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Abstract—This paper presents a new energy-aware algorithm
that integrates Dynamic Voltage and Frequency Scaling (DVFS)
and Dynamic Power Management (DPM) techniques to further
reduce energy consumption in embedded systems. It consists of
an off-line DVFS-stage, for computing the speed that minimizes
energy consumption during active intervals while guaranteeing
timing constraints, and an online DPM-stage, for prolonging
sleep intervals by postponing task execution. Moreover, limited
preemptive scheduling is exploited to reduce preemption costs
and further extend sleep intervals under fixed-priority systems,
with respect to fully preemptive schedulers. The online algorithm
has a constant complexity and preemption costs are taken into
account in the analysis. A set of simulation experiments are
reported to illustrate the behavior of the proposed approach as
a function of different parameters and compare its performance
with the state-of-art methods available in the literature.

I. INTRODUCTION

Energy saving became a crucial goal in modern embedded

systems, especially for battery operated devices, such as au-

tonomous mobile robots and wearing devices, for which the

minimization of energy consumption leads to a longer lifetime,

which in turn allows saving money and curbing environmental

pollution.

Two widely used techniques to save energy in the ac-

tual technology are Dynamic Voltage and Frequency Scaling

(DVFS) and Dynamic Power Management (DPM). The DVFS

approach trades energy with performance by decreasing the

voltage and/or frequency of the processor to reduce the overall

energy consumption. Since a frequency reduction increases the

execution times of the computational activities, the objective

of this technique is to find the slowest processor speed that

still guarantees real-time constraints. On the other hand, DPM

techniques aim at switching the processor in a low-power

inactive state for the longest possible time, thus postponing

the tasks execution as long as possible, still guaranteeing the

task real-time constraints.

In CMOS technology, which is the actual leader, power con-

sumption is due to both dynamic and static components, which

are ascribable to the system activity and static dissipation,

respectively. Unless the system is off, the static contribution is

always present, independently of the actual performance level.
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Thus, DVFS approaches that modify the clock frequency are

more suitable for reducing the dynamic power, whereas DPM

solutions are best suited for decreasing the impact of the static

component. These techniques can also be integrated to exploit

their complementary features for saving more energy.

During the last decades, many algorithms have been pro-

posed for scheduling real-time tasks and a considerable effort

has been dedicated to those taking energy management into

account. Most of them consider either a fully preemptive or

non-preemptive model, according to how task arrivals are

handled. In a fully preemptive system, if a newly activated

task has a priority higher than the running task, a preemption

occurs to move the running task in the ready queue and assign

the processor to the new one. In a non-preemptive model, in

the same scenario, the execution of the new task would have

been postponed at the end of the running task. Although non-

preemptive scheduling can save a lot of runtime overhead and

make the execution time more predictable, it may introduce

large blocking times during the execution of high priority

tasks, affecting the schedulability of a real-time system.

Limited preemptive scheduling has recently been exploited

as a hybrid technique to take advantage of both types of

scheduling modes, trying to mitigate their drawbacks. As

shown in the literature [1], limited preemptive scheduling is

able to increase the schedulability of both fully and non-

preemptive scheduling models, even when the preemption

overhead is neglected. The improvement is even more signif-

icant when considering the preemption cost, which generally

includes the context switch time for suspending the running

task and dispatching the new one, the time taken to flush the

pipeline, and the cache-related preemption delay due to cache

misses. Moreover, limited preemptive scheduling allows an

implicit mutual exclusion management (when critical sections

are encapsulated inside non preemptive regions) and permits

reducing the minimum stack memory requirements.

Contribution of the paper:

In this paper, limited preemptive scheduling is exploited

for further reducing energy consumption with respect to fully

preemptive and non-preemptive models.

A two-stage algorithm (consisting of an off-line DVFS

phase followed by an online DPM phase) is presented for

fixed priority systems consisting of periodic real-time tasks.

In the first stage, an off-line algorithm selects the speed that
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minimizes energy consumption during active intervals while

guaranteeing the feasibility of the task set under limited pre-

emptive scheduling. For those architectures taking advantage

of speed scaling techniques for reducing energy consumption

(DVFS-sensitive architectures), the speed computed by the

proposed off-line algorithm is shown to be lower than the one

selected by existing DVFS algorithms under fully preemptive

or non-preemptive models. Conversely, for those architectures

in which the use of low-power states is more convenient

(DPM-sensitive architectures), the off-line stage returns the

highest available speed. In the second stage, a DPM technique

is applied online to prolong idle intervals as long as possible

to take advantage of low-power sleep states. It is shown that

such a technique is able to significantly decrease energy con-

sumption with a negligible runtime overhead. This is possible

thanks to the off-line phase, used to compute the longest delay

that can be added after an idle interval to keep the processor in

sleep mode, so avoiding complex online computations. In this

way, the proposed technique exhibits a performance similar

to that of the best existing DPM algorithms, but with a much

smaller runtime overhead. For this reason, it is very suited for

embedded systems with limited resources.

The power model adopted in this paper is general enough

to represent different consumption profiles and features, such

as low power sleep states (and relative overheads) and discrete

speeds. This allows the presented results to be applicable to

different kinds of architectures and power models.

