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An energy-balance model of lake-ice evolution
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ABSTRACT. A physically based mathematical model of the coupled lake, lake ice,
snow and atmosphere system is developed for studying terrestrial-atmospheric
interactions in high-elevation and high-latitude regions. The ability to model lake-
ice freeze-up, break-up. total ice thickness and ice type offers the potential to describe
the effects of climate change in these regions. Model output is validated against lake-
ice observations made during the winter of 1992 93 in Glacier National Park.
Montana, US.A. The model is driven with observed daily atmospheric forcing of
precipitation, wind speed and air temperature. In addition to simulating complete
energy-balance components over the annual cycle, model output includes ice freeze-up
and break-up dates, and the end-of-season clear ice. snow-ice and total ice depths for
two nearby lakes in Glacier National Park, each in a different topographic setting.
Modeled ice features are found to agree closely with the lake-ice observations.

Model simulations illustrate the key role that the wind component of the local
climatic regime plays on the growth and decay of lake ice. The wind speed aflects both
the surface temperature and the accumulation of snow on the lake-ice surface. Higher
snow accumulations on the lake ice depress the ice surface below the water line,
causing the snow to become saturated and leading to the formation of snow-ice
deposits. In regions having higher wind speeds, signilicantly less snow accumulates on
the lake-ice surface. thus limiting snow-ice lormation. The ice produced by these two
different mechanisms has distinetly different optical and radiative properties, and

allects the monitoring of frozen lakes using remote-sensing techniques.

INTRODUCTION

Evidence from the available air-temperature record
indicates a distinet two-decade warming trend over
northern land areas during the winter and spring seasons
(Chapman and Walsh, 1993). In addition to conven-
tional meteorological observations, monitoring  and
analysis of lake-ice parameters such as [reeze-up date,
maximum ice thickness and break-up date have been
proposed as useful indicators of regional climate change
(Palecki and Barrvy, 1986: Robertson and others, 1992).
Since [rozen lakes provide an index of integrated seasonal
temperature trends, the analysis of frozen lakes provides a
valuable contribution to climate monitoring, particularly
in the data-sparse and climate-sensitive high-clevation
and high-latitude regions of the world.

While numerous previous researchers have studied the
relationship between air temperature and lake-ice form-
ation and break-up. a quantitative understanding of the

underlying physical processes which lead to the timing of

these climatic events is limited. Researchers have adopted
various means to quantify the relationships between air

temperature and lake-ice cover. Rannie (1983) and
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Palecki and Barry (1986) performed regression analyses
between key atmospheric and ice-related variables such as
air temperature, freeze-up date. break-up date and ice
duration for lakes where significant meteorological and
ice-cover data sets exist. Other studies have used an
mtegrated average air-temperature index to predict
freeze-up and break-up dates (MceFadden, 1965). In
such an approach, the dates of freeze-up and break-up are
assumed to occur when the index reaches a specified
threshold.

A more complex approach to describing lake-ice
processes is through the formulation of physically based
models which account for the relevant process occurring
within, and at the boundaries of the lake, ice, snow and
atmospheric components of the natural system. Following
the original sea-ice research conducted by Stefan in the
late 1800s, mathematical deseriptions ol [reezing and
thawing processes are oflten referred to as Stelan
problems. In previous lake-ice studies, Rodhe (1952)
and Bilello (1964

considering the sensible-heat exchange at the water air

modeled lake-ice formation by

interface. Robertson and others (1992) adopted a similar
approach to relate lake freeze-up and break-up dates to
air temperature.

Maykut and Untersteiner (1971) developed a thermo-
dynamic maodel which included an accounting for the
energy fluxes within snow and ice layers, and at the snow-
air interface. Their model was used to describe the
seasonal evolution of sea ice. Patterson and Hamblin
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(1988) presented a two-component [(snow and ice)
thermodynamic model based on the formulation of
Maykut and Untersteiner (1971). They coupled the
snow- and ice-component sub-model to a reservoir-
mixing model, thus providing an interactive linkage
hetween the ice cover and the underlying body of water.
Gu and Stefan (1990) used a snow and ice model similar
to that of Patterson and Hamblin (1988). Their lake
model simulates the year-round hydrothermal processes
and includes sediment heat fluxes occurring at the lake
bottom. Marsh (1991) used a simple lake-ice-growth
model based on a modified Stefan’s equation. Various
solutions to the Stefan problem of melting and [reezing
have been discussed by Lock (1990). Using an energy-
balance model, Heron and Woo (1994) studied melt
processes during the decay of a lake-ice cover in the
Arctic. General discussions of the thermal regime of ice-
covered lakes can be found in Pivovarov (1973) and
Ashton (1986).

