe code2.

VoVNet vs. DenseNet. As shown in Table 2, the proposed

VoVNet-27-slim based DSOD300 achieves 74.87%, which

is better than DenseNet-67 based one even with comparable

parameters. In addition to accuracy, the inference speed

of VoVNet-27-slim is also two times faster than that of

the counterpart with comparable FLOPs. The Pelee [20],

DenseNet-variant backbone, is designed to decompose a

dense block into a smaller two-way dense block, which

reduces FLOPs to about ×5 less than DenseNet-67. How-

ever, despite the fewer FLOPs, Pelee has similar inference

speed with DSOD with DenseNet-67. We conjecture that

decomposing a dense block into smaller fragmented layers

deteriorates GPU computing parallelism. The VoVNet-27-

slim based DSOD also outperforms Pelee by a large margin

of 3.97% at much faster speed.

Ablation study on 1×1 conv bottleneck. To check the in-

fluence of 1×1 convolution bottleneck on model-efficiency,

we conduct an ablation study where we add a 1×1 con-

2https://github.com/szq0214/DSOD

volution in front of every 3×3 convolution operation in

OSA module with half channel of the input. Table 3

shows comparison results. VoVNet with 1×1 bottleneck

reduces FLOPs and the number of model parameters, but

conversely increases GPU inference time and memory

footprint compared to without one. The accuracy also

drops by 3.69% mAP. This is the problem in the same

context as why Pelee is slower than DenseNet-67 despite

the fewer FLOPs. As the 1×1 bottleneck decomposes a

large 3×3 convolution tensor into several smaller tensors,

it rather hampers GPU parallel computations. Although

the 1×1 bottleneck decreases the number of parameters, it

increases the total number of layers in the network which

requires more intermediate activation maps and in turn

increases overall memory footprint.

GPU-Computation Efficiency. Although SSD-MobileNet

and Pelee have much fewer FLOPs compared to DSOD-

DenseNet-67, DenseNet-67 shows comparable inference

speed on GPU. In addition, even with similar FLOPs,

VoVNet-27-slim runs twice as fast as DenseNet-67. These

results suggest that FLOPs can not sufficiently reflect the

inference time as GPU-computation efficiencies of models

differ significantly. Thus, we set FLOP/s, which means

how well the network utilizes GPU computing resources,

as GPU-computation efficiency. From this valid metric,

VoVNet-27-slim achieves the highest 400 GFLOP/s among

other methods as described in Figure 3(b). The computation

efficiency of VoVNet-27-slim is about 10× higher than

those of MobileNet and Pelee, which demonstrates that
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Figure 4. Comparisons of large-scale models on RefineDet320 [24] in terms of the computation and energy efficiency. (a) shows speed

vs. accuracy. (b), (c), and (d) illustrate comparison of GPU-computation-efficiency and energy-efficiency, respectively.

Backbone
FLOPs

(G)

FPS

(img/s)

#param

(M)

Memory

footprint

(MB)

Energy

Efficiency

(J/img)

Computation

Efficiency

(GFLOP/s)

COCO AP

AP/APS/APM/APL

ResNet-50 [6] 25.43 23.2 63.46 2229 5.3 591.3 30.3/10.2/32.8/46.9

DenseNet-201 (k=32) [8] 24.65 12.0 56.13 3498 9.9 296.9 32.5/11.3/35.4/50.1

VoVNet-39 32.6 25.0 56.28 2199 4.8 815.0 33.5/12.8/36.8/49.2

ResNet-101 [6] 33.02 17.5 82.45 3013 7.5 579.2 32.0/10.5/34.7/50.4

DenseNet-161 (k=48) [8] 32.74 12.8 66.76 3628 10.0 419.7 33.5/11.6/36.6/51.4

VoVNet-57 36.45 21.2 70.32 2511 5.9 775.5 33.9/12.8/37.1/50.3

Table 4. Comparison backbone networks on RefineDet320 [24] on COCO test-dev set.

the depthwise convolution and decomposing a convolution

into the smaller fragmented operations are not an efficient

way in terms of GPU computation-efficiency. Given these

results, it is worth noting that VoVNet makes full use of

GPU computation resource most efficiently. As a result,

VoVNet achieves a significantly better speed-accuracy

tradeoff as shown in Figure 3(a).

