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ABSTRACT 

This paper defines a security measure to indicate vulnerability 
to voltage collapse based on an energy function for system models 
that include voltage variation and reactive loads. The system 
dynamic model, the energy function and the security measure are 
first motivated in a simple radial system. Application of the new 
measure and its computational aspects are then examined in a 
standard 30 bus example (New England System). The new 
measure captures nonlinear effects such as var limits on generators 
that can influence the systems vulnerability to collapse. The 
behavior of the index with respect to network load increases is 
nearly linear over a wide range of load variation, facilitating 
prediction of the onset of collapse. 
KEY WORDS : Voltage collapse, voltage stability, energy 
functions, Lyapunov functions, security assessment. 

I. BACKGROUND AND MOTIVATION 

A large portion of the recent literature devoted to voltage 
collapse has had as its goal identifying the threshold of voltage 
collapse, or more generally, developing a security measure to 
quantify how "close" a particular operating point is to voltage 
collapse. The crucial point in judging the effectiveness of the later 
methods is whether or not the "distance" of a given operating point 
to voltage collapse is physically reasonable and can provide 
planners and operators with an indication of when corrective 
control action is necessary. The goal of the work to be presented 
here is to introduce an energy based measure of proximity to 
collapse. The method will be motivated by examining a single line 
example in detail, first in a static setting, and then extended to the 
desired dynamic framework. This will be followed by application 
of the energy function approach to the New England 30 bus test 
system that has been used in the literature to evaluate other voltage 
collapse indices. Application to this 30 bus system includes a 
discussion of the computational issues and the uses of the method. 
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11. STATIC FRAMEWORK FOR ONE LINE SYSTEM 

To motivate the energy based method, we begin by examining 
the static powerflow in a single line example. Consider a system 
with a single series transmission line (ignore shunts) connecting 
two buses, numbered 1 and 2. Bus 1 is treated as a slack bus, 
with voltage magnitude fixed at 1.0 pu. For simplicity, we will 
assume that the transmission line is lossless, so that real power 
injection at bus 1 must equal real power consumed at bus 2. Also, 
we will assume that a load is attached at bus 2, and is represented 
as constant P-Q demand. The following analysis extends easily to 
the case of P and Q specified as functions of bus voltage. The 
resulting power balance equations at bus 2 are: 

P, - BI2Vsin(a) = 0 (14 

(1b) QL - B,V2 - B,,V cos(a) = 0 

where 
V := bus voltage magnitude at bus 2 

a := 6, - 6, = phase angle difference from 
bus 1 to bus 2 

For B12 = -B22 = 10.0, the locus of points in the a-V space 
satisfying these constraints for a range of P and Q values are 
shown in Figure 1. This diagram may be considered as a variation 
on the classic voltage versus power factor curves described in [l]. 
A radial line with a fixed sending voltage typically has two 
solutions for receiving end voltage. This is reflected in Figure 1 
by the fact that the P and Q constraints have typically two 
intersections, each corresponding to a powerflow solution. We 
will refer to these as the "high voltage solution" and "low voltage 
solution," distinguishing the two by their relative values of voltage 
magnitude. As shown in Figure 1, for certain critical values of P 
and Q, the two constraint curves become tangent, and only one 
solution exists. If either P or Q is increased further, the 
powerflow has no solution. At this point, the Jacobian of the two 
power balance equations must be singular. This observation has 
been used to justify several existing methods of analyzing voltage 
collapse. In [4], and later in [5] ,  rigorous bifurcation analyses are 
carried out for the powerflow equations, indicating that this 
bifurcation phenomena observed in this simple example will occur 
in powerflow equations for a multibus network. Many other 
authors have proposed singularity of the Jacobian of the 
powerflow equations at the high voltage solution (or a closely 
related measure) as a test for the onset of voltage collapse [l], [2], 
[3], [6]. In particular, [6] recommends the use of the smallest 
singular value of the Jacobian of the powerflow equations as a 
quantitative measure of proximity to voltage collapse. 
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To describe the conditions associated with voltage collapse, it 
has been suggested that a strictly static framework is not 
sufficient. In [2] the "semi-dynamic" nature of voltage stability 
problems is discussed. More recently, [7] and [8] have suggested 
that particular load dynamics or voltage control dynamics need to 
be considered. In light of these observations, the question then 
becomes how to use information about pertinent dynamics of the 
system to measure proximity to the critical point. 
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FIGURE 1: Power Balance Constraints in Angle/Voltage Plane 