Finally, a set of experimental results are reported to illus-

trate the benefits of the presented techniques under differ-

ent conditions. The performance of the algorithm is tested

by varying different architectural parameters, including the

break-even time and the preemption overhead. Although the

presented algorithm shows the best performance even when

the preemption overhead is neglected, the improvement with

respect to existing preemptive and non-preemptive techniques

increases when preemption costs are considered. Simulation

experiments show that the proposed algorithm outperforms

other well-known algorithms, reducing energy consumption

down to 13%.

Organization of the paper:

Section II introduces the system model in terms of com-

putational workload and energy consumption. The motivation

example in Section III aims at addressing the problem and

showing the ample room of improvement given by the limited

preemptive task model. Section IV reports the schedulability

analysis for the limited preemptive task model that is adopted

in this paper. Section V presents the proposed solution and

an implementation of the algorithm, while Section VI reports

the experimental results obtained by exhaustive simulations.

The state of the art concerning energy saving is reported in

Section VII. Section VIII ends the paper with the final remarks,

pointing out ideas for future improvements.

II. SYSTEM MODEL

We consider a set Γ of n fixed priority periodic tasks,

τ1, τ2, . . . , τn, executing upon a single processor platform with

preemption support. Without loss of generality, we assume

that tasks are indexed in decreasing priority order (i.e., if

0 < i < j ≤ n, then τi has higher priority than τj). The

processor can vary the clock frequency f by selecting one

of the available frequencies in a discrete set {f1, . . . , fm},
ordered by ascending values. In the following, the normalized

speed s, defined as s = f/fm, will be used as a more

convenient parameter (sm = 1 denotes the maximum speed).

Each task τi is characterized by a worst-case execution time

(WCET) CNP
i (s), which is a function of the speed, a relative

deadline Di and a period Ti. The WCET of τi is computed as

CNP
i (s) = αiC

NP
i +(1−αi)C

NP
i /s, where CNP

i denotes the

time to execute τi in a non-preemptive mode at the maximum

speed (CNP
i = CNP

i (sm)) and αi represents the portion of

execution time that does not scale with the speed (e.g. I/O

operations). Moreover, the symbol Ci(s) denotes the worst-

case execution time of task τi in limited preemptive mode,

including the preemption overhead. Relative deadlines can be

smaller than, equal to, or greater than periods. All parameters

are assumed to be in N
+. Each task generates an infinite

sequence of jobs, with the first job arriving at time zero and

subsequent arrivals separated by Ti units of time.

Each task τi consists of a sequence of non-preemptive

chunks and can be preempted only at the end of a chunk.

For the sake of the analysis, the duration of the longest chunk

(at the current speed s) is denoted as qmax
i (s), and the one

of the last chunk is denoted as qlasti (s). Note that the last

non preemptive chunk of a task is crucial for decreasing its

response time, because it reduces the interference from higher

priority tasks. For this reason, it is convenient to make the

last chuck as long as possible. However, qmax
i (s) can not be

arbitrarily large to limit the blocking time imposed to higher

priority tasks. Note that, under such a model, tasks do not need

to be independent, but can interact through shared resources,

provided that critical sections are entirely contained within a

non-preemptive chunk.

Finally, preemption cost is taken into account by considering

a penalty ξ, which includes the context switch overhead, the

pipeline invalidation delay, and the cache-related preemption

delay. Since only the context switch overhead depends on the

actual speed, the preemption cost ξ is assumed to be constant

and speed independent.

A. Power model

To characterize the power model of the considered systems,

we adopt the following relation derived by Martin et al. [2],

which represents a general expression of the power consump-

tion of an active processor as a function of the speed:

P (s) = K3s
3 +K2s

2 +K1s+K0. (1)

The K3 term is the coefficient related to the consumption

of components varying with both voltage and frequency. The

second order term (K2) describes the non linearity of DC-

DC regulators in the range of the output voltage. The K1

coefficient is related to the hardware components that can only

vary the clock frequency, whereas K0 represents the power



consumed by the components that are not affected by the

processor speed.

Switching between two frequencies or operating modes

takes a different amount of time and consumes a different

amount of energy, depending on the specific transition. Such

an overhead is usually non-negligible.

Note that the energy needed to execute a job is the product

of the power and the execution time at the selected speed;

moreover, a higher speed reduces the execution time, but

increases the power consumption. Hence, the quantity that it

is important to minimize is the energy consumption of each

clock cycle Eclk(s) = αP (s)+(1−α)P (s)/s (where α is the

overall fraction of computation time which does not scale with

the speed). Considering the shape of P (s) as a function of s,

as reported in Equation 1, a critical speed s∗ that minimizes

Eclk(s) can be found [3].

As an example, consider a processor with ten speeds uni-

formly distributed from 0.1 to 1.0, and in which the power

consumption is modeled as P (s) = 0.9s3 + 0.1 (describing a

DVFS-sensitive architecture). Assuming α = 0.2, the curves

representing P (s) and Eclk(s) are illustrated in Figure 1 and

the speed that minimizes Eclk(s) is s∗ = 0.4. In the case in

which P (s) = 0.3s+ 0.7, as reported in Figure 2, the speed

that minimizes the energy during active intervals is s∗ = 1.0.