In this paper, an energy-balance model describing the
seasonal evolution of lake ice is developed and is used to
further the understanding of the interactive role that the
atmosphere and the unfrozen water body plays in
determining ice-growth mechanisms and other energy-
related processes. Model output is validated against lake-
ice observations made during the winter of 1992-93 in
Glacier National Park, northern Montana, U.S.A. In
addition, model output is used to assist in explaining
variations in synthetic aperture radar (SAR) signatures
obtained from several lakes in Glacier National Park
during the same period (Hall and others, 1994). The
sensitivity of this lake-ice model to variations in atmos-
pheric forcing has been described by Liston and Hall
(1995).

The one-dimensional, unsteady model is composed of
four major sub-models. First, a surface-energy balance
sub-model is implemented to determine the surface
temperature and energy available for freezing or
melting. Secondly, a lake mixing, energy-transport sub-
model describes the evolution of lake-water temperature
and stratification. Ice is initiated when the upper-lake
temperature falls below freezing. Thirdly, a snow sub-
model describes the snow depth and density as it
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Fig. 1. Schematic illustration of key_features of the lake-ice
growth model and a representative temperature profile.
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accumulates, metamorphoses and melts on top of the
lake ice. Fourthly, a lake-ice growth sub-model produces
ice by two different mechanisms: (a) relatively bubble-
free clear ice grows at the ice—water interface due to
thermal gradients within the ice, and (b) snow-ice forms
at the lake-ice surface from the freezing of water-saturated
snow or slush; this slush can form from the upwelling of
water due to an overburden of snow, from snowmelt or
from rain on snow. In addition to complete energy-
balance components over the annual cycle, key model
output includes the dates of ice freeze-up and break-up,
and the end-ol-season clear-ice, snow-ice and total ice
depths. The model is driven with observed daily atmos-
pheric forcing of precipitation, wind speed and air
temperature. A schematic illustrating the components of
the model and a representative temperature profile is
given in Figure 1.

2. SURFACE-ENERGY BALANCE

The surface energy-balance equation is

(1 = Qs)Qsi + Qli + Qh- -+ Qh + Qc I Q(' = Qm (])

where Q4 is the solar radiation reaching the surface of
the Earth, @ is the incoming longwave radiation, Q. is
the emitted longwave radiation, @)y is the turbulent
exchange of sensible heat, Q). is the turbulent exchange
of latent heat, Q. is the energy transport due to
conduction, @y, is the energy flux available for melt
and oy is the albedo of the surface. All of the energy
terms, ¢, have units of Wm 2,

When coupled to the coupled lake, lake-ice and snow
models, the solution of this energy balance provides the
surface-temperature boundary condition which forees the
seasonal evolution of lake-water temperatures, lake-ice
growth and decay. and snow-cover accumulation and
metamorphism. In addition to the following equations
describing the relevant physical processes, observed daily
atmospheric forcing of wind speed, precipitation and
maximum and minimum surface-air temperature are
required to solve the energy balance.

The solar radiation striking a horizontal surface, Q.
is given by

Qg = 8" sinwy (2)

where S is the solar irradiance at the top of the
atmosphere striking a surface normal to the solar beam
(= 1370W m ?) (Kyle and others, 1985) and 7" is the net
sky transmissivity or the fraction of solar radiation that
arrives at the surface. The solar elevation angle, a, is
defined as

sina = sindsin ¢ + cosdcospeos T (3)
where o is latitude, 7 is the hour angle measured from

local solar noon and ¢ is the solar-declination angle
approximated by

8 = ¢rcos (271' (d;_‘d:) ) (4)
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where o7 is the latitude of the Tropic of Cancer
(23.45"N), d is the Gregorian Day, d, is the day of the

summer solstice (173) and dy is the average number of

days in a year (365.25),

To account for the scattering, absorption and
reflection of shortwave radiation by clouds. the solar
radiation is scaled according to

T = (0.6 — 0.2sina)(1.0 — 0.50,) (5)

where g, represents the [raction of cloud cover (Burridge
and Gadd, 1974). Because of lack of available observ-
ations, in the current application, a constant cloud-
coverage fraction of 0.4 has been assumed (Conway and
Liston, 1974). This assumption of constant cloud [raction
was relaxed in Liston and Hall (1995 during simulations
ol ice growth and decay on Back Bay, Great Slave Lake,
northern Canada.