111. DYNAMIC FRAMEWORK AND ENERGY 
FUNCTION FOR ONE LINE SYSTEM 

Most reports on incidence of voltage collapse seem to indicate 
that the collapse was not immediately driven by a large disturbance 
in the system [9]; lack of an initiating fault is one of the features 
that distinguishes voltage collapse from transient stability. 
Instead, the system operating point is moving (on a time scale of 
minutes to hours), usually under the influence of gradually 
increasing average load. A key component in analyzing this 
scenario is the nature of the time variation in the load itself. While 
the average value of the load may be changing very slowly, one 
expects that small (a few percent) random variations about this 
average occur with a broad band frequency spectrum. Research 
into aggregate load models has repeatedly suggested that such 
small random effects may be modeled by a white or colored noise 
term in the load [lo], [ll]. These random variations should have 
a negligible effect on a normal, robust operating point, but they 
may be significant when the operating point is near a critical point. 
Reference [l] shows that in the operating region near collapse bus 
voltage is extremely sensitive to changes in load. Part of the 
premise of this paper is that the interaction of these broad band 
load variations and the pertinent system dynamics is the driving 
force that pushes the system "over the edge" to voltage collapse. 

To illustrate the interaction of system dynamics with load, we 
return to the simple one line system. The reader should note that 
the dynamics in this example do not represent the most general 
models that can be accommodated by the method. The goal here is 
to illustrate the basic methodology; the range of allowable models 
will be discussed later. Suppose bus 1 is a generator bus. We will 
assume that the real power demand is a constant plus a linear term 

dependent on bus frequency. This follows the structure 
preserving model introduced for transient stability analysis in [12]. 
Using a classical model for the generator, the system equations are 
then given by: 

M8h + D,w + B,,V sin(S,-S,) - PM = 0 

-(PL + D, 6,) = BZ1V sin(6.- 4) 
-QL = -Bz$ - B,,V cos(6,- 6,) 

Under the assumptions that PM = PL (generator mechanical power 
matches active load demand) and B12 = B21, and recalling the 
definition of a, these may be re-written as: 

b=-hf'D,w-M;llf(a, V )  

Er = -D;'f(a, V )  + w 

0 = g(a, V )  
where 

f(a, V )  := B,,V sin(a) - P, 

g(a, v) := U'{ eL - B,,V cos(a) - B,,v?J 
The reader should note that the multiplication by V-I in (Zc) 

does not affect the desired solutions because voltage magnitudes 
are always restricted to be strictly positive. The equilibria of (2) 
are the (a, V) intersection points pictured in Figure 1, in the 
o = 0 plane. 

The mixed system of differential equations with algebraic 
constraints given by (2) is a reasonable description of the simple 
system model in the vicinity of the high voltage operating point, 
but may not possess a valid solution when voltage magnitudes are 
very low [13]. For analyzing voltage collapse, one requires a 
model that is at least qualitatively correct in its behavior over a 
very wide range of voltage magnitudes. Unfortunately, the state 
of the art in load modeling is such that we can not expect to have a 
precise description of load behavior over the entire range of 
voltages likely to be encountered in voltage collapse. As a first 
step towards dealing with this problem, we propose the following. 
We will relax the algebraic constraint of (2c) in a manner that will 
lead to behavior nearly identical to the mixed differentiaValgebraic 
model near the high voltage equilibrium, but will allow well 
defined trajectories under very low voltage conditions. 

A reactive load model for the power system fulfilling the above 
requirements was proposed in [ 131 using singular perturbation 
techniques adopted from [14]. The approach can be very easily 
illustrated in the context of the two bus example here. 
Mathematically, the algebraic equation is singularly perturbed to 
form a differential equation whose equilibrium is the solution of 
the original reactive power balance equation. For (2c), this 
becomes 

(3) 

where E is a small positive parameter that controls the speed with 
which trajectories of voltage magnitude move towards values 
satisfying reactive power balance. We will show later that the 
model's ability to predict voltage collapse is independent of the 
choice of this parameter. From an engineering standpoint, (3) 
may be interpreted as follows. The load demand is taken as the 



"independent input," and the voltages respond to this input to 
maintain reactive power balance. The right hand side of ( 3 )  is the 
difference between reactive power delivered by the network and 
reactive power absorbed by the load. When the load 
instantaneously demands more reactive power than is being 
delivered, ( 3 )  predicts that the bus voltage drops until power 
balance is re-established. When excess reactive power is delivered 
by the network, bus voltage magnitude will increase. The rate of 
this change varies with E;  for E sufficiently small, it is essentially 
instantaneous and behavior is nearly identical to the original static 
model. This is qualitatively reasonable behavior for many types of 
loads'. Use of (3) is not advocated in simulating system 
trajectories; clearly, for E small, one would create an unnecessarily 
stiff set of differential equations to be solved. The point of 
introducing ( 3 )  is to obtain a single model that is physically 
reasonable over a wide operating range of voltage, thereby 
facilitating the energy function analysis. 