In other words, in the second example (describing a DPM-

sensitive architecture), speed scaling is not energy convenient.
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Fig. 1. P (s) and Eclk(s) of a DVFS-sensitive architecture.
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Fig. 2. P (s) and Eclk(s) of a DPM-sensitive architecture.

An additional feature provided by almost all the current

processors is to switch to low-power states, suspending the

code execution. For the sake of simplicity, in the rest of

the paper only a single low-power state, called sleep state,

is assumed. However, the proposed approach can easily be

extended to consider more low-power states with different

characteristics. In particular, the power consumption in the

sleep state is denoted as Pσ and the overhead times to enter

and exit the sleep state are δs→σ and δσ→s, respectively. They

are reported in Figure 3. The sum of such switching times,

referred to as break-even time (δ), determines the shortest idle

interval that must be available in the schedule to exploit the

sleep state. Such an overhead is assumed independent from the

actual running speed. The energy consumed during a transition

from active to sleep and viceversa is denoted by Eδ .

t

P

P (s)

Pσ

δs→σ δσ→s

Fig. 3. Overhead due to switching from active to sleep state and viceversa.

III. MOTIVATIONAL EXAMPLE

To illustrate the benefit of limited preemption scheduling

to save energy, let us consider a processor with two speeds,

s1 = 0.5 and s2 = 1, without low-power states (the processor

is always on), executing two tasks, τ1 and τ2, with the

following parameters: C1 = 30, T1 = D1 = 80, C2 = 25
and T2 = D2 = 200 (computation times are referred to

speed s2). Tasks are scheduled using Rate Monotonic and,

for the sake of simplicity, preemption costs are considered

negligible and ∀τi : αi = 0. The processor utilization

factor at speed s2 is U = 0.5 and the task set results

feasible under fully-preemptive, non-preemptive, and limited

preemptive scheduling. Switching to s1, however, computation

times become C1 = 60 and C2 = 50, making the task set

unfeasible under both fully-preemptive and non-preemptive

modes. Nevertheless, a feasible schedule can be found under

the limited preemptive model by splitting task τ2 into three

chunks of length 10, 20, and 20 units of time, respectively,

under speed s1. The schedules produced by the Rate Mono-

tonic under the three different preemption modes are shown

in Figure 4.

This example shows that, using the limited preemption

model, the processor can run with a speed lower than that al-

lowed by fully-preemptive and non-preemptive models, hence

saving more energy.

IV. BACKGROUND ON LIMITED PREEMPTION

The limited preemption scheduling model has been intro-

duced to limit the preemption overhead of fully preemptive

schedulers, without incurring in the blocking overhead of

non-preemptive solutions. According to this model, each task



t

τ1

τ1

τ1

τ2

τ2

τ2

NP

FP

LP

0 80 160 200 240 320 400

Fig. 4. Schedules produced by Rate Monotonic at speed s = 0.5 under
Non-Preemptive (NP), Fully-Preemptive (FP), and Limited Preemptive (LP)
scheduling.

is divided into a set of non-preemptive regions, so that

preemptions can take place only at chunk’s boundaries. Two

different sub-models have been defined in the literature. In the

Floating Non-Preemptive Region model [4], [5], the location

of each non-preemptive region is not known a priori, but

might vary during task execution. Instead, in the Fixed Non-

Preemptive Region model [6], [7], a set of fixed preemption

points is statically defined for each task, so that a task might

be preempted only at these well-determined points. This last

model has been shown in [8] to dominate all other techniques,

since it is able to schedule a strictly larger number of task

sets than the fully preemptive, the non-preemptive and the

floating non-preemptive region models. This model, which will

be adopted throughout the remainder of the paper, has several

benefits, including:

• A bounded number of preemptions, strictly smaller than

the number of chunks;

• A simpler and tighter evaluation of the preemption over-

head, as a task can be preempted only at a small number

of deterministic locations;

• A smaller preemption cost due to a smaller cache-related

preemption delay, by a reduced number of cache misses;

• A smaller worst-case memory stack, which is used to

store the contexts of the running and suspended tasks [9];

• A simplified management of the mutual exclusions, as

critical sections contained in a non-preemptive chunk do

not need any shared resource protocol.

An exact scheduling analysis for such a model was provided

by Bertogna et al. [8]. Here the main results are reported,

adapting them to the task model considered in this paper

(in particular, considering the dependence of the execution

parameters to the processing speed).

Note that the number of chunks into which a task is divided

depends on the selected speed and is denoted as pi(s). The

duration of the k-th chunk of task τi at speed s is denoted

as qi,k(s). Hence, the task computation time with limited

preemption (at speed s) can be also expressed as the sum

of the chunk durations: Ci(s) =
pi(s)
∑

k=1

qi,k(s). Note that the

preemption overhead is included within each chunk length

qi,k(s), and the worst-case execution time which considers

preemption overhead is

Ci(s) = CNP
i (s) + ξ · (pi(s)− 1). (2)

The maximum length qmax
i (s) of a chunk is computed

for a specific speed, as explained in Section V-A. Then, the

last chunk is assigned the maximum length, setting it to

qlasti (s) = qmax
i (s), in order to reduce as much as possible the

interference on the considered task. The remaining chunks are

all assigned the maximum length qmax
i (s), except for the first

one, which takes the remaining computation time∗. Therefore,

pi(s)
def
=

⌈

CNP
i (s)− qmax

i (s)

qmax
i (s)− ξ

⌉

+ 1. (3)

{

qi,1(s) = Ci(s)− (pi(s)− 1)qmax
i (s)

qi,j(s) = qmax
i (s) ∀j ∈ [2, pi(s)].