An analytical downward longwave-radiation equa-
tion which considers clear skies and standard atmo-
spheric conditions has been developed by Brutsaert
(1975). To correct apparent deficiencies in this formula-
tion at air temperatures helow 0°C (Aase and Idso,
1978), Satterlund (1979) suggested the empirical
description

Gjr= 1108 l—(\X])(—(U.(]'l(’u)T"ﬂ”“i) oT.t (6)

where T, is the surface-air temperature and e, is the
atmospheric vapor pressure. In the current study, no
attempt has been made to modify this formulation for @y
to account for the presence of clouds. The average daily
surlace-air temperture, T;, is simply assumed to he the
arithmetic mean of the daily maximum and minimum
temperatures, Tyay and Ty, respectively.

In an analysis of observed dew-point and night-
minimum temperatures, Hungerford and others (1989)
concluded that in Montana the daily minimum
temperature is a reasonable approximation of the
dew-point temperature. (In locations where dew-point
temperatures are not frequently reached on a daily
basis, due, for example to arid conditions or minimal
diurnal temperature fluctuations, this approximation
would not be valid.) Adopting this assumption, the
atmospheric vapor pressure. e,, is computed from the
minimum temperature using the formula (Fleagle and
Businger, 1980)

logyg(ea) = 11.40 — 2353 /T i - (7)

The longwave radiation emitted by the snow surface is
computed under the assumption that snow emits as a grey
body

Ql(' = —'EH"TT%HJ (8)

where Ty is the snow-surface temperature, o is the
Stefan-Boltzmann constant and e, is the snow cmissivity,
assumed to be 0.98.

The turbulent exchange of sensible and latent heat,
Qn and Q.. respectively, have been given by (Price and
Dunne, 1976)
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Qh = f’uCpDhC(Ta = Thi]) (())
B fa Ll (}.622‘1;—% (10)

where p, is the density of the air, T, is the surface-air
temperature, €, is the vapor pressure of the air, ey is the
vapor pressure of the surface, ¢ is a non-dimensional
specific heat of air and L is the latent heat of sublimation.
Dy and D, are exchange coefficients for sensible and
latent heat, respectively

stability function, P, is atmospheric pressure, C), is the

,QU_
i N W . 11
: (In(2/z))° (1)

where & is von Karman’s constant, U. is the wind speed at
reference height z and zp is the roughness length. The
roughness length varies with surface type and in this
application z; is assumed to be 0.001, 0,005 and
0.000001 m over open water, snow and bare ice,
respectively. Under stable atmospheric conditions, the
stability function ¢ modifies the turbulent fluxes through
the formula

¢=1/(1+10Ri,) (12)

where the Richardson number for the atmosphere, Ri, is
given by
oT, AN * _
Riy= g—— Ta|l =— k 13
=9 \ 92 (13)

g 1s the gravitational acceleration and the atmospheric
temperature gradient is computed using the reference-
level air temperature and the surface temperature, Ty.

A representative atmospheric pressure, P,, for the
location of interest is given hy

o
P, = Pyexp(~ 2% (14)

where B is a reference sea-level pressure (101 300 Pa), I

is the scale height of atmosphere (28000 m) and Z, is the

elevation of the study site (Wallace and Hobbs, 1977).
Heat conducted through the ice and snowpack is

L= —k£ (1

dz |,

where k is the effective thermal conductivity of the
snow—ice—water matrix. In the model, for the case where
lake ice is present, the conductive heat flux is
approximated by

Loy

~W

= (- [y Byl By v
Q. (Tso F) k; ,(-,-S—I.fi:m_l_k\\' o

where T} is the water-freezing temperature, z is the depth
of each layer and the subscripts i, s, m and w indicate
individual layers of ice, snow, a mix of snow and water,
and water, respectively, For the case of a lake with no ice,
the flux contribution due to conduction is

(&%)
~J
on
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“lk

Fey

Qi' = _(TR(I = ﬂ) (17)

where the subseript lk indicates a lake value. In the
model, conditions within the top 1 m of the lake are used
to compute the conduction. The determination of many
of these conduction parameters requires a snow model, a
lake-ice model and an ice-free lake model. These sub-
models are deseribed later in this paper.

The albedo, ..
density, ps, lollowing Anderson (1976)

decreases with increasing snow

G =1, [ — 0.247({}.16 +110(ps/1 000)*)’ (18)

. s . A5 -3
for snow densities ranging between 50 and 450kgm .

5 s 3 v
For densities greater than 450kgm . the albedo is
assumed to vary linearly according to

e = 0.6 — p./4600. (19)

Several researchers have indicated that there appears to
be no dependency of snow albedo on snow density
(Winther, 1993). While in addition, the decrease in snow
albedo with time since the last snowfall, corresponding to
an increase in snow grain-size, is also well noted. In our
formulation, increases in snow density with time are
assumed to correspond to increases in grain-size, which
lead to changes in albedo according to the preceding
formulation. The evolution of the snow density is
described in the following section. Lake ice is assumed
to have an albedo of 0.25 and a lake surface without snow
or ice has an albedo of 0.06.