Relaxing the algebraic constraint results in a model ((2a), (2b) 
and (3)) composed only of ordinary differential equations, and is 
therefore suited to the application of standard Lyapunov theory. 
For an equilibrium point of (0, a", V"), consider the candidate 
energy function: 

6(0, a, V )  := ~ M ~ J  
- B,,V cos(a} + B , , P  cos($) 

(4) 

Note immediately that Q(w,a,V) as selected is independent of E.  

The reasoning behind selecting this function becomes clear from 
the following observations: 

Observation I 
Consider the system of differential equations defined by: 

Straightforward calculations reveal that these are identical to the 
singularly perturbed model; i.e. (5) is an alternate expression 
for the system dynamics system defined in (2a), (2b), and (3) .  

Observation 2 
The rate of change of energy along trajectories of the system is 
always less than or equal zero. This follows from: 

lNote that control equipment at the load bus may cause this 
characteristic to reverse with changes in operating point. The 
ac side of a HVDC inverter may under some operating 
conditions display behavior where an increase in reactive 
power delivered by the network actually lowers bus voltage. 
Clearly, a more complex model than that proposed above is 
necessary to handle such situations. 

with A defined as the 3x3 matrix appearing on the right hand 
side of (5); (A+AT) is a diagonal negative semi-definite matrix. 

Observation 3 
The equilibria of (5) occur only at those points where V6  = 0. 
This follows from (5) and the fact that A is nonsingular. This 
confirms the previous observation that equilibria can occur only 
where o is zero. 

Observation 4 
If the linearization of (5) about an equilibrium point is strictly 
stable (i.e., all eigenvalues have strictly negative real parts), 
then the Hessian (second derivative) of S(w,a,V) evaluated at 
the equilibrium has all positive real eigenvalues. This in turn 
implies that b(w,a,V) is locally positive definite about that 
equilibrium point. 

From observations (1)-(4) above, one can conclude that for an 
operating point that is small disturbance stable, the energy function 
proposed is formally a Lyapunov function (see [15], theorem 
(106)). The Lyapunov function defined in (4) and the 
corresponding dynamics in (5) generalize immediately to systems 
of arbitrary dimensions by defining f and g to be vector functions 
whose components are active and reactive power balance 
equations at each bus. This generalization is discussed in [16] and 
[17]. However, if one strictly requires that (4) define a true 
Lyapunov function, this construction does place restrictions on 
allowable load models. Reactive power demand is allowed to be 
an arbitrary polynomial in bus voltage magnitude; path 
independence of the integral in (4) requires that active power 
demand not depend on voltage magnitudes. However, extensive 
experience in energy functions for transient stability studies [18] 
has shown that a path dependent integration may be used in terms 
such as (4) with the resulting "energy function" still approximating 
many of the properties of a Lyapunov function. We will adopt 
that approach here for models having voltage dependent active 
demands, and hence use the terminology "energy function" rather 
than Lyapunov function through the remainder of this paper. 

Also important to voltage stability studies is the ability to 
represent on-load tap changing transformer behavior. With active 
and reactive load given as functions of voltage magnitudes, a static 
model for tap changing transformer behavior can be incorporated. 
More detailed modeling that includes time delays in tap switching 
requires dynamic equations for tap motion such as presented in 
[19]. The question of whether these can be added to this energy 
function analysis has not yet been addressed. 

To understand the use of the energy function to study voltage 
collapse, it is useful to review its use in transient stability. In that 
context, the simplest Lyapunov based stability criterion uses the 
concept of the closest unstable equilibrium. Roughly, the criteria 
may be stated as follows. Starting from the post fault equilibrium 
of interest, expand constant energy contours of the 6 function 
until they intersect another equilibrium point. Evaluate the 6 
function at this "closest unstable equilibrium point." If the initial 
energy following the fault is less than this amount, the system will 
asymptotically return to the desired operating point. This method 
is generally judged too conservative, for the following reason. 
The closest unstable equilibrium point represents the lowest saddle 
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point by which trajectories may escape the potential energy well 
surrounding the stable equilibrium point. A fault that happens to 
push the system trajectory through this lowest saddle point is a 
rare, worst case scenario. 

