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Reducing energy consumption of data centers is an important way for cloud providers to improve their investment yield, but they
must also ensure that the services delivered meet the various requirements of consumers. In this paper, we propose a resource
management strategy to reduce both energy consumption and Service Level Agreement (SLA) violations in cloud data centers. It
contains three improved methods for subproblems in dynamic virtual machine (VM) consolidation. For making hosts detection
more effective and improving the VM selection results, first, the overloaded hosts detecting method sets a dynamic independent
saturation threshold for each host, respectively, which takes the CPU utilization trend into consideration; second, the
underutilized hosts detecting method uses multiple factors besides CPU utilization and the Naive Bayesian classifier to calculate
the combined weights of hosts in prioritization step; and third, the VM selection method considers both current CPU usage and
future growth space of CPU demand of VMs. To evaluate the performance of the proposed strategy, it is simulated in CloudSim
and compared with five existing energy-saving strategies using real-world workload traces. The experimental results show that our

strategy outperforms others with minimum energy consumption and SLA violation.

1. Introduction

Cloud computing [1] has revolutionized the ownership
model of IT infrastructure by offering on-demand pro-
visioning of elastic resources [2]. Due to its flexibility, low-
latency, and parallel processing capability, it has become a
suitable and popular platform in many areas. Many industry
magnates, such as Google, IBM, Microsoft, and Amazon,
have begun to put massive manpower and financial re-
sources to promote the commercialization of cloud com-
puting and related services [3]. A number of large-scale data
centers have been built all around the world. Since the
average energy consumption of a data center is almost as
much as 25000 households’, the rapid expansion of the
number of data centers must be accompanied by the fast
increasing in energy demand. Such high energy consump-
tion can directly lead to the increasing of carbon dioxide
(CO,) emissions and operational costs of data centers [4]. In
view of global warming and the return on investment re-
ducing, the issue of high energy consumption of data centers

has aroused great concern from both governments and cloud
providers. Consequently, improving the energy efficiency
and eliminating unnecessary energy costs have become hot
spots in the industry and the main difficulty and challenge of
the next-generation data centers.

Many infrastructure-based solutions have been made to
deal with the problem [5], but their implementations are
expensive, and the reduction of energy consumption is
limited [6]. In addition, apart from the huge quantity and
low power efficiency of infrastructure, inefficient usage of
computing resources is another reason for the high energy
consumption in cloud data centers. By collecting data from
more than five thousand hosts over six months, a fact was
found that the hosts in the data centers are rarely idle or fully
utilized, and for most of the time, only 10% to 50% of their
tull capacity are operated [7]. Moreover, it is important to
realize that the idle host uses about 70% of its peak power
consumption. All the above data indicate that inefficient
resource usage leads to huge amount of energy wastage.
Therefore, although many remarkable improvements on
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infrastructure have been made, designing effective resource
management strategies to improve resource utilization is still
necessary and meaningful in further decreasing energy
consumption of a data center.

To address this problem, the capabilities of virtualization
technology [8] should be well utilized. First, it allows
multiple virtual machines (VMs) to be created on a single
host and mapped to different consumers, which increases
the throughput and scalability of a data center. Second, it
provides a function named live migration [9]; in this way, a
VM can be transformed between hosts with a close to zero
downtime. With the support of dynamic migration, dynamic
VM consolidation has emerged as the most popular strategy
in this area recently. VMs are reallocated periodically in the
dynamic VM consolidation method: some VMs are mi-
grated from overloaded hosts to avoid performance deg-
radation; all VMs on underutilized hosts are moved out to
shut these hosts down to minimize the number of active
hosts. But it should be stressed that excessive resource
utilization may affect the performance of cloud services. For
instance, resources requirements of some VMs may increase
a lot abruptly, and during VM live migration process, re-
sources are occupied on both source and target hosts.
Maintaining a reliable Quality of Service (QoS) is essential
for cloud providers as consumers pay for the services they
get. SLA is the concrete form of QoS, which describes
various details of service level provided to consumers [10].
Improper migrations and unconstrained VM consolidations
can cause performance degradation of VMs and then lead to
SLA violation. Then, a penalty must be paid to the customer,
which will increase the total costs of cloud providers.
Therefore, the trade-oftf between energy consumption and
SLA violation should be found in the VM dynamic con-
solidation strategy.

In this paper, we propose an energy and SLA-aware
resource management strategy based on dynamic VM
consolidation. It intends to improve the resource utilization
and the status of VM allocation in cloud data center, and then
the energy consumption can be reduced while meeting the
QoS delivered by cloud providers. Generally, for the dynamic
VM consolidation, four subproblems need to be seriously
considered: (1) overloaded hosts detection; (2) VM selection
from overloaded hosts; (3) underutilized hosts detection; and
(4) VM placement [11]. The proposed strategy contains
methods to deal with the subproblems mentioned above.
Finally, we run it on the CloudSim toolkit with real-world
workload traces. Furthermore, the superiority of this strategy
is demonstrated by comparing with several existing strate-
gies. The proposing of some new and effective parameters in
the strategy makes it more reasonable in the detection of
overloaded and underutilized hosts and the selection of VMs
from overloaded hosts than the existing strategies. Specifi-
cally, the differences from previous works along with the
main contributions we made are listed as follows

(1) For overloaded hosts detection, previous methods
either set a common upper threshold for all hosts or
take the host as the basic investigation unit to obtain
its upper threshold, which makes them naive and
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unreasonable. In our method, we introduce a dy-
namic independent saturation threshold for each
host. When calculating the saturation threshold of a
host, each VM in it is considered as the basic in-
vestigation unit; that is, parameters such as the type
and CPU usage of each VM are considered, as well as
the number of VMs on it. Accordingly, there adds a
new host state type, saturated state. Meanwhile, this
method takes the CPU utilization trend of host into
account by introducing the saturation degree.

(2) Instead of just considering CPU utilization as most
of the previous overloaded hosts detecting methods
do, a new indicator for candidate hosts is introduced
in priority calculation process in our method. This
indicator considers both the CPU usage of each VM
and the number of VMs to improve the performance
of the detection. In addition, the Naive Bayesian
classifier is applied for predicting the variation trend
of the indicator.