To implement the surface energy-balance model, daily
values of Ty, Ty and U, are assumed to be provided
from observations or some suitable atmospheric model.
These data, in combination with the preceding energy-
balance equations and the snow, lake-ice and lake models
described below, allow computation of the surface
temperature, To solve the system of equations for the
surface temperature, the equations are cast in the form

f(Tw) =0 (20)

and solved iteratively for Ty using the Newton-Raphson
method.

In the presence of snow and/or ice, surlace temper-
atures Ty > 0°C resulting from the surface-energy
balance indicates that energy is available for melting,
Q.. The amount available is then computed by setting
the surface temperature to 0°C and recomputing the
surface-energy balance. A similar procedure is adopted to
compute the energy available o freeze, Q. liquid water
present on the lake-ice surface or within the snowpack.

3. LAKE-ICE AND SNOW MODELS

A model describing the growth of clear lake ice can be
developed by performing an energy balance at the ice—
water interface. While the ice-water boundary is fixed at
the stable-equilibrium [reezing temperature, the freezing

g
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process produces latent heat which must be conducted
through the ice. These processes. together with the
convection occurring within the water, lead to a thermal
energy balance at the ice-water interface that takes the
form

dz

niLi— =
il T

(Tt — Teo) —h (T = Tt)

(21)

where p; is the ice density, hy is the convective-transfer
coeflicient, assumed to be 0.56 WK 'm * for a calm lake
based on conductivity considerations, Ty is the water-
freezing temperature, Ty is the lake-water temperature at
a depth of 0.33m as determined from the lake model
described below, z is the ice depth, z is the snow depth,
ki is the thermal conductivity of ice, and dz/dt = Vi_y is
the velocity of the moving ice boundary. For the largely
snow-covered lakes considered in this study, the influence
of solar radiation penetrating the ice has heen assumed (o
be of secondary importance in this formulation.

Solution of the previous equation requires knowledge
of snowpack depth and thermal conductivity. The
effective thermal conductivity of snow, ks, is defined to
be a function of snow density, pe,

k, = 0.074 + 2.576 x 10%p,? (22)

where this relationship has been fitted to a collection of
data by several rescarchers presented by Mellor (1977)
(Verseghy, 1991).

Density changes occur in the snowpack by two
mechanisms. First, density increase can result from
compaction and. following Anderson (1976],

aps
ot

= Ay W,p, exp(—0.08(T; — Ty)) exp(—Azps) (23)

p

where T, is the snow temperature, W is the weight of
snow above a given layer expressed in water-equivalent
depth, and A; and As are constants set equal to 0.0013
m ¢ and 0.021 m* kg ', respectively, based on Kojima
(1967). In the current application, the snow is considered
as a single layer and the snow temperature is determined
from

T:‘-» = (T‘ii + TH())/z (24)

where the temperature at the snow—ice interface, T, 18
given by

— Tio) | ——— (25)

T = T7 — (T}
g i~ (T zski + ziks

as determined from energy-balance considerations under
steady-state conditions, For this single-layer implement-
ation. the weight of the snow, Wi, is defined as half of the
snow water equivalent, W, where

W="=2 (26)

and py is the density of water.
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The second density-modifying process results from
snow melting. The melted snow reduces the snow depth
and is redistributed through the snowpack until a
maximum snow density, assumed to be 330kgm *, is
reached. Any additional meltwater accumulates at the
base of the snowpack as a laver of water-saturated snow,
or slush.

The potential snow melt, M, given by

(.lznlf],
dt

fJiLF = @n (27)

is used first to melt available snow and then the lake ice.
The energy available to [reeze water within the
snowpack, or on the ice surface, is used to compute the
potential freeze depth, F),.

dF,

piLy =T ~ (s (28)

which is used to add o the lake-ice depth either through
freezing water held within the slush mixture of snow and
water, or through the freezing of water existing on the
lake surface in the absence of snow. Throughout the
melting and [reezing processes, snow, ice and water
depths, and snow density, are adjusted accordingly, while
taking into account the density differences between the
solid and liquid phases.

Given input of liquid-equivalent precipitation. the
precipitation is assumed to fall as snow if the wet-bulb
temperature, Ty, is lower than 1°C, where the wet-bulb
temperature is given by (Rogers, 1979)

0.622 L,

Y'\\']' = T;, i (‘”:l = ('a('ly\\'h)) T'(T,—
i D

(29)

This equation is solved iteratively for Ty, using the
Newton - Raphson method.