However, consider again the conditions associated with 
voltage collapse. Load is gradually increasing in a way that causes 
the high voltage equilibrium (normal powerflow solution) to 
approach the low voltage equilibrium. The increase in load 
shrinks the potential well and lowers the saddle point that 
represents the easiest path of escape. The energy function then 
provides a measure of this ease with which load variations push 
the system state through this closest unstable equilibrium. The 
reader familiar with direct methods of transient stability will note 
that calculating the closest unstable equilibrium point in models 
that include only active power flow equations has proven 
computationally prohibitive in large scale systems. This does not 
prove true in the models used here, due in part to the restrictions 
that come from adding reactive power balance equations to the 
model. This issue will be discussed in more detail in Section V. 

IV. USE OF THE ENERGY FUNCTION TO 
ESTIMATE EXIT TIME 

The preceding discussion motivates the following approach to 
mezsuring proximity of an operating point to voltage collapse: 
measure distance by the difference in energy between the high 
voltage and low voltage solutions of the powerflow. This is 
fundamentally a nonlinear, "non-local" measure. The questions to 
be answered in justifying this viewpoint on voltage collapse are 
the following. First, when driven out of the potential well, do the 
trajectories in our simple model show rapid collapse of voltage 
magnitude? Second, do random load variations tend to drive the 
system out of the potential well when there is no large 
disturbance? The first question proves easy to answer. If the state 
exits the potential well in the vicinity of the low voltage 
equilibrium (which is the easiest path of escape), it will fall in a 
region where the right hand side of (3) is negative, and the voltage 
magnitude is driven rapidly down. To answer the second 
question, we return to the proposition that the time behavior of 
load should include a small magnitude broad spectrum random 
term. Conceptually, this effect can be modeled by including a 
small magnitude white noise (or frltered white noise) term in each 
P and Q load. In this framework, the state of the system becomes 
a random process, and one can formally define the expected time 
required for the state to exit the potential well. 

The calculation of expected exit times for a randomly perturbed 
power system models was examined using the theory of large 
deviations in [17]. The pertinent result may be summarized as 
follows: for an E magnitude white noise disturbance in the loads, 
the expected time required to leave the potential energy well is 
proportional to: 

19(WU,CrU,VU) 
exp &2 

where (wu,aU,Vu) represents the closest unstable equilibrium point 
in the sense defined above. The exit time calculation gives a 
rigorous means by which different operating points may be ranked 
in terms of their vulnerability to voltage collapse. However, in the 
following section, we will examine another, more heuristic 

application of the energy measure that combines a single energy 
calculation at the current operating point with a family of energy 
curves obtained by increasing load from a normal operating region 
until the critical point of loss of the powerflow solution. 

V. USE OF THE ENERGY FUNCTION TO 
ESTIMATE PROXIMITY TO VOLTAGE COLLAPSE 

This section develops a security measure that describes 
distance to voltage collapse in terms of the MW load increase 
required (under a given assumption on load participation factors) 
to drive the system to collapse. The fust test system consists of 
two strongly coupled generator buses, numbered 1 and 2, with a 
weakly coupled load bus (number 3) attached to the second 
generator. Line 1 links buses 1 and 2, while line 2 links buses 2 
and 3. This system was chosen because it is a simple equivalent 
representation to the type of system which is often prone to 
voltage collapse. 

Consider the following system parameter values: 
R1 = 0.005 X1 = 0.05 R2 = 0.02 X2 = 0.06 

Assume that all loads are constant P/Q. Initially, the generator 
at bus 2 is off-line and that there is no load at bus 2. In this case, 
the energy function can be calculated for any P/Q load at bus three. 
Figure 2 plots the difference in energy between the high and low 
voltage powerflow solutions as the load at bus 3 is increased. 
Beginning at 50 M W ,  the load is increased with a constant P/Q 
ratio of 2 until the critical collapse point occurs at approximately 
P = 242 MW, Q = 121 MVAR. 