Energy Efficiency. When validating the efficiency of net-

work, another important thing to consider is energy effi-

ciency (Joule/frame). The metric is the amount of energy

consumed to process an image; the lower value means bet-

ter energy efficiency. We measure energy consumption and

obtain the energy efficiencies of VoVNet and other models

based detectors. Table 2 shows a tendency between energy

efficiency and memory footprint. VoVNet based DSOD

consumes only 0.9J per image, which is 4.1× less than

DenseNet based one. We can note that the excessive inter-

mediate activation maps of DenseNet increase the memory

footprint, which results in more energy consumption. It is

also notable that MobileNet shows worse energy efficiency

than VoVNet although its memory footprint is lower. This is

because depthwise convolution requires fragmented mem-

ory access and in turn increases memory access costs [9].

Figure 3(c) describes accuracy vs. energy efficiency

where with two times better energy efficiency than Mo-

bileNet and Pelee, VoVNet outperforms the counterparts by

a large margin of 6.87% and 3.97%, respectively. In addi-

tion, Figure 3(d) shows a tendency of efficiency with respect

to computation and energy consumption both. VoVNet is

located in the left-upper direction, which means it is the

most efficient model in terms of both GPU-computation and

energy efficiency.

4.3. RefineDet

From this section, we validate the generalization to

large-scale VoVNet, e.g.,VoVNet-39/57, in RefineDet [24]

which is the state-of-the-art one-stage object detector.

Without any bells-and-whistles, we simply plug VoVNet-

39/57 into RefineDet, following same hyper-parameters

and training protocols for fair comparison. We train Re-

fineDet320 for 400k iterations with a batch size of 32 and

an initial learning rate of 0.001 which is decreased by 0.1

at 280k and 360k iterations. All models are implemented

by RefineDet original Caffe code3 base. The results are

summarized in Table 4.

Accuracy vs. Speed. Figure 4(a) illustrates speed vs. ac-

curacy. VoVNet-39/57 outperform DenseNet-201/161 and

ResNet50/101 both with faster speed. While VoVNet-39

achieves similar accuracy of 33.5 AP with DenseNet-161, it

runs about two times faster than the counterpart with much

fewer parameters and less memory footprint. VoV-39 also

outperforms ResNet-50 by a large margin of 3.3% absolute

AP at comparable speed. These results demonstrate with

fewer parameters and memory footprint, the proposed

VoVNet is the most efficient backbone network in terms of

both accuracy and speed.

3https://github.com/sfzhang15/RefineDet



GPU-Computation Efficiency. Figure 4(b) shows that

VoVNet-39/57 outperform DenseNet and ResNet back-

bones with higher computation efficiency. In particular,

since VoVNet-39 runs faster than DenseNet-201 having

fewer FLOPs, VoVNet-39 achieves about three times

higher computation efficiency than DenseNet-201 with

better accuracy. One can note that although DenseNet-201

(k=32) has fewer FLOPs, it runs slower than DenseNet-161

(k=48), which means lower computation efficiency. We

speculate that deeper and thinner network architecture is

computationally in-efficient in terms of GPU parallelism.

Energy Effficiency. As illustrated in Figure 4(c), with

higher or comparable accuracy, VoV-39/57 consume only

4.8J and 5.9J per image, which are less than DenseNet-

201/161 and ResNet-50/101, respectively. Compared to

DenseNet161, the energy consumption of VoVNet-39 is

two times less with comparable accuracy. Table 4 shows

that the positive relation between memory footprint and

energy consumption. From this observation, it can be seen

that VoVNet with relatively fewer memory footprint is the

most energy efficient. In addition, Figure 4(d) shows that

our VoVNet-39/57 are located in the most efficient position

in terms of energy and computation.