(3) In order to accommodate these changes above, we
also present a new VM selection method. For the
purpose of reducing energy consumption and SLA
violation, the basic idea of our method is reducing
the number and cost of migrations. So, it takes both
the current CPU usage and the future growth space
of CPU demand of VMs into consideration, which
makes it more comprehensive than the previous
works.

The rest of the paper is organized as follows. The pre-
vious works related to energy-aware resource management
are presented in Section 2. Section 3 is the main part of this
paper, which introduces our strategy and the correlative
methods in detail. Experimentation setup is depicted in
Section 4. Experimental results are given and analyzed in
Section 5. Finally, Section 6 provides the conclusion of our
research.

2. Related Work

Many works have done to provide high-quality serveries
with minimal energy consumption in cloud data centers
except infrastructure-based optimizations. In general,
depending on whether they are implemented at hardware or
software level, the mainstream energy-aware resource
management strategies can be divided into two types.

2.1. Hardware Strategies. Hardware strategies employ par-
allel architectures, multicore architectures, voltage and
frequency scaling, and dynamic component consolidation
and deactivation to reduce energy consumption of hardware
in cloud data centers. The DVFS introduced above is the
most popular one among them [12]. By employing this
technique, the CPU can adjust its performance dynamically.
Specifically, in order to save energy consumption, the
voltage and frequency of CPU will be reduced when it is not
fully utilized. The DVES has improved energy consumption
issue to some extent, but it has some limitations. The
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methods based on DVES are static and offline, which means
the workload traces should be notified in advance, or the
future CPU utilization should be predicted by leveraging the
knowledge of past periods. So, they may not be suitable for
using when the workload trace is unknown and irregular.

2.2. Software Strategies. Most of the software strategies in-
troduce significant VM dynamic consolidation methods to
optimize resource utilization and reduce energy consump-
tion along cloud data center. Zhu et al. [13] studied dynamic
VM consolidation problem of automated resource allocation
and capacity planning. They set a static CPU utilization
upper threshold of 85% and introduce a heuristic method for
detecting overloaded hosts. The value of 85% was proposed
by Gmach et al. [14] for the first time, based on their study of
real workload. Beloglazov and Buyya [15] divides the VM
allocation into two parts, allocation of new requested VMs
and optimization of current placements of existing VMs. The
first part is considered as a bin-packing problem, and this
paper solves it by applying Modified Best Fit Decreasing
(MBFD) method. For the second part, they propose four
heuristics methods for choosing VMs to migrate. The four
methods are Single Threshold (ST), Minimization of Mi-
grations (MMs), Highest Potential Growth (HPG), and
Random Choice (RC). Meanwhile, the authors present a
decentralized architecture of the energy-aware resource
management system and three stages of VM placement
optimization in [16]. The stages are VM reallocation con-
sidering current resource utilization, virtual network to-
pologies optimization, and VM reallocation considering
thermal state of hosts. They prove that their heuristics
perform better than DVFS.

In order to adapt to variable and unknown workload,
several strategies are focusing on adopting statistical analysis
of historical data. Beloglazov and Buyya [17] give a com-
petitive analysis and prove competitive ratios of the single
VM migration and dynamic VM consolidation problems.
Furthermore, they propose an adaptive double CPU utili-
zation thresholds method. In [11], they summarize and
extend their previous work. The problem of dynamic VM
consolidation is split into four parts, and they put forward
several heuristic methods for each part. To find overloaded
hosts, there are four statistical methods: Median Absolute
Deviation (MAD), Interquartile Range (IQR), Local Re-
gression (LR), and Local Regression Robust (LRR). Mini-
mum Migration Time (MMT), Maximum Correlation
(MC), and Random Choice (RC) are proposed to deal with
the subproblem of VM selection. They also propose a simple
method for underutilized hosts detecting and use Power-
Aware Best Fit Decreasing (PABFD) for VM placement.
Arianyan et al. [18] introduce a holistic method for resource
management procedure in cloud data centers, which is called
Enhanced Optimization (EO). Besides, Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) power
and SLA-aware allocation (TPSA) method are proposed as
the resource allocation methods. Moreover, for underutil-
ized hosts detecting, methods including Available Capacity
(AC), Migration Delay (MDL), and TOPSIS-Available

Capacity-Number of VMs-Migration Delay (TACND) are
proposed. Yadav et al. [19] introduce Maximum Utilization
Minimum Size (MuMs) based on statistical analysis of hosts
CPU utilization history as the VM selection method. Then,
Yadav and Zhang [20] propose an adaptive heuristic M
estimation Regression (MeReg) method to estimate upper
CPU utilization threshold using recent CPU utilization
history. Yadav et al. [21] also propose a novel overloaded
host detection method called Least Medial Square Re-
gression (LmsReg) and a VM selection method called
Minimum Utilization Prediction (MuP). LmsReg is more
robust than other regression techniques. MuP considers the
types of application running and CPU utilization at different
time periods. A multiresource double-threshold method is
proposed by Yadav et al. [22] who propose two regression-
based methods named Gradient Descent-based Regression
(Gdr) and Maximize Correlation Percentage (MCP) to set a
dynamic CPU utilization upper threshold and a dynamic
Bandwidth-aware (Bw) VM selection method. Based on the
first-order Markov chain model, a load detection method
named Median Absolute Deviation Markov Chain Host
Detection method (MadMCHD) is proposed by Melhem
et al. [23] to find the future overloaded and underutilized
hosts. They also add the Markov prediction model into the
PABFD and propose a Markov Power Aware Best Fit De-
creasing (MPABFD) method for VM placement. Ranjbari
and Torkestani [24] use the Learning Automata Overload
Detection (LAOD) to predict the CPU utilization of a host
upon its historical usage data and determine whether it is
overloaded dynamically.