(4)

The maximum blocking time Bi(s) actually experienced by

a generic task τi can then be computed as

Bi(s) = max
i<j≤n

{

qmax
j (s)− 1

}

. (5)

Another important parameter useful for checking the feasi-

bility of a task τi is the maximum amount of blocking that

τi can tolerate from lower priority tasks without violating

any of its deadlines. Such a time is referred to as blocking

tolerance and is denoted as βi(s). As shown in [8], the

blocking tolerance of task τi can be computed as the minimum

blocking tolerance among all its jobs arriving in the largest

level-i active period Li:

βi(s) = min
k∈[1,Ki]

βi,k(s), (6)

where Ki is the number of jobs in Li: Ki =
⌈

Li

Ti

⌉

, and Li is

the largest level-i active period, computed recursively as















L
(0)
i (s) = Bi(s) + Ci(s)

L
(l)
i (s) = Bi(s) +

i
∑

j=1

⌈

L
(l−1)
i (s)

Tj

⌉

Cj(s),
(7)

until L
(l)
i (s) = L

(l−1)
i (s)†.

Finally, as shown in [8], the blocking tolerance of job τi,k
can be computed as

βi,k(s) = max
t∈Πi,k

{

t− kCi(s) + qlasti (s)−Wi(t, s)
}

, (8)

where Πi,k(s) is the set of arrivals of jobs interfering with

τi,k:

Πi,k(s)
def
=

[

(k − 1)Ti, (k − 1)Ti +Di − qlasti (s)
]

⋂

{hTj − 1, ∀h ∈ N, j ≤ i}
⋃

{

(k − 1)Ti +Di − qlasti (s)
}

,

(9)

∗Actual chunk sizes might be slightly smaller in order to accommodate
potential critical sections within a non-preemptive region. In this way, there
is no need of any shared resource protocols.

†As shown in [8], βi,1(s) can be used as an upper bound of Bi(s),
whenever the latter value is not known.



while Wi(t, s) represents the cumulative execution request of

all tasks with priority greater than τi over any interval [a, b]
of length t. It is computed as

Wi(t, s)
def
=

i−1
∑

j=1

RBFj(t, s). (10)

For any task τi and any non-negative number t ∈ N
+, the

request bound function RBFi(t, s) denotes the maximum sum

of the execution requests at the specific speed s that could be

generated by jobs of τi arriving within a contiguous time-

interval [a, b] of length t, considering the preemption costs. It

has been shown [10] that the request bound function for a task

τi is:

RBFi(t, s)
def
=

(⌊

t

Ti

⌋

+ 1

)

Ci(s). (11)

As a result of the provided analysis, a task set is considered

feasibile at speed s under the limited preemptive task model

if and only if all the task blocking tolerances are not negative,

i.e. ∀τi ∈ Γ : βi(s) ≥ 0.

V. PROPOSED APPROACH

The proposed approach consists of a two-stage algorithm:

the first step is executed off-line and computes the slowest

available speed that guarantees the task set feasibility (also

considering preemption costs and energy model). The com-

puted speed is set at the system start and is never changed

during execution. The second part of the algorithm is executed

at run-time and aims at prolonging the idle intervals as long

as possible for exploiting the sleep state, as short idle intervals

might not be usable due to the break-even time.

The first stage of the algorithm (exploiting DVFS tech-

niques) is analyzed in Section V-A, while the second stage

(exploiting DPM techniques) is presented in Section V-B.

A. DVFS Algorithm

The off-line stage of the method, reported in Algorithm 1,

consists of finding the slowest speed that guarantees the task

set feasibility, considering the worst-case preemption costs and

the particular power function P (s). The speed found by this

procedure is never changed at run time.

The algorithm receives as input the task set Γ and the worst-

case preemption cost ξ. The first line of the code computes the

critical speed s∗, as described in Section II-A. Then, the speed

subset S′ is created by sorting the speeds in ascending order

and discarding those that are smaller than s∗, since they are not

convenient from an energy point of view. Speeds greater than

s∗ might instead be needed when the task set is not feasible

at s∗. For DPM-sensitive architectures, S′ will contain only

s∗ = 1.0, even though lower speeds might be feasible. For

each speed in S′ (cycle at line 4), all parameters introduced

in Section IV are computed to find a feasible solution. When a

speed that leads to a feasible solution is found, the procedure

provides the feasible speed and the corresponding minimum

blocking tolerance, denoted as βmin.

Algorithm 1 DVFS algorithm

1: function DVFS ALGORITHM (Γ, ξ)

2: s∗ ← compute critical speed ()
3: S′ ← {s ∈ S | s ≥ s∗}
4: for each s ∈ S′ do

5: βmin ←∞
6: for i ∈ [1, n] do
7: qmax

i ← min (Ci(s), βmin + 1)
8: βi ← compute task tolerance (i, s, ξ)
9: βmin ← min (βi, βmin)

10: if βmin < 0 then

11: break

12: end if

13: end for

14: if βmin ≥ 0 then

15: return [s, βmin]
16: end if

17: end for

18: return No speed found
19: end function

The cycle at line 6 checks, from the highest to the lowest

priority task, whether the considered task can be executed at

such a speed without missing deadlines. The feasibility test

is done at line 10 by checking whether βmin (the minimum

blocking tolerance among the tasks analyzed so far) is neg-

ative. In fact, βmin < 0 means that a task may be blocked

by a lower priority task for a time longer than its slack. The

value of βmin is first initialized for each speed at line 5 and

then updated at line 9 based on the blocking tolerance of the

current task (computed at line 8 according to Equation 6).