Small Object Detection. In Table 4, we find that VoVNet

and DenseNet obtain higher AP than ResNet on small and

medium objects. This supports that conserving the diverse

feature representations with multi-receptive fields by con-

catenative aggregation has the advantage of small object de-

tection. Furthermore, VoVNet improves 1.9%/1.2% small

object AP gain from DenseNet121/161, which suggests that

generating more features by OSA is better than generating

deep features by dense connection on small object detec-

tion.

4.4. Mask R­CNN from scratch

In this section, we also validate the efficiency of VoVNet

as a backbone for a two-stage object detector, Mask R-

CNN. Recent works [16, 4] are studied on training with-

out ImageNet pretraining. DSOD is the first one-stage ob-

ject detector trained from scratch and achieves significant

performance due to the deep supervision trait of DenseNet.

He et al. [4] also prove that when trained from scratch for

longer training iterations, Mask R-CNN with Group nor-

malization (GN) [21] achieves comparable or higher accu-

racy than that with ImageNet pretraining. We also already

confirmed our VoVNet with DSOD achieves good perfor-

mance when training from scratch in Section 4.2.

Thus we also apply VoVNet backbone to Mask R-CNN

with GN, the state-of-the-art two-stage object detection

and simultaneously instance segmentation. For fair com-

parison, without any bells-and-whistles, we only exchange

Backbone APbbox APbbox
50

APbbox
70

APseg AP
seg
50

AP
seg
75

GPU time

ResNet-50-GN 39.5 59.8 43.6 35.2 56.9 37.6 157 ms

ResNet-101-GN 41.0 61.1 44.9 36.4 58.2 38.7 185 ms

VoVNet-39-GN 41.7 62.2 45.8 36.8 59.0 39.5 152 ms

VoVNet-57-GN 41.9 62.1 46.0 37.0 59.3 39.7 159 ms

Table 5. Detection and segementation results using Mask R-CNN

with Group Normalization [21] trained from scratch for 3×

schedule and evaluted on COCO val set.

ResNet with GN backbone for VoVNet with GN in Mask

R-CNN, following same hyperparameters and training

protocols [3]. We train VoVNet with GN based Mask

R-CNN from scratch with batch size 16 for 3× schedule

in an end-to-end manner as like [21]. Meanwhile, due to

extreme memory footprint of DenseNet and larger input

size of Mask R-CNN, we cannot train DenseNet based

Mask R-CNN even on the 32GB V100 GPUs. The results

are listed in Table 5.

Accuracy vs. Speed. For object detection task, with faster

speed, VoVNet-39 obtains 2.2%/0.9% absolute AP gains

compared to ResNet-50/101, respectively. The extended

version of VoVNet, VoVNet-57 also achieves state-of-the-

art performance compared to ResNet-101 at faster inference

speed. For instance segmentation task, VoVNet-39 also im-

proves 1.6%/0.4% AP from ResNet-50/101. These results

support the fact that VoVNet can also provide better diverse

feature representation for object detection and simultane-

ously instance segmentation efficiently.

5. Conclusion

For real-time object detection, in this paper, we propose

an efficient backbone network called VoVNet that makes

good use of the diversified feature representation with multi

receptive fields and improves the inefficiency of DenseNet.

The proposed One-Shot Aggregation (OSA) addresses the

problem of linearly increasing the input channel of the

dense connection by aggregating all features in the final

feature map only at once. This results in constant input

size which reduces memory access cost and makes GPU-

computation more efficient. Extensive experimental results

demonstrate that not only lightweight but also large-scale

VoVNet based detectors outperform DenseNet based ones

at much faster speed. For future works, we have plans to

apply VoVNet to other detection meta-architecture or se-

mantic segmentation, etc.
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