With the popularity of artificial intelligence techniques,
some artificial intelligence strategies are proposed to give the
most optimal VM allocation, which take advantage of
various genetic methods, such as neural networks, machine
learning, and fuzzy method. For example, Abd et al. [25]
propose a DNA-based fuzzy genetic method (DFGA) that
deals with real-time tasks of dynamic users to reduce power
consumption in cloud data centers. An energy-aware VM
scheduling approach named PreAntPolicy is introduced by
Duan et al. [26], which consists of a fractal mathematics-
based prediction model and a scheduler using an improved
ant colony method. Li et al. [27] first develop a multiresource
double-threshold method. Then, they introduce Modified
Particle Swarm Optimization (MPSO) method into VM
reallocation. Ghobaei-Arani et al. [28] propose a VM
placement optimization method combining learning
automata theory, correlation coefficient, and ensemble
prediction model. However, these methods acquire long
learning periods to give good solutions. Zhou et al. [29]
introduce an adaptive three-threshold framework and use a
method named K-Means clustering algorithm Midrange-
Interquartile range (KMI) to get the three thresholds, then
the hosts are divided into four classes: less loaded hosts, little
loaded hosts, normally loaded hosts, and overloaded hosts.
Based on this framework, they also put forward two VM
selection methods named Maximum ratio of CPU utilization
to memory utilization (MRCU) and Minimum the product
of a CPU utilization (MPCU) for CPU intensive and I/O
intensive workload, respectively, and a VM placement



method named VM Placement with Maximizing energy
Efficiency (VPME).

3. Energy and SLA-Efficient Resource
Management Strategy

In this section, we give the detailed introduction of the
proposed energy and SLA-aware resource management
strategy. For subproblems in dynamic VM consolidation, it
contains three improved methods to complete overloaded
hosts detecting, underutilized hosts detecting, and VM se-
lection. Meanwhile, it uses the existing PABFD method for
VM placement. In order to explain the working process of
the whole resource management strategy and the relations
between the four methods, we give a flow chart in Figure 1.
The acronyms in the figure are the name of the methods that
are detailed in the rest of this section.

When a host is judged as overloaded, some VMs selected
on it are put into the migration list. However, the VMs on
the migration list will not be reallocated until all hosts have
been detected. In contrast, each time an underutilized host is
identified, it is necessary to reallocate all its VMs immedi-
ately, and then the underutilized hosts detecting process for
the next candidate host can proceed.

For ease of reference and understanding, Table 1 sum-
marizes the acronyms of the terms defined in this section.

3.1. Overloaded Hosts Detecting Method. Theoretically, a host
only will be identified as overloaded if the total CPU de-
mands of all VMs on it exceed its total CPU capacity at some
point. But performance degradation and SLA violations are
already inevitable on it at this time. In order to prevent these
from happening, overloaded hosts detecting method is
proposed in practice by setting an upper threshold. When
the CPU utilization of a host exceeds this threshold, it will be
identified as overloaded, and next, some of the VMs must be
migrated from it to other hosts to reduce its CPU utilization
to normal. Therefore, overloaded hosts detecting method
can avoid SLA violations caused by the sudden increase of
CPU demands of some VMs.

Clearly, in overloaded hosts detecting process, how to
determine the appropriate value of upper threshold is the
key problem. At first, it should be noted that using the same
upper threshold to determine whether the state of the host is
overloaded is not reasonable even for hosts with the same
configuration. Because the number, type, and CPU usage of
VMs on them are different. Two extreme examples are given
in Figure 2 to illustrate the irrationality of using a common
upper threshold for all hosts.

For illustration purposes, the actual unit of CPU capacity
is not used in the examples. Shaded areas represent idle CPU
capacity. The two hosts H, and H, have the same total CPU
capacity of 100 and the same upper threshold of 80%. VM, is
the only VM on H,, and the maximum amount of CPU can
be required by VM, is 100. In the present moment, the CPU
usage of VM, is 90, so the CPU utilization of H, is 90%,
which is larger than the upper threshold. H, is judged as
overloaded and VM, must be migrated to other hosts.
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Is there an
undetected host in
hostList?

Find target host for VMs in
MigrationList based on PABFD

l

Clear MigrationList

Yes |

| Get a host from hostList | l

Find all underutilized hosts
based on CWP

|

Add all VMs on all
underutilized
hosts to MigrationList

Yes l

Based on DIST,
is this host
overloaded?

Select VMs for migration based
on MNCM and add them to
MigrationList

Find target host for VMs in
MigrationList based on PABFD

End

Figure 1: The flowchart of resource management strategy.

TABLE 1: Acronyms and full names of terms.

Acronym Full name

ST Saturation threshold

VMR VM maximum amount of resource
VRA VM resource allocation
VRAR VM resource allocation rate
VRR VM resource reservation
HRR Host resource reservation
HMR Host maximum amount of resource

SD Saturation degree

HROR Host resource occupancy rate
VRO VM resource occupancy
HRO Host resource occupancy

However, as long as no new VMs are created on H,, even if
the CPU usage of VM, increases to its maximum amount,
the CPU demand on H; will not exceed its total CPU ca-
pacity. Furthermore, the migration of VM, is unwise, as its
CPU usage is huge; first, the time and cost of this migration
are extremely large; second, it easily leads to the overload of
the destination host of the migration at the next time point.
For this situation, we think that keeping VM, on H, and just
not allowing H, to add new VMs is better than treating H,
as overloaded. There are 60 VMs on H,, the maximum
amount of CPU can be required by each VM is 100. At the
present moment, the CPU usage of each VM is 1, so the CPU
utilization of H, is 60%, which is smaller than the upper
threshold, and H, is judged as not overloaded. However, if
the CPU usage per VM increases slightly, for example by 1,
at the next time point, the CPU demand on H, will increase
to 120, which exceeds its total CPU capacity. Then the upper
threshold is ineffective for H, at the present moment.
Therefore, hosts should be judged separately by giving each
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VM,

CEX XL K

VM,
VM,

FIGURE 2: Examples for illustrating the irrationality of using
common upper threshold.

of them an independent threshold. In addition, when the
CPU utilization of a host exceeds some certain threshold, it
may not need VM migrations, and just limiting the creation
of new VMs can prevent it from overloading.

Similarly, the total CPU utilization of a host is not a
complete reflection of its state, so taking host as the basic
unit of investigation to get the upper threshold is also ir-
rational. The actual situation of every VM on the host should
be reflected directly in the calculation of the threshold. Based
on these considerations above, we introduce a new threshold
named Saturation Threshold (ST). Each host has its own
private ST, and ST changes dynamically with the actual
situation of every VM on the host. Before giving the cal-
culation formula of ST, several concepts need to be clarified.

3.1.1. VM Maximum Amount of Resource (VMR). VMR is
determined by the type a VM belongs to, and it is equal to the
maximum amount of CPU available for that type. Since all
the VM types are known and fixed, VMR of a VM is also a
known fixed value.