Precipitation falling as rain contributes to the
liquid-water store on the lake surface. Snow falling on
a frozen lake surface supporting more water than that
required to saturate the existing snow cover adds to the
layer of surface water. Snow [alling on a bare-ice
surface or an unsaturated snow surface accumulates as
new snow. Following Anderson (1976, based on data
by LaChapelle (1969), the new snow density, pe, is
given by

P = B0 4+ 1.7(T, — 958.16)19. (30)

This new snow is added to the existing snowpack where
the snow depth and mean density values are updated.

A further mechanism, by which water is added o the
snow cover, is from the upwelling of lake water through
cracks in the ice. This is the result of the inability of the
ice to support completely the overburden of snow cover at
a level where the top of the ice equals that of the water.
Buoyancy considerations indicate that a floating body
displaces a volume of liquid equivalent to its weight.
Applying this balance to the system of snow and water
lying above an ice cover which is depressed to a point
where the ice top meets the lake surface, leads to the
buoyaney balance

https://doi.org/10.3189/50022143000016245 Published online by Cambridge University Press
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Zifw = ZsPs + ZwPw T 2 (31)

where each term represents the force per unit area, or
pressure, when multiplied by the gravitational acceler-
ation, g. When the downward force (righthand side)
exceeds the upward force (lefthand side), cracks in the
lake are assumed to form or be present, which allow
lake water to saturate the ice surface. Under this
condition, the solid fraction of the snow cover adds to
the upward-huoyancy force and the water which had
previously accumulated on the ice surface is inter-
connected with the lake water. This leads to a new force
balance

Ps o
Zifw + ZmpPw /T = ZuPs T i (32)

i

where z, is the depth of the water-saturated slush
mixture. This can be solved for the depth of the slush-
layer setting above the lake-ice surface

i

Zm = (%ps + 20 — 2ipw) (33)

PsPw

The liquid-water store, z,, within this slush layer is given
by

2w = Zm == (134)

and is available to form snow-ice depending on (he
available freezing energy, Q.

4. LAKE MODEL

To determine the itiation of' ice formation on the lake. a
model is required which deseribes the temperature
evolution of the lake during the late summer. autumn
and early winter cooling periods. To accomplish this,
consider the following one-dimensional heat-transler
equation

oy 0O Ky
ot Oz Pty

Ol 1 g
0z P45 C) Oz

where T, is the water temperature, t is time, z is (he
vertical coordinate measured downward from the water
surface, Ky is the turbulent diflusivity for heat, ky is the
water thermal conductivity, py is the water density and
C, is the specific heat of water, The radiation flux, ¢, is
given by

q = Qpexp(—nz) (36)

where @y is the net solar radiation penetrating the surface
and 5 is the extinction coeflicient, assumed to be 0.6 m |
(Ashton, 1986).

The vertical distribution of the diffusivity is a strong
function of surface wind-shear stress and local stratific-
ation. Following Henderson-Sellers (1985, the diffusivity
is given by
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L}; Z oxp(—k*2)[1 + 37Ri, 2! (37)

where the Richardson number for the lake water, Riy. is

40N*x

1+ |1+———
14 w2 exp(—2k* z) 1
Riy, = 50 (38)

the surface-shear velocity, wy', is
w =12 % 107Uy (39)

and the shear-velocity decay constant, k™. is given by

= 6.64/sin d)(Ugn) L

where in these equations # is von Karman’s constant, Uy
is the wind speed at 10m, ¢ is latitude and Py is the
turbulent Prandtl number at neutral stability, assumed to
be unity in the computations.

The Brunt-Vaisala frequency, N2, is determined by
the density stratification

B dpy

1NT2 = 7
P Oz

(41)

Computation of N? requires a description of the water-
density variation with temperature. Kell (1972) presented
a best fit of measurements [or water for the temperature
range 0-1507C in the form of a seven-parameter [unction

(ag + 01Ty + @2T%? + 03T + au Ty + a5 T")
(1+ bT)

Pw =
(42)

where the a and b constants can be found in the Kell
(1972) reference. If a computed temperature profile is
unstably stratified, the model produces an instantaneous
mixing which eliminates the unstable configuration.