Once all the tasks have been considered at a specific speed,

if the minimum blocking tolerance is not negative, then the

algorithm completes successfully as the slowest speed that

guarantees the feasibility has been found. At this point, the

length of each chunk is easily computed by Equation 4.

Note that Algorithm 1 increases the complexity of the

preemption point placement procedure (which is pseudo-

polynomial) by a factor of m (the number of available speeds).

B. DPM Algorithm

Once the slowest feasible speed has been found for schedul-

ing the task set under limited preemption, a further power

reduction can be obtained by exploiting low-power sleep

states. Indeed, whenever the processor can be left idle for an

amount of time larger than δ (the break-even time) without

missing any deadline, it is convenient to switch to the sleep

state to save more energy. The longer the processor can remain

in sleep mode, the smaller the energy consumption.

In this section we present a new on-line DPM algorithm

that exploits limited preemptive scheduling to extend idle

intervals as much as possible. The idea behind the proposed

algorithm is that, whenever a new job arrives and the processor

is idle, this job can be delayed by at least the minimum

blocking tolerance βmin. In this way, the processor can safely



remain in sleep mode for a longer time. An advantage of the

presented method is that it does not require any particular

on-line computation of the slack times of the incoming jobs.

All meaningful parameters are statically computed before run-

time, and no external hardware is needed to compute the length

of the idle times and to enforce the sleep states.

The larger blocking tolerances allowed under limited pre-

emptive scheduling [11] can extend the sleep time to save a

significant amount of power, comparable to the power saved

by more aggressive on-line DPM algorithms that require a

much higher run-time computational effort. As an example, the

algorithm presented in [3] requires building the schedule after

each idle instant until the earliest deadline, computing the idle

time of each job in the considered window, and postponing the

arrival of each job by the corresponding idle time. Everything

needs to be done on-line, whereas the algorithm presented

here is able to obtain a similar performance without any of

the above on-line operations.

The pseudo code of the DPM procedure is reported in

Algorithm 2 and is invoked every time a job ends and the ready

queue is empty. The algorithm takes as input the parameters

of the task set (Γ) and as a result it prolongs the idle intervals

as much as possible by postponing the execution of the jobs

that may arrive in between, still preserving their deadlines.

Algorithm 2 DPM algorithm

1: function DPM ALGORITHM (Γ)

2: t← current time ()
3: tact ← next arrival ()
4: tup ← tact + βmin

5: if (tup − t) ≥ δ then

6: sleep for (tup − t− δσ→s)
7: wake up ()
8: end if

9: end function

After reading the current time t, the algorithm invokes a

function that returns the arrival time of the next job. Then,

the minimum blocking tolerance computed by Algorithm 1 is

added to the arrival time in order to find when the system can

be awaken without missing any deadline.

In case the interval spendable in sleep mode is longer than

the break-even time δ, the routine invoked at line 6 handles all

the operations to switch into sleep mode. More precisely, this

function sets the job arrival interrupt mask, sets an external

timer to send an external waking up interrupt at time tup −
δσ→s and physically switches the system off.

As soon as the external waking up interrupt arrives, the code

execution is recovered from line 7, which unmasks job arrival

interrupts and handles pending job activations.

The particular way in which the DPM algorithm is imple-

mented allows extending the sleep state and taking advantage

of different slack sources:

• unused processor bandwidth related to task set utilizations

smaller than one (at the critical speed) and idle times due

to the use of a speed higher than the optimal one, since

only a discrete set of speeds is available;

• spare capacities associated to early task terminations are

automatically reclaimed by the work-conserving nature

of the scheduler and collected in the first idle interval.

Note that no external hardware controller is needed to

implement the DPM algorithm, except for a simple timer

(available in most of the processors) that is programmed by

the processor itself before entering the low-power sleep state.

Assuming that task activations are retrieved in constant

time, the complexity of the presented DPM algorithm is O(1),
making it suitable even for the simplest microprocessors.

C. Algorithm example

To better explain the proposed algorithm, let us consider a

system with four speeds s1 = 0.3, s2 = 0.6, s3 = 0.7 and

s4 = sm = 1.0, power function P (s) = 0.9s3+0.1 and break-

even time δ = 10. The task set consists of two periodic tasks,

τ1 and τ2 characterized by C1 = 18, C2 = 42 (at s = 1.0),

T1 = 60, T2 = 150 and hyperperiod of 300. For the sake

of simplicity, preemption costs are considered negligible and

∀τi : αi = 0.