3.1.2. VM Resource Allocation (VRA) and VM Resource
Allocation Rate (VRAR). In the actual situation, in order to
reduce operating costs, instead of allocating VMR to a VM, the
cloud provider only allocate the amount of CPU that it needs
in a moment for the VM to use. Therefore, VRA equals to the
actual CPU usage of a VM. Then, VRAR is calculated as

VRA
VRAR = ——. (1)
VMR

3.1.3. VM Resource Reservation (VRR) and Host Resource
Reservation (HRR). Each VM is treated as an independent
object when calculating VRR. Depending on CPU request

and usage of a VM, a part of CPU capacity is reserved on the
host for its future usage. Since the VMR of a VM is fixed,
with the increase of its VRA, the growth space of its future
CPU demand decreases, and accordingly, its VRR should be
reduced. Based on this fact, the calculation formula of VRR
is given as

VRR = (1 - VRAR) x VRA. (2)

The sum of VRRs of all VMs on a host is called the HRR,
so as the number of VMs increases, HRR also increases.
Finally, the calculation formula of ST is given as

sT=1- IRR (3)
HMR

In equation (3), the acronym HMR stands for Host
Maximum amount of Resource; it is the total CPU capacity
that the host can provide. The definition of HRR is closely
related to the number of VMs and the CPU usage of each
VM on a host, so using HRR in the calculation of ST means
we also take these two parameters into account in our
overloaded hosts detecting method.

If the CPU utilization of a host exceeds its ST, the host is
marked as saturated. VRR of a VM is not really allocated to it
and HRR of a host is a part of CPU capacity that can be
shared by all VMs on it. Therefore, it should be noted that
immediate VM migrations are not required on a saturated
host; it simply no longer accepts VM allocation.

When judging whether a host is overloaded, the
changing trend of its CPU utilization is also a parameter that
cannot be ignored. In order to add this into consideration, a
concept named Saturation Degree (SD) is introduced. It is
the extent to which its CPU utilization exceeds ST and can be
calculated as

_ Utilizaion — ST

SD
ST

(4)

If a host stays saturated and its SD increases continu-
ously at n consecutive monitoring points (the points at
which SD remains the same are excluded), the state of the
host will be changed from saturation to overload. n is an
adjustable parameter, its value can be optimized and finally
determined through experiments.

The pseudocode of our overloaded hosts detecting
method is shown in Algorithm 1. It is referred to as Dynamic
Independent Saturation Threshold (DIST) method. In order
to get ST, SD, and the CPU utilization of a host, all VMs on it
will be traversed. So, the time complexities of them are
O(N). The rest of DIST uses numerical comparisons to
determine if the host is overloaded, and the time complexity
is O (1). Therefore, the time complexity of DIST for one host
is O(N), where N is the number of VMs on the host, and
then, the time complexity of the entire overloaded hosts
detecting process for all hosts is O (M x N), where M refers
to the number of hosts.

3.2. Underutilized Hosts Detecting Method. Migrating all
VMs from underutilized hosts and then shutting them off or
setting them to deep sleep mode is an efficient way to
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Input: host

(3) if utilization > ST
(4) if SD > lastSD

11) lastSD = SD;
(12)  else

(20)  lastSD = 0;
(21) end if
(22) return

(1) Calculate ST and SD of the host
(2) utilization = host.getCpuUtilization ();

(5) saturated_count + +;
(6) else if SD <lastSD

(7) saturated_count = 0;
(8) end if

(9) if saturated_count<n
(10) host_state = Saturated;

13) host_state = Overloaded;
(14) MigrationList.add (host.getVMsToMigrate ());

(15) saturated_count = 0;
(16) lastSD = 0;

(17) end if

(18) else

(19)  saturated_count = 0;

ArLcorrTaMm 1: DIST.

increase CPU utilization and reduce energy consumption of
a cloud data center. In the proposed underutilized hosts
detecting method, all active hosts except saturated ones
should be put into a candidate host set for detection. We first
get the priorities of all candidate hosts and then try to
migrate all VMs from the host with highest priority to other
unsaturated hosts while keeping them not overloaded. If the
entire migration process is successfully completed, the host
with highest priority is marked as underutilized, and it will
be turned off or switched to deep sleep mode after all VM
migrations are done. Otherwise, it will remain active. The
host will be removed from the candidate host set after
detection. Meanwhile, some candidate hosts have just ac-
cepted the migrated VMs, so the candidate host set and the
priority of all candidate hosts should be updated. The
underutilized hosts detecting method does not terminate
until there is no host in the candidate set.

In priority calculation process, unlike previous works
which simply use CPU utilization of a host to decide its
priority, we want to take more factors into consideration to
improve effectiveness. Therefore, a new indicator named Host
Resource Occupancy Rate (HROR) is proposed. To explain it,
the definition of Resource Occupancy is given at first.

3.2.1. VM Resource Occupancy (VRO) and Host Resource
Occupancy (HRO). VRO is the sum of VRA and VRR of a
VM. HRO is equal to the sum of VROs of all VMs on that
host.
The calculation formula of HROR is
HRO

HROR = ——. (5)
HMR

The reasons for using HROR to calculate the priority of a
host are as follows. First, besides the CPU utilization of hosts at
present, their possible future CPU demands and maximum
CPU capacities are also critical for prioritizing them. Second, it
is important to take the number of VMs into account in the
priority calculation method, because the more VMs a host has,
the greater the probability that it will not be underutilized in
the future. Comprehensive consideration of them can obvi-
ously improve the effectiveness of underutilized hosts de-
tection. It should be noted that, according to their definitions,
VRO can simultaneously reflect the actual CPU usage of the
VM at present and the CPU capacity should be reserved for its
future usage; HRO is related the number of VMs on the host;
the calculation of HROR uses HMR. Therefore, using HROR
to calculate the priority of a host is much better than using the
CPU utilization undoubtedly.

In addition, the impact of variation trend of HROR is
another important factor which should be taken into con-
sideration in priority calculation. Specifically, for hosts with
approximately equal HROR values at one monitoring point,
the one should have higher priority if its HROR values are
likely to decrease at the next monitoring point. We use the
Naive Bayesian classifier to get the probability that HROR
decreases. Then based on HROR and the probability, an
indicator named Adjusted Host Resource Occupancy Ratio
(AHROR) is proposed.