To solve the lake-transport equation, initial conditions
and surface and lower boundary conditions must be
provided. For an initial temperature condition, the water
column is assumed to be isothermal at 4°C. The influence
of model spin-up is accounted for by starting the madel
early enough during the summer/fall that the lake comes
into balance with the atmospheric [orcing and the [reeze-
up date is unaflected by the model-initiation date. A
couple of months lead time was found to be more than
adequate. In the absence of ice, the lake surface-
temperature boundary condition is determined from the
surface-energy balance; if ice is present, the temperature
of the ice—water interface equals the water-freezing
temperature. The heat flux from lake-bottom sediments
is recognized to play an important role in governing the
thermal regime of small, shallow lakes. For the relatively
large and deep lakes addressed in this paper, a zero-flux
boundary condition is appropriate and employed for the
lower boundary

=0 (43)

s-max

where the subscript z-max is the depth of the deepest
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lake-model layer. In the model, this boundary condition
is applied at a depth of 42m. The 42m deep water
column is divided into 25 individual layers ranging in
depth from 0.167 m at the surface to 3m at the bottom.
The heat-transport equation is solved using a fully
implicit, control volume-based., finite-difference scheme.

To initiate ice on the lake surface, a 1 mm thick ice
layer is formed when the water temperature at a depth of
0.33 m is less than the water-freezing temperature. In the
presence of lake ice, the surface-shear stress at the ice
water interface is zero and heat transfer within the lake
below the ice cover occurs through molecular diffusive
processes only; in this case Ky is zero.

5. MODEL SIMULATIONS

Two lakes in eastern Glacier National Park (GNP),
Montana, are studied using the coupled lake-atmosphere
model described in the preceding sections. Field obser-
vations of lake-ice depth and ice type (clear ice and snow-
ice) were obtained for St. Mary and Lower Two
Medicine Lakes during the winter of 1992 93. Lower
Two Medicine Lake is located approximately 30km
south-southeast of St. Mary Lake (Fig. 2). Daily meteor-
ological ohservations were collected at the St. Mary GNP
ranger station which is located near the mouth of St
Mary Lake (Fig. 2). These meteorological data include
daily maximum and minimum temperature and water-
equivalent precipitation. In addition, observations of

Lower Two
Medicine
5 Lake

Fig. 2. The relationship between the St. Mary and Lower
Two Medicine Lakes and the surrounding lopography.
The prevailing storm winds in this region arrive from the
southwest.
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wind speed and direction were made daily at 1630 h local
time. The meteorological data cover the period 1 Sept-
ember 1992 through 31 May 1993. The period of model
integration coincides with these available atmospheric
forcing data.

The relationships between the two lakes and the
surrounding topography are illustrated in Figure 2. St
Mary Lake is at an elevation of 1367 m with approximate
dimensions of 1 km by 15 km. The upper end of the lake is
aligned from west-southwest to east-northeast and lies at
the foot of mountains which rise to as high as 1500m

above its surface to the north and south. To the west of

the upper end of the lake lies a broad valley which leads
to the Continental Divide. "The lower end of the lake runs
from southwest to northeast. The upper end of this lower
part of the lake roughly aligns with a southwest-oriented
valley which extends towards a relatively low pass
through the Continental Divide. To the east of the lake
the topography comprises gently rolling hills.

Lower Two Medicine Lake is at an elevadon of

1488 m with approximate dimensions of 0.75 km by 5 km,
The long axis of the lake is aligned northwest to southeast
and lies at the [oot of mountains which rise to as high as
1500 m above the lake surface on all sides except to the
east where the topography is composed ol gently rolling
hills.

In this region of the northwestern United States the
prevailing storm winds arrive from the southwest (Bryson
and Hare, 1974; Wallace and Hobbs, 1977) (Fig. 2). As a
consequence, the storm winds coming over the Con-
tinental Divide are directed down the southwest-aligned
valleys which feed into St. Mary Lake, resulting in
relatively strong winds on St. Mary Lake during storm
events. In contrast, Lower Two Medicine Lake is
surrounded by mountains to the south and west (Fig.
2). These mountains protect the lake from the prevailing
storm winds and lead to much lower wind speeds over
Lower Two Medicine Lake than over St. Mary Lake.

In the model integrations, the temperature data
obtained from the St. Mary ranger station are assumed
to be valid for hoth lakes. In additon. the observed wind
speeds are applied directly for the St. Mary Lake
situation. To account for the effect of surrounding
topography on winds over Lower Two Medicine Lake,
the wind speed measured at St. Mary is used after being
multiplied by a factor of 0.4; wind-speed observations for
Lower Two Medicine Lake are not available. This value
has been chosen o provide the best agreement between
the model predictions and the ice observations while still
being consistent with the influence of the surrounding
topography.