The DVFS algorithm starts computing the critical speed

s∗ = 0.4, which lets us discard s1 from the analysis. The first

speed taken into account is s2, at which computation times

become C1(s2) = 30 and C2(s2) = 70, causing a negative

blocking tolerance. Thus, the procedure considers next speed

s3, at which computation times become C1(s3) = 26 and

C2(s3) = 60, the blocking tolerance is βmin = 34, and the

task set is feasible. Thus, the algorithm stops. According to

this configuration, τ1 runs in a non-preemptive way for all its

execution and τ2 is split into two chunks of 26 and 34 units

of time, respectively.

The task set execution at the slowest feasible speed without

using the DPM algorithm is reported in Figure 5. Many idle

intervals shorter than δ are present in the schedule, leading to

a waste of energy.

t

τ1

τ2

Fig. 5. Task execution at speed s3 without using the DPM algorithm on a
DVFS-sensitive architecture.

The advantage of introducing the DPM algorithm is shown

in Figure 6. The algorithm is invoked for the first time at the

end of the second job of τ1 and all the small idle times are

collected into a single longer interval, postponing the execution

of the third job of τ1 and the second job of τ2.

A new instance of the DPM algorithm is launched before

the end of the hyperperiod. Since βmin is longer than the

break-even time δ, the processor switches to the sleep state.

For DPM-sensitive architectures, the only speed taken into

account is the maximum one (s = s∗ = 1.0) which leads to a
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τ1

τ2

P (t)

βmin

Fig. 6. Task execution at speed s3 using the DPM algorithm on a DVFS-
sensitive architecture.

feasible schedule. The two tasks contain only a single chunk

each, meaning that they are executed in a non-preemptive way,

with βmin = 42. As shown in Figure 7, scheduling the task

set without using the DPM algorithm generates several idle

intervals, which are compacted when the DPM algorithm is

enabled (as depicted in Figure 8).

t

τ1

τ2

Fig. 7. Task execution at speed sm without using the DPM algorithm on a
DPM-sensitive architecture.

t

τ1

τ2

P (t)

βmin

Fig. 8. Task execution at speed sm using the DPM algorithm on a DPM-
sensitive architecture.

VI. EXPERIMENTAL RESULTS

This section presents a set of simulation experiments carried

out for evaluating the proposed approach under different

scenarios and with respect to different system features, such as

preemption costs and power consumption models. Another set

of experiments is aimed at comparing the proposed approach

with the VOSS algorithm presented by Chen and Kuo [3].

The synthetic task sets used in the tests are composed of

10 periodic tasks randomly generated using the UUniFast

algorithm [12], where the total utilization U is varied in a

given range and each computation time CNP
i (sm) is uniformly

distributed in [100,500]. For the sake of simplicity, αi = 0.2 is

set for each task. In these tests, relative deadlines are set equal

to periods, which are derived once computation times and task

utilizations have been generated. Tasks are scheduled under

fixed priorities assigned with the Rate Monotonic algorithm

and each simulation run is performed until the hyperperiod.

A processor with 19 discrete speeds has been considered,

varying in the range of [0.1, 1] with step 0.05.

Two power models have been considered in the experiments:

P (1)(s) = 0.9s3 + 0.1 and P (2)(s) = 0.278s + 0.722. The

first one is often used in literature to model DVFS-sensitive

architectures and is characterized by a critical speed s∗ =
0.4. The second one represents the power consumption of a

NXP LPC1768 (Arm Cortex M3), modeling a DPM-sensitive

architecture with s∗ = sm (making speed scaling not energy-

convenient). The power consumed in the sleep state and the

energy required for a complete state transition (from active to

sleep and then back to active) are P
(1)
σ = 0.05, P

(2)
σ = 0.4,

E
(1)
δ = 0.051 · δ and E

(2)
δ = 0.45 · δ.

The experiments are divided in two parts: the first set

shows the performance of the two phases of the proposed

method under several scenarios, whereas the second set aims

at comparing the proposed approach with the VOSS algorithm

presented by Chen and Kuo [3].

A. Performance of the proposed approach

The first experiment aims at testing the impact of the DVFS

algorithm under different scheduling approaches. In particular,

the average lowest speed achieved by the limited preemptive

scheduler is compared with the ones obtained by the fully

preemptive and non-preemptive schedulers, for different task

set utilizations and under different preemption costs. For space

reasons, only two preemption costs are shown: ξ = 0 and

ξ = 10. The second value represents a system with a preemp-

tion cost equal to one tenth and one fiftieth of the shortest

and longest possible task execution (as CNP
i ∈ [100, 500]),

respectively. For each utilization, the average lowest speed was

computed over 700 feasible task sets.

Figure 9 reports the resulting average lowest feasible speed

as a function of the utilization factor. Note that, although the

non-preemptive scheduler does not suffer from preemption

overhead, it always requires the highest speed. Moreover,

the speed found under fully-preemptive scheduling is always

higher than or equal to the one under limited preemption,

even with zero preemption cost. Such a benefit comes from

the capability of limited preemptive schedulers of increasing

the number of feasible task sets. Note that the introduction

of a preemption cost ξ = 10 leads to a significant speed

increase for the fully preemptive model, while its impact on

the limited preemptive scheduler is almost negligible. Also

observe that, for utilizations higher that U = 0.9, only the

limited preemptive approach can achieve a feasible schedule

for a significant number of generated task sets (at least one

out of two). Finally, the plateau observed for U > 0.92 under

the limited preemptive model is due to the fact that almost

all the feasible task sets require a speed of one, while most

generated task sets are discarded since their feasibility could

be guaranteed only with a speed greater than the maximum

one. This leads to an average value near to s = 1 for several

utilization points.