In the Naive Bayesian classifier, we need data samples to
form a training set, and each sample is represented by a m + 1
dimension vector (a,,a,, .. .,a,,, c). Each vector consists of n
feature attributes and a class label. There may exist k classes,
so the range can be expressed as {C,;,C,,...,C}. After
training, for a sample which has no class label, the classifier



Scientific Programming

will predict that it belongs to the class which has the highest
posterior probability conditioned on the sample vector.

As we intended to use the historical data of HROR to
predict its probabilities of decreasing or not decreasing at the
next monitoring point, according to the Naive Bayesian
classifier, the direct method is to choose the historical data as
the features of sample vector. Suppose x;, X;,;> - .., X4, L€
m + 1 HRORs observed from preceding monitoring points
in time t,t+1, ..., t +m, then we get the input feature
vector X = (X, X415 ---» Xpy)- The variation of HROR
can be divided into two types, decreasing and not decreasing,
so the range of the class is {0, 1}. Specifically, the class 1 is the
state of decreasing and the class 0 is the state of not de-
creasing. Similarly, for simple and efficient use of the input
vector X, the vector X will be transformed to vector Y =
(¥1> ¥2» ---» ¥,y) using the rule shown in the following
equation:

1’ if xt+i—1 > xt+i’
= (I1<i<m). (6)
Ji { 0, otherwise,

For an input vector Y, our goal is to calculate P(1]Y)

and P(0]Y):

P(1|Y>:%, )
P(0|Y>=%. (8)

The class conditional probabilities P(Y[1) and P(Y|0)
can be calculated by the following equations:

m

P 1) =[]P(y]1), (9)

i=1

m

P(Y10) =[] P(y:]0).

i=1

(10)

The probabilities P(y; | 1) and P(y;|0) can be got based
on training samples.

(1-01 ><P(1|Y))><HROR=<1—O.1 X

:<1—0.1><

In our experiment, the interval of measurements is five
minutes, and the workload data of last nearest one hour is
enough for predicting the state of next monitoring point, so
we let m = 12. For each prediction, we use the last nearest 24
measurements to form 13 sample vectors as a training
sample set, so the AHRORSs of the first 24 monitoring points
are equal to their HRORs.

_P(Ly;) Sy,
P(i|l)_ P(1) _?’
(11)
_P(0,y) _Soy,
P(0) = P(0) s

>

wheress, , is the number of training samples of class 1 having
the value y; for its ith feature, and s, is the number of
training samples belonging to class 1; sy, is the number of
training samples of class 0 having the value y; for its ith
feature, and s, is the number of training samples belonging
to class 0. For the special case where s, ,, or s, , is 0, Laplace
smoothing can be used to solve it.

Besides, in (7) and (8), P(1) and P(0) are the class prior
probabilities which can be estimated by the following equations:

P =3 (12)
S

P(0) = (13)
S

where s is the total number of training samples.
Finally, the calculation of AHROR is given in equation (14).
A host with a smaller AHROR should have higher priority:

HROR, if P(Y]|1)P(1)

AHROR = <P(Y|0)P(0),
(I1-0.1xP(1]Y))xHROR, otherwise.

(14)

Since the purpose of introducing variation trend of
HROR is just to distinguish priorities of hosts with ap-
proximately equal HROR, we multiply P(1|Y) by 0.1 to
reduce its weight. Though P (1Y) cannot be got according
to the formulas, we can get P(Y |1)P(1) and P (Y |0)P(0),
and P (Y) can be treated as a nonzero constant. In addition,
P(1]Y)+ P(0]Y) = 1, then the second case of equation (14)
can be transformed into the following equation:

P(1]Y)
PIY)+P(0]Y)

)XHROR
(15)
P(Y |1)P(1)
P(Y|1)P(1) + P(Y | 0)P(0)

) x HROR.

The pseudocode of our underutilized hosts detecting
method is shown in Algorithm 2. It is referred to as
Combined Weight Prioritization (CWP) method. In order
to get AHROR of a host, all VMs on it will be traversed, so
the time complexity is O (N). The rest of CWP uses double
circulation to determine if the host is underutilized, and
the time complexity is O(M x N). Therefore, the time
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Input: hostList

(5) for (VM: VMList)

(10) end for

(13) end for
(14) return

(1) Put all active hosts except saturated ones into candidatehostList
(2) Calculate AHROR of each host in candidatehostList

(3) candidatehostList.sortByDecreasingAHROR ( );

(4) for (host: candidatehostList)

(6) if (getNewVMPlacement (VM) == null)

(7) Destroy all VM reallocations of the host;
(8) continue;
9) end if

(11)  host_state = Underutilized;
(12)  Update candidatehostList;

ALGgoriTHM 2: CWP.

complexity of CWP is O(M x N), where N is the number
of VMs, while M refers to the number of hosts.

3.3. VM Selection Method. Determining which VMs to
migrate from an overloaded host has a direct impact on the
number and cost of migrations, i.e., inappropriate selections
can lead to extra SLA violations, which in turn can increase
energy consumption. In our consideration, for the VMs on
an overloaded host, the one with bigger VRA and smaller
VRAR should be prioritized for migration. Bigger VRA
means it takes up a lot of CPU at present, and smaller VRAR
means it has larger growth space of CPU demand in the
future. This rule makes the current migration of this VM
makes more sense for making the host running properly in
the future, and accordingly, the total number and cost of
migrations will be reduced.

Considering that using two separate factors makes the
selection process difficult, it is better to find one factor that
can reflect them both simultaneously. According the defi-
nition of VRR, for the two VMs with the same VRA, the one
has smaller VRAR must has larger VRR. So, VM with bigger
VRA and VRR should be selected first. VRO is the sum of
VRA and VRR, so the selection should be based on VRO. In
conclusion, the VM with larger VRO should have higher
priority to be selected for migration.

The proposed VM selection method is referred to as
Minimize Number and Cost of Migrations (MNCM)
method. VRO of each VM is already obtained in the previous
part, and all VMs on the overloaded host will be traversed for
selecting proper ones; therefore, the time complexity of
MNCM is O(N), where N is the number of VMs.

4. Experimental Setup

In this section, the simulator, hosts and VMs characteristics,
workload data, and performance metrics in our experiment
are described in detail.