Snow accumulation on a relatively lat surface, such as
that of a lake, is dependent upon complex inter-
relationships between wind speed, air temperature and
precipitation, in combination with historical factors
which serve to define the shear strength of the existing
snowpack. Unfortunately, models describing these rel-
ationships do not exist. To account for the obvious
connection between reduced snow accumulation. over a
flat lake. in response to higher wind speeds, the
precipitation accumulating on the frozen lake surface is
determined by multiplyving the observed snow water-
equivalent precipitation by the empirical scaling factor 4.
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where [ has been chosen to equal 0.1 and 0.9 for St
Mary and Lower Two Medicine Lakes, respectively.
These values were chosen o optimize the agreement
between model output and observations. An alternative
to introducing this scaling factor is to prescribe the snow
depth and density on the lake based on observations; this
approach requires more frequent snow observations than
are available for the current study. In summary, the only
difference between the atmospheric forcing for the St
Mary Lake and Lower Two Medicine Lake integrations
is that Lower Two Medicine Lake is assumed to have
lower wind speeds and higher snow accumulations than
those occurring on St. Mary Lake.

The St. Mary observations ol temperature, wind speed
and precipitation are found in Figure 3a-—c, respectively.
During October and November, the average daily air
temperature reaches below-freezing temperatures on
several occasions and stays below freezing through
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Lig. 3. Measurements at St. Mary, Glacier National
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temperatures. b. Daily wind speed. Observations made al
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Jrecipitalion.
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December and during almost all of January. In late
January and early February, air temperatures rise above
[reezing belore dropping during the last hall of February.
March begins with above-freezing temperatures and,
after a cooler period in the middle of the month, the air
temperature typically stays above [reezing through May
(Fig. 3a). The wind speed is highly variable throughout
the period and ranges from near zero to 22m s ' (Fig.
3h). Precipitation events occur [requently and reach a
maximum of 16 mmd ' (Fig. 3¢).

The total ice depth simulated by the model for St
Mary Lake is compared with observations in Figure 4.
The average of the observed depth values is included
along with the maximum and minimum observations for
each observation time, The number of observations varies
from one field excursion to the next and ranges (rom one
to nine observations per trip to the lake. Measurements
were not always made in the same part of the lake during
each trip. The model simulation and the average of the
observations agree quite well and consistently lie within
the range of the observed values. The frecze-up date is
simulated within the limits of the observations and occurs
during the last week ol November. lece break-up is
modeled 1o occur during the first week of April. The high
variability among depth observations for a given time can
be partially explained by the variable depths of snowdrifts
accumulating on the ice surface. Frequently, when an
observation indicates little or no variability, only one or
very lew measurements were made. The model produces
a maximum total ice depth of 60 ¢cm in late February. The
relatively warm periods in early February and March,
indicated by the temperature record, have led to the
reductions in ice depth shown in Figure 4. The final
melting of lake ice begins in the middle of March and
continues untl the ice is entirely melted in carly April.

80 Mode | =
Observations ¢

(average ond range)

MAR  APR  MAY

SEP 0T  NOV  DEC  JAN FEB

Fig. 4. Comparison between the total ice depth simulated by
the model and the observations for St. Mary Lake. The
average and range of the observed values are also indicaled.

On St, Mary Lake, no snow-ice is produced by the
model (Fig. 5). This curve is coincident with the zero line
in the plot. Although the observations of snow-ice depth
are quite variable, the model-produced result lies within
the observed values. also shown in Figure 5. In this figure
the total ice depth from Figure 4 has been included for
reference. Under conditions of minimal snow accumul-

3
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Fig. 5. Comparison hetween the snow-ice depth simulated
by the model and the observations for St. Mary Lake. The
average and range of the observed values are also indicaled,
along with a reference curve showing the total modeled ice
depth oblatned from Figure 4. ( Note that the model did not
simulate any snow-ice on St. Mary Lake. )

ation such as that represented by this St. Mary Lake
simulation, the snow cover is rarely sufficient to depress
the ice surface below the water line; if this should oceur, it
can happen only early in the freeze-up period when the
ice is relatively thin, Consequently, snow-ice formation is
expected to be limited in relatively cold and windy
environments. The clear ice produced by the model is given
by the difference between the total ice depth and the snow-
ice depth. In the St. Mary Lake simulation, all of the ice
produced by the model 1s clear ice.

The model simulation for Lower Two Medicine Lake
also agrees well with the measured total ice depth (Fig.
6). The number of measurements varies from one field
excursion to the next and ranges from one to three
observations per trip to the lake. Measurements were not
always made in the same part of the lake during each trip.
The modeled ice freeze-up date lags the observations by
While the ice growth during
December is slightly less than the model simulation, the

approximately [ week.

general pattern of the measured ice growth is captured by
the model. The remainder of the simulation continues to
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Fig. 6. Comparison between the total ice depth simulated by
the model and the observations for Lower Two Medicine
Lake. ‘The average and range of the observed values are
also indicaled.
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follow the observations. In response to the different

atmospheric forcing, which allowed the introduction of

snow-ice growth not present on St, Mary Lake, the model
produces a masimum total ice depth of 70c¢m, 10cm
greater than that simulated for St. Mary Lake. The [inal
continuous melting event begins in the middle of March
and proceeds until the middle of April when all of the ice
has gone. The lack of April ice observations precludes
model validation during this period of the simulation.