The second experiment aims at evaluating the energy saved

by the two-step algorithm with respect to the case in which

the processor is kept always active at s = 1. The power

model considered in this test is P (1)(s), representing a DVFS-

sensitive architecture, since in DPM-sensitive architectures the
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DVFS stage would not introduce any contribution, always

returning the maximum speed.

Results are reported in Figure 10 for ξ = 10 and two

values of δ (0 and 500 time units). The Pure DVFS curve

represents the energy consumption obtained by using only

the DVFS step. The introduction of the DPM stage allows

a further energy reduction, which is about 8%, in the best

case. Note that high break-even times push the curve closer

to the one of pure DVFS, as the algorithm is not able to

switch the processor off during all idle intervals. For the

sake of completeness, the figure also shows the behavior of

the algorithm under a pure DPM approach, where only the

second stage is considered at the maximum speed. Since the

power model is intrinsically speed scaling-convenient, DPM

consumes more than the others, even assuming a null break-

even time.
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B. Comparison with VOSS

A second set of experiments was carried out to compare

the proposed approach against existing solutions available in

the literature. Among the existing works that deal with fixed

priority systems and that do not require additional hardware

controllers, the algorithm that showed the best performance in

terms of energy saving is VOSS, presented in [3]. We therefore

decided to compare our algorithm only against VOSS, as the

improvements over other existing solutions would be even

greater. However, it is worth noticing that VOSS is an on-line

algorithm with a complexity of O(n·log(n)) to be paid at each

idle interval, whereas our online algorithm is O(1). Finally,

an improved version of VOSS is adopted that computes the

feasible speed using the tighter Response Time Analysis [13]

(including preemption costs) instead of Liu and Layland’s

bound [14].

Figure 11 shows the energy percentage saved by the pro-

posed approach with respect to VOSS as a function of the

total utilization, using the P (1)(s) model and for different

preemption costs (ξ ∈ {0, 10}) and break-even times (δ ∈
{250, 500, 750}).
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Fig. 11. Energy percentage saved by the proposed approach with respect to
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As shown in the graph, the energy improvement of our

approach (considering both DVFS and DPM algorithms),

when the preemption cost is neglected, is around 7%. Using

more realistic values for the preemption overhead (one tenth

of the shortest task), the improvement increases up to 16%.

This is a consequence of the reduced number of preemptions

of our approach, which makes it even more competitive for

higher preemption costs. The impact of the break-even time

is smaller, although the longer δ, the higher the gain. The

reason is that our method exploits longer blocking tolerances

than VOSS, overcoming the break-even time limit more easily.

When δ is either too long or too short, the performance of

the DPM algorithms are equivalent. At high utilizations, the

margin of improvement is barely usable, due to the reduced

number of feasible task sets and the short idle time, so the

behavior of the two algorithms is similar. Note that, for ξ = 10,

the analysis ends at U = 0.9 as there are no feasible task sets

under fully preemptive scheduling.

The two algorithms have also been compared under the

second power model P (2), typical of DPM-sensitive architec-

tures, under which the speed returned by our off-line DVFS

algorithm is always equal to the maximum available (never

exploiting the speed scaling feature), and the whole energy

improvement is due to the DPM algorithm.

Figure 12 reports the improvements achieved by the pro-

posed approach with respect to VOSS as a function of the

total utilization, with δ ∈ {250, 500, 750} and ξ ∈ {0, 10}.
Note that the proposed approach always outperforms VOSS.

Also, increasing the preemption cost leads to a higher improve-
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Fig. 12. Energy percentage saved by the proposed approach with respect to
VOSS, for a DPM-sensitive architecture.

ment, as the context switch overhead of the fully-preemptive

model becomes higher. For the same value of ξ, the higher

δ, the higher the energy gain, as the blocking tolerance used

to delay task execution under the limited preemption model

is longer than that in fully preemptive mode. This happens

up to a certain utilization, after which no algorithm is able

to postpone task execution for a time longer than δ. When

U = 0.75, our algorithm consumes almost 6% less than VOSS.

The improvement would be even bigger when accounting for

the additional number of on-line operations required by VOSS

at every idle time (O(n log(n)) instead of O(1)).
An additional experiment (not reported for space limita-

tions) showed that by increasing αi, the DVFS algorithm is

able to reach slower speeds (as a more significant fraction of

the task code is not affected by speed), so leading to higher

savings than those reported in Figure 11. For DMP-sensitive

platforms, the results shown in Figure 12 are not influenced

by αi as speeds lower than sm are not taken into account.

VII. RELATED WORK

This section introduces the state of art concerning energy

saving. DVFS algorithms are discussed first, followed by DPM

approaches.

One of the first papers about power management exploiting

frequency scaling was due to Yao et al. [15]. The authors

proposed an off-line algorithm that, given a task set, computes

the minimum energy schedule under the Earliest Deadline First

scheduling (EDF) algorithm [14]. Then, they use an on line

method to scale the speed according to the actual workload at

every scheduling event. The analysis compares the efficiency

of the algorithm with respect to different power models, but

without taking switching overheads into account.