4.1. Simulator. Itis essential to evaluate the proposed energy
and SLA-efficient resource management strategy and

compare it with the previous works on a large-scale data
center infrastructure. However, experimentation on a real
cloud data center is expensive and time-consuming.
Moreover, real cloud data centers are proprietary and in-
visible to consumers. The experiment results are often dif-
ficult to reproduce and analyze. In addition, the influence of
network and data transmission cannot be ignored, which
will lead to inaccurate evaluation of energy consumption. To
solve this issue, many simulators based on modeling and
simulation technology are designed. They can provide an
experimental environment which is very close to a real data
center, and they make it much easier to evaluate and
compare different resource management strategies. Con-
sidering the modern open-source CloudSim toolkit can
provide reproducible results to check the cloud strategies
and has very good support for energy consumption mode
[30], CloudSim 4.0 is chosen as the experimental platform in
this paper. More details of CloudSim are given in [31, 32].

4.2. Configuration of Hosts and VMs. In the simulation, we
implement a data center which contains 800 heterogeneous
hosts: half of them are HP ProLiant G4, the other half are HP
ProLiant G5. The specific characteristics of these two types of
servers [11] are listed in Table 2. Referring Amazon EC2, we
set up four types of VMs, and their characteristics [11] are
depicted in Table 3. Initially, the resources of each VM are
allocated according to the resource requirements defined by
its type. Then, less resources are allocated to VMs according
to their workload during their lifetime dynamically, which
can create opportunities for VM dynamic consolidation.

4.3. Workload Traces. To make the experiment more con-
vincing, it is necessary to use real workload data. In this
paper, the data used is derived from the CoMon project
which is a monitoring infrastructure for PlanetLab [33]. We
use 10 days’ workload traces collected from more than 1000
VMs on 800 hosts located at more than 500 places
throughout the world [11] as shown in Table 4. These traces
characterize CPU utilization in 5 min intervals of the VMs.
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TaBLE 2: Configuration of two types of hosts.

Frequency RAM
Host type CPU type  Cores (MHz) (GB)
HP ProLiant  Intel Xeon
G4 3040 2 1860 4
HP ProLiant  Intel Xeon
G5 3075 2 2660 4

TaBLE 3: Configuration of four types of VMs.

VM type CPU (MIPS) RAM (MB)
High-CPU medium 2500 870
Extra large 2000 1740
Small 1000 1740
Micro 500 613

TaBLE 4: Characteristics of 10 days’ workload traces (based on CPU
utilization).

Date Num. of VMs Mean (%) SD (%)
March 3, 2011 1052 12.31 17.09
March 6, 2011 898 11.44 16.83
March 9, 2011 1061 10.70 15.57
March 22, 2011 1516 9.26 12.78
March 25, 2011 1078 10.56 14.14
April 3, 2011 1463 12.39 16.55
April 9, 2011 1358 11.12 15.09
April 11, 2011 1233 11.56 15.07
April 12, 2011 1054 11.54 15.15
April 20, 2011 1033 10.43 15.21

4.4. Performance Metrics. The goal of an energy-aware re-
source management strategy is to minimize the power
consumption and SLA violation of the data center. To verify
its effectiveness, we choose energy consumption, SLA vio-
lation metrics, energy efficiency, number of VM migrations,
and number of host shutdowns as performance metrics to
evaluate our strategy.

4.4.1. Energy Consumption. In comparison to other re-
sources like memory, disk storage, and network, it has been
shown that the energy consumption of a host is mostly
consumed by its CPU. Even if the DVFS technique is ap-
plied, the energy consumption of a host can be approxi-
mated by a linear model with its CPU utilization. However,
the introduction of modern multicore CPUs, large memory,
and big hard disks makes the traditional linear model in-
accurate and makes the establishment of accurate analysis
model to describe the energy consumption of the host
complex. Therefore, we use the real data of energy con-
sumptions of HP ProLiant G4 and HP ProLiant G5 under
different CPU utilizations derived from SPECpower
benchmark (http://www.spec.org/powerssj2008/). The de-
tails of the data are shown in Table 5.

4.4.2. SLA Violation Metrics. The values of SLA violation
metrics are key indicators to evaluate QoS of data center. The
CPU demand of a VM arbitrarily varies over time, and SLA

TaBLE 5: Power consumption of hosts under different CPU
utilizations.

Power consumption (W)

CPU utilization (%) ) )
HP ProLiant G4 HP ProLiant G5

0 86 93.7
10 89.4 97
20 92.6 101
30 96 105
40 99.5 110
50 102 116
60 106 121
70 108 125
80 112 129
90 114 133
100 117 135

violations will be caused if the host is oversubscribed. Two
metrics have been introduced in [11] to depict SLA violation.
They are SLA violation Time per Active Host (SLATAH) and
Performance Degradation due to Migration (PDM). VMs
cannot be provided with their CPU demands if the host is
experiencing the 100% CPU utilization, so SLATAH is SLA
violations due to overutilization of hosts. PDM is the
negative impact on the performance of a VM caused by its
live migration process. The definitions of them are given as

SLATAH = — = (16)
“M&T,

PDM = 1 3%, 17

_N]-:1 c’ (17)

where M and N denote the number of hosts and VMs in a
data center, respectively; T, is the time during which the
host’s CPU utilization reaches 100%; T,, is the total active
time of the host; C; is the estimated performance deg-
radation of VM, caused by VM migrations, and according
to Dumitrescu and Foster [34], it is set to 10% of CPU
utilization during the total migration time of VM ; C, is
the total CPU capacity requested by VM.

As the two metrics are independent and equally im-
portant, SLA Violation (SLAV) is calculated by multiplying
them together as

SLAV = SLATAH x PDM. (18)

4.4.3. Energy Efficiency. A good energy-aware resource
management strategy should minimize power consumption
and SLAV simultaneously. However, the two metrics have a
relationship of restricting each other, using them in-
dividually is hard to give an intuitive judgment of how good
or bad a strategy is compared with others. Therefore, the
energy efficiency (EE) proposed in [29] as shown in (19) is
used as the other metric. Obviously, the strategy with bigger
EE value performs better.

1
~ (energy consumption x SLAV)’

(19)


http://www.spec.org/powerssj2008/

10

4.4.4. Number of VM Migrations. VM migration is an ex-
pensive operation as it brings data transmission burden to
the network and resources are occupied on both sources and
destination hosts during the migration process.