In contrast to St. Mary Lake, the ice measured on
Lower Two Medicine Lake is composed of roughly 50%
snow-ice (Fig. 7). Also included in Figure 7 are the snow-
ice observations and the towal ice depth obtained [rom
Figure 6. The clear-ice depth is given by the difference
between the total ice and snow-ice depths. Again, the
modeled snow-ice profile is within the variability of the
observations. The increased snow accumulation in res-
ponse to the lower wind speeds at Lower Two Medicine
Lake has initiated the snow-ice growth mechanism. Snow
accumulation on the lake surface has been suflicient to
depress the ice surface below the lake-water line, thus
saturating some fraction of the overlying snow cover. This
slush has then frozen, thus producing the snow-ice layers.
The reductions in ice depth due to melting in carly
February and March, which are evident in the St. Mary
Lake simulation (Fig. 4), are not found in the Lower Two
Medicine Lake simulation (Fig. 6). In this case, the
melting energy has gone towards first melting the snow
cover present on the Lower Two Medicine Lake surface,
and the surplus energy was insuflicient to reduce the ice
depth appreciably.
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Fig. 7. Comparison befeceen the snow-ice depth simulated
by the madel and the observations for Lower Trwo
Medicine Lake. The average and range of the observed
values are also indicated. along with a rveference curve
showing the total modeled ice depih obtained from Figure 6.

The differences between the ice-growth mechanisms in
the two lakes produce ice of distinctly diflerent optical

and radiative properties. Because of the abundance of

small bubbles in the snow-ice, this ice form is opaque and
frequently referred to as white ice. In contrast. the ice
produced by thermal growth is clear and contains
relatively few bubbles. Studies have shown that the
density of snow-ice is often within a few per cent of the
clear-ice density (Ager, 1962).
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Lake-ice studies in northern Alaska using synthetic
aperture radar (SAR) have suggested that the within-ice
bubble structure is partially responsible for variations in
radar back-scatter (Weeks and others, 1978, 1981:
Wakabayashi and others, 1993). As part of a companion
study to the modeling work described in this paper. SAR
data covering Glacier National Park have been obtained
for the months of November 1992 through March 1993
(Hall and others, 1994). The distinctly different bubble
structures found within the lakes of Glacier National Park
are thought to explain, at least in part, the variations
between the radar signatures obtained from various lakes
within the park.

These model simulations of Montana lakes have
shown that the formation and growth of lake ice is
sensitive to wind speed, which is strongly dependent upon
local topography. Under both light and strong winds,
lakes were found to produce ice through thermal growth
at the ice water interface but, under conditions of light
winds, the f[ormation of snow-ice is enhanced. Higher
snow accumulations on the lake-ice surface produce a
condition where the ice surface is depressed below the
water line, causing the snow to become saturated and
leading to the formation of relatively thick snow-ice
deposits. In regions having wind speeds high enough 1o
limit snow accumulation, and/or where precipitation is
relatively low, the reduced snow accumulation on the
lake-ice surface inhibits snow-ice formation.

6. CONCLUDING REMARKS

Physically based mathematical maodels of the coupled
lake, lake-ice, snow and atmosphere system provide a
mechanism by which to study terrestrial -atmosphere
interactions for the climate-sensitive northern regions.
With such a model, freeze-up and ice break-up dates
can be predicted with reasonable accuracy, provided
that the appropriate atmospheric forcing is known.
Given observations of the freeze-up and ice break-up
dates of specific lakes, information regarding the local
and regional climatic regime of that lake can be
inferred.

This study illustrates the key role that the wind
component ol the local climatic regime plays on the
growth and decay of lake ice. The wind speed aflects both
the surface temperature, obtained from energy-balance
considerations, and the accumulation of snow on the lake-
ice surface. Snow-accumulation amount plays a signif
icant role in determining the relative importance of lake-
ice growth through the thermal and snow-ice growth
mechanisms, The ice produced by these two dilferent
mechanisms has distinetly different optical and radiative
properties and is, consequently, thought to affect radar
signatures (Hall and others, 1994,

Further research with physically based models are
required to evaluate the sensitivity of luke freeze-up and
ice break-up dates to long-term, sustained changes in
winter climatic conditions. Such a study would assist in
establishing the feasibility of tracking past and future
climate trends by using lake freeze-up and break-up dates
as an integrated index of fall and winter temperatures,
and other key climatic variables.
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