Aydin et al. [16] proposed three algorithms with growing

complexity. The first one computes the lowest CPU speed

such that the task set is schedulable under the assumption

that all tasks execute for their WCET. The second algorithm

(DRA) keeps track of the times at which a task is going to

be dispatched. At runtime, if a task is dispatched earlier, the

CPU is slowed down to prolong the execution until the original

finishing time. The third algorithm (AGR) estimates the tasks

completion times based on past instances and computes the

lowest CPU speed to keep the task set feasible assuming

that tasks execute for such estimates. However, since the

estimations can be optimistic, the algorithm may speed the

CPU up to recover from a task overrun.

The problem of obtaining an optimal frequency from a

discrete frequency range was discussed by Bini et al. [17]. The

authors provided a method for computing the optimal speed

off-line (that could be unavailable in a specific architecture)

and introduced a speed modulation technique to achieve the

required speed using two discrete values. The analysis selects

the pair of frequencies that minimizes energy consumption

also considering switching overheads. Despite its innovative

contribution, such an off-line approach does not take advantage

of tasks early terminations to further reduce consumption.

Some authors [18], [19] reported that online DVFS tech-

niques that frequently scale the execution speed may lead to

transient faults. This problem was also addressed by Zhao et

al. [20], who proposed a recovery allowance and an additional

recovery task to run in case of fault. Another side effect of

DVFS techniques was emphasized by Kim et al. [21], who

noticed that such algorithms increase the number of preemp-

tions, leading to a higher system utilization and, therefore, a

higher energy consumption. To mitigate such a problem, they

proposed two preemption control DVFS techniques.

The raising impact of leakage power in modern architec-

tures, highlighted by Kim et al. [22] and empirically tested

by Bambagini et al. [23], is driving the research on power

management toward DPM techniques.

Lee et al. [24] proposed two leakage control algorithms for

procrastinating tasks execution as long as possible, both under

dynamic (LC-EDF) and fixed (LC-DP) priority scheduling.

Using a dual priority scheme [25], LC-DP computes the

longest delay (promotion time) each task can suffer still

satisfying its deadline. The main difference with respect to

the method proposed in this paper is that the critical speed is

not taken into account (i.e., the system runs at the maximum

speed) and the overhead introduced at runtime is much higher,

due to the higher complexity of the online analysis.

Jejurikar et al. [26] proposed an approach (CS-DVS-P)

based on critical speed analysis and task procrastination work-

ing for periodic tasks under EDF. First, an off-line DPM

algorithm computes the maximum amount of time each task

can spend in the sleep state within its period. Then, at run-time,

sleep management is delegated to an external controller that

switches the system off for the corresponding pre-computed

time. Jejurikar and Gupta [27] extended the previous method

to consider early terminations and fixed priority scheduling

[28]. Our approach differs from the previous one in that sleep

management does not require an external controller (we only

assume the presence of an external interrupt handler), but it

is launched when there are no tasks to execute. This allows

automatically exploiting early terminations.

Chen and Kuo [3] showed that the DPM part of the

algorithm in [28] may lead to deadline misses, and proposed

some solutions to avoid such a problem. The first method

simulates the execution of periodic tasks to compute the idle



time available until the next deadline. Then, such a time is

used to postpone the task activations and switch the system

into the sleep state. The other algorithms introduce the virtual

blocking, which is the maximum blocking that tasks can suffer,

but neglect preemption cost.

Awan and Petters [29] proposed to accumulate task exe-

cution slack to switch the processor off during such intervals

under EDF, considering tasks with different criticality and sev-

eral low-power states and different break-even times. However,

tasks are always executed at the maximum speed.

VIII. CONCLUSIONS

This paper presented a new energy-aware algorithm that

integrates DVFS and DPM techniques to further reduce energy

consumption in embedded systems. It consists of an off-

line DVFS analysis, for computing the most suitable speed

(depending on architecture features and task set feasibility)

and an online DPM algorithm, for prolonging sleep intervals

by postponing task execution until the first job arrival plus the

minimum blocking tolerance βmin. Moreover, the adoption of

a limited preemptive scheduler in fixed priority systems allows

extending the value of βmin and reducing the preemption cost

with respect to fully preemptive schedulers.

With respect to other proposed algorithms [3] our method

delays task executions rather than job arrivals, allowing a

further reduction of the number of preemptions. Since the

algorithm is invoked when the processor becomes idle, spare

times due to early terminations are automatically reclaimed.

No extra hardware is required, except for a timer (active

also when the processor is in sleep mode) needed to handle

the wake-up events. Such timers are provided by most of the

modern platforms, especially in the embedded system domain.

Concerning complexity, even though the off-line analysis is

pseudo-polynomial, at run-time the algorithm has a constant

complexity, O(1), as it exploits only parameters obtained dur-

ing the off-line stage. With respect to VOSS, whose complex-

ity is O(n log(n)) at every idle time, our algorithm requires

a negligible runtime overhead, although such an overhead has

not been considered in our simulation experiments.

As a future work, we plan to improve the DPM algorithm to

consider dynamic parameters (such as variable procrastination

delays) to further reduce energy consumption, while keeping

low its complexity. Moreover, we aim at supporting also

sporadic tasks which are common in embedded systems with

event driven activations, such as sensors nodes.
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