4.4.5. Number of Host Shutdowns. Reduction in the number
of switching state of hosts can lead to additional energy
saving in data center, so a smaller value of number of host
shutdowns represents the strategy has a better performance.

5. Experimental Results and Analysis

In this section, we first present the impact of the parameter n
in the overloaded hosts detecting method, on the perfor-
mance of the proposed resource management strategy and
determine the optimal value for it. Then, the performance of
our strategy is evaluated relying on the aforementioned
metrics, and the experimental results are analyzed in
comparison to some benchmark strategies.

5.1. Determine the Optimal Value of Parameter. As men-
tioned in Section 3.1, in DIST, the state of the host will be
changed from saturation to overload if it stays saturated and
its SD increases continuously at n consecutive monitoring
points (the points at which SD remains constant are ex-
cluded). Theoretically, when the value of » is very small, the
hosts are easy to get into overloaded state, and in the extreme
case when the nis equal to 1, there is no host belonging to the
saturated state, because as long as a host conforms to the
criteria of saturated state, it is judged as overloaded and the
VM selection and migration processes on it begins.
Therefore, the number of VM migrations is large, and SLA
violations and energy consumption caused by VM migra-
tions are also very large. With the increase of n value, fewer
and fewer hosts can change from saturated to overloaded
state, the number of VM migrations will decrease and so do
the SLA violations and energy consumption caused by them.
However, when the value of # is too large, some saturated
state hosts cannot be timely converted into overloaded state
for VM migrations; then the resource requests of some VMs
on them may not be satisfied, resulting in increasing SLA
violations and energy consumption. Finally, when n exceeds
a certain critical value, all hosts in saturated state will not
become overloaded, and the number of VM migrations, SLA
violations, and energy consumption all reach definite values
and do not change with the increase of »n value.

In order to find the most suitable value for #, we study it
with the first three of the ten PlanetLab workload traces and
using the metrics as evaluation criteria. The impact of n on
the all metrics has been studied; however, for the sake of
space, we only show the impact on energy consumption,
SLA violations, energy efliciency, and number of VM mi-
grations metrics. Moreover, we find that when n approaches
10, the values of all the metrics have been very stable, and the
results obtained when 7 is 1 differ greatly from the results
obtained when 7 is other values. So, in order to show the
critical data more clearly, we draw the results with n values
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from 2 to 10 in Figures 3-6, and results obtained when n is 1
are listed separately in Table 6.

From Table 6, it is obvious that when n is 1, huge number
of VM migrations occur in all three groups of experiments,
and accordingly, the values of SLAV and energy con-
sumption are also very large, and the values of energy ef-
ficiency are low. The change trend of the data in the figures
basically conforms to our theoretical analysis above. It can be
clearly seen from the figures that when # increases from 2 to
3, the values of number of VM migrations, SLAV and energy
consumption decreases a lot, and the values of energy ef-
ficiency increases a lot, and when n > 6, the value of the four
metrics tend to be stable. It should be noted that, though the
value of energy consumption basically unchanged when n
increases from 3 to 6, the values of number of VM mi-
grations and SLAV first decrease in a certain extent when »
increases from 3 to 5, and then increase when 7 increases to
6. Accordingly, when n increases from 3 to 6, the energy
consumption first increases and then decreases and reaches
the maximum when 7 is 5. As is clear from the above de-
scriptions, we consider 5 as the most suitable value of #n to
reduce both energy consumption and SLA violations.

5.2. Comparison to Benchmark Strategies. In this section, the
proposed strategy is compared with five existing energy-
saving strategies which use THR (with static utilization
threshold 0.8), LR (with safety parameter 1.2), IQR (with
safety parameter 1.5), MAD (with safety parameter 2.5), and
LAOD (with safety parameter 0.9) [24] in overloaded hosts
detecting phase, respectively, and use a simple method (SM)
[11] in the underutilized hosts detecting phase and MMT in
the VM selection phase. Additionally, our strategy and all the
comparing strategies use PABFD method in VM placement
phase. The five overloaded hosts detecting methods have
been explained in Section 2. Safety parameter is used to
control aggressiveness of these methods for consolidating
VMs. The smaller the parameter, the lower the energy
consumption, but the higher the level of SLA violations
caused by the consolidation. The value of the safety pa-
rameter selected for each method has shown to be optimal
[11]. In SM, the host with minimum CPU utilization relative
to the others will be considered as underutilized if all the
VMs on it can be migrated onto others while keeping them
not overloaded. MMT selects the VM that requires the
minimum migration time relative to the others. The mi-
gration time is estimated as the amount of RAM utilized
divided by the available network bandwidth. PABDF first
sorts the VMs based on their CPU utilizations in an
unincreased order and then allocates each VM to the host
which will have the least increase in power caused by the
allocation.

In the following, we use DIST/CWP/MNCM to repre-
sent our strategy, and the comparing strategies are THR/SM/
MMT, LR/SM/MMT, MAD/SM/MMT, IQR/SM/MMT, and
LAOD/SM/MMT. For each strategy, experiments are exe-
cuted using the 10 days of workload traces depicted in Ta-
ble 4 separately. The comparison of energy consumption,
SLA metrics, number of VM migrations, as well as number
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FIGURE 3: Impact of n on number of VM migrations. Comparison of number of VM migrations when 7 is assigned different values in DIST,

using first three of the ten PlanetLab workload traces.

2.5

SLAV (107%)

1.5

0.5

—— 03/03/2011
- 06/03/2011
09/03/2011

n value

FIGURE 4: Impact of n on SLAV. Comparison of SLAV when 7 is assigned different values in DIST, using first three of the ten PlanetLab

workload traces.

of host shutdowns of these strategies are reported in
Figures 7-10. Each value in the bar graphs is the average
value of ten results obtained using 10 days of data.

From Figure 7, it is obvious that the proposed strategy
has a much smaller number of VM migrations compared
with other strategies. Specifically, relative to the proposed
strategy, LAOD/SM/MMT has the minimum difference and
LR/SM/MMT has the maximum difference in the number of
VM migrations. The range of difference reached 21359 to
24929, with a reduction rate range of 86.74% to 88.41%. The
reason can be explained as follows: first, DIST and CWP
consider the uniqueness of each host according to the actual
situation of VMs on it when determining whether it is
overloaded or underutilized; second, in DIST, a saturated
host no longer accepts a VM allocation, which reduces the

chance that it becomes overloaded and requires VM mi-
grations; third, besides the current CPU usage, MNCM takes
the future growth space of CPU demand into account. These
methods make the host detecting results and the VM se-
lection results more effective, and then the number of VM
migrations is reduced.

As we can see in Figure 8, the proposed strategy also has
a significant advantage on the number of host shutdowns.
Since the proposed strategy properly chooses the underu-
tilized hosts and the VMs need to be migrated from over-
loaded hosts, many unnecessary and incorrect migrations
and the restarting of some previously shutdown hosts are
prevented. As a result, it shuts down a much smaller number
of hosts than the other strategies do. Compared to the
proposed strategy, LR/SM/MMT has the minimum
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FIGURE 5: Impact of n on energy consumption. Comparison of energy consumption when 7 is assigned different values in DIST, using first

three of the ten PlanetLab workload traces.
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FIGURE 6: Impact of n on energy efficiency. Comparison of energy efficiency when # is assigned different values in DIST, using first three of
the ten PlanetLab workload traces.

TaBLE 6: Performance of the proposed strategy when # is 1 in DIST.

Date Number of VM migrations SLAV (107°) Energy consumption (kWh) Energy efficiency
March 3, 2011 22898 9.69 190.91 54.06
March 6, 2011 17321 9.80 141.44 72.14
March 9, 2011 19179 10.13 159.95 61.72

difference and IQR/SM/MMT has the maximum difference
in the number of host shutdowns. The range of difference
reached 4261 to 4954, with a reduction rate range of 84.28%
to 86.17%.

To save space, the comparisons of the proposed strategy
to the benchmark strategies on the three SLA metrics are all
shown in Figure 9. According to the results, the proposed
strategy has smaller values of SLAV, PDM, and SLATAH,

and compared to it, LAOD/SM/MMT has the minimum
difference and LR/SM/MMT has the maximum difference in
the SLA metrics. The range of difference reached 2.292 to
4.002, 0.28 to 0.44, and 2.35 to 3.53, with the ranges of
reduction rates of 70.31% to 80.52%, 43.75% to 55%, and
46.81% to 56.94%, respectively. First, through introducing
the saturated state, DIST prevents the CPU utilization of
hosts from reaching 100%; consequently, SLATAH
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FiGure 7: Comparison of number of VM migrations of strategies using PlanetLab workload traces.
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FIGURE 9: Comparison of SLA metrics of strategies using PlanetLab workload traces.

decreases; second, the number of VM migrations of the
proposed strategy is much smaller than other strategies, and
then the time cost and performance degradation due to
migration are smaller; thus, PDM decreases. Therefore,
SLAYV formed by multiplying the two metrics is also reduced.

Figure 10 depicts the comparison on energy consump-
tion of different strategies. Notably, the proposed strategy

has smaller energy consumption value than others. Specif-
ically, relative to the proposed strategy, LR/SM/MMT has
the minimum difference and THR/SM/MMT has the
maximum difference in the energy consumption. The range
of the difference is 37.48 kWh to 64.12 kWh, and the range of
the reduction rate is 23.16% to 34.02%. Since the proposed
strategy has smaller values of above metrics in comparison to
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Figure 10: Comparison of energy consumption of strategies using PlanetLab workload traces.

TaBLE 7: The respective effects of the three methods presented.

Strategy SLAV (107) Energy consumption (kWh) Energy efficiency
LR/SM/MMT 6.94 130.89 110.09
DIST/SM/MMT 1.68 108.29 549.67
LR/CWP/MMT 3.89 73.44 342.12
LR/SM/MNCM 5.95 68.80 244.28
DIST/CWP/MNCM 1.39 96.94 742.13

the other strategies, and VM migrations and switching hosts
state ON/OFF can produce extra energy consumption; this
result is easy to understand.

In addition, in order to see the specific effect of our
strategy in reducing energy consumption, we run NPA and
DVES to get their energy consumption values as benchmarks
because they do not involve VM migration. NPA uses no
energy management measures during workloads processing,
and its energy consumption is 2410.8 kWh, and DVFS
consumes 829.5 kWh. In comparison, the proposed strategy
reduces energy consumption by 94.84% and 85.01%.

The above simulation results have shown that our
strategy using the proposed three methods together pro-
duces much better performance compared to other com-
binations of existing methods. Then to demonstrate the
validity and reliability of each of them, we combine them
separately with other benchmark methods to compose
various strategies. Extensive experiments are conducted for
testing them, but to save space, only a selection of repre-
sentative and illustrative results is listed in the paper. Table 7
shows the results of some experiments using the workload
traces on April 20, 2011, and LR, SM, and MMT are taken as
the benchmark methods for three phases of dynamic VM
consolidation.

The first row is the baseline strategy, and the second to
fourth rows are the strategies use one of the three methods.
From these results, the three proposed methods work better
than their corresponding benchmark methods. DIST greatly
reduces SLAV as it introduces the saturated state for hosts,
which prevents the CPU utilization of hosts from reaching
100%; CWP cut almost half of SLAV and energy con-
sumption because it considers more factors and uses the

Naive Bayesian classifier for prediction; and MNCM cut
almost half of energy consumption because it has more
comprehensive consideration in the selection of VMs. And,
more remarkable, they can be well integrated. From the
results shown in the last row, our strategy, DIST/CWP/
MNCM, has the best result on energy efficiency compared to
other combinations, that is, using them together can achieve
the best overall performance.

6. Conclusions

For the energy consumption problem in cloud data centers,
this study put forward a threshold-based energy and SLA-
efficient resource management strategy to make a trade-oft
between energy consumption and SLA violation. For the
subproblems in dynamic VM consolidation, the overloaded
hosts detecting method DIST, the underutilized hosts
detecting method CWP, and the VM selection method
MNCM are proposed. Benefits from these methods are that
the chance that hosts are being overloaded is reduced and
underutilized hosts are turned off as much as possible.
Meanwhile, the numbers of VM migrations and host
shutdowns are well controlled. Therefore, energy con-
sumption and SLA violation of the cloud data center are both
reduced. The results of simulation experiments show that
our strategy outperforms comparing strategies significantly
on all evaluation metrics. As future work, more resource
types, such as memory and network bandwidth, will be
considered in addition to the CPU. Furthermore, we plan to
further improve the performance of our strategy by using
machine learning algorithms to predict future workloads
based on historical data.
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