I 
3.0 I 

0.50 1.50 2.50 

Load at Bus 3 (P.U. 100 MVA base) 

I 
FIGURE 2: Energy Measure versus Load Level 

One possible application of the energy values shown in Figure 
2 is calculation of the 'expected exit time' discussed in the 
previous section. However, Figure 2 also suggests a more 
intuitive measure of system security. By shifting the x axis to 
align the critical collapse point with zero MW, each energy value 
can be related to a "distance" in M W  to voltage collapse. For an 
energy value of 0.5, the distance to collapse is approximately 50 
MW; i.e., when the energy value is 0.50, voltage collapse will 
occur when the load at bus 3 is increased by 50 MW and 25 
MVAR. This suggests the following heuristic test for determining 
the distance to voltage collapse under general load conditions: 

1) Calculate the energy value for a given load at bus 3 .  
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therefore a repeat of Figure 2. The next four curves show how the 
energy functions vanes as the maximum var output of generator 2 
is increased in increments of 50 MVAR. During the sequence of 
powerflow/energy calculations, voltage at bus 2 was held at 1.0 
per unit as load ramped up until generator 2 reached its var limit. 
Thereafter, the var output was held at its maximum. Surprising, 
the shape of the energy function curve proves insensitive to 
varying var limits on the generator; the five curves in Figure 4 are 
again nearly identical up to a shift along the horizontal axis. 

2) Use a table containing the Figure 2 data (pre-calculated off- 
line) to determine the 'distance' to voltage collapse. Exploiting 
the near linearity of Figure 2, relatively few points (powerflow 
solutions) would be needed to produce a good approximation 
of this curve. 

For this approach to be useful, the shape of the curve in Figure 
2 must be relatively insensitive.to changes in the operating p i n t  of 
the system. Ideally, one would like to confirm that the near 
linearity of the curve observed above extends to a variety of 
systems. Then the approximate distance to voltage collapse for a 
wide variety of operating points can be computed on-line, using 
only information from the off-line calculation of a single energy 
curve. Note that the "energy curve" is simply the difference in 
energy between the high and low voltage powerflow solutions 
over a one parameter family of operating points (MW load at bus 3 
being the free parameter used in Figure 2). The following 
examples show the feasibility of such an approach. 

First, for the 3 bus system, the operating point is changed by 
varying the load at bus 2 (with the generator again assumed to be 
off-line). Figure 3 shows how the energy function varies with the 
load at bus 3 for different loads at bus 2, with the topmost curve 
corresponding to a load at bus 2 = 0. and is thus simply a repeat of 
Figure 2. As would be expected, the energy curve is lower as 
load at bus 2 is increased, since the system is more heavily loaded 
and therefore less secure. Note that the five curves in Figure 3 are 
nearly identical up to an x-axis shift, and all vary in a nearly linear 
fashion with load changes. 

3.0 I 

f) s 2.0 
E 
I 
h 

[ 1.0 
w 

Bus 2 Load Zero 

Bus 2 Load 50 MW/25Mvar 

Bus 2 Load 100 MW150 Mvar 

Bus 2 Load 150 MWi75 Mvar 

Bus 2 Load 200 MWllOOMvar 

0.5 1.5 2.5 

Load at Bus 3 (P.u. 100 MVA base) 

I 

FIGURE 3: Effect of Neighboring Loads on Energy Measure 

The next example in the three bus system demonstmtes that var 
limits on generators can also be incorporated using this 
methodology. In the powerflow calculations employed here, the 
var output of the generator is typically allowed to vary in order to 
hold its bus voltage constant; i.e. generator buses are treated as 
PV. IIowever, if the var limit is reached, the exciter is considered 
saturated, and the generator's var output is held constant; the bus 
model changes to PQ. This is a standard approach to treating var 
limits in powerflow calculations. Consider the system operating 
with load at bus 2 set to zero, while the generator is turned on to 
provide voltage support (no active power output). One would 
expect that the more reactive power the generator can provide, the 
greater the load that can be tolerated at bus 3 before voltage 
collapse occurs. Figure 4 shows that this is indeed the case. The 
lowest curve shows zero var output from generator 2, and is 

4.0 I 

200 Mvar Limit 

150 Mvar Limit 

1W Mvar Limit 

No Generation 

0.5 1.5 2.5 

Load at Bus 3 (P.u. 100 MVA base) 

FIGURE 4: Effect of Mvar Limits on Energy Measure 

The reader should note that in this example limits on available 
var support are taken into account, even when the current sysiem 
operating point does not push generators to these limits. 
Intuitively, this is because the low voltage solution tends to push 
all neighboring var sources to their limits, and the var limits reduce 
the height of the potential energy boundary that the system must 
cross to experience collapse. 

The following examples illustrate the usefulness of the method 
on a larger standard test system. The New England 30 Bus 
system used in [20], [21] was chosen as the test system. The 
voltage collapse scenario examined consisted of increasing the 
reactive load at bus 11, while keeping all other loads and generator 
MW outputs fixed. This is scenario number 1 from [21]. The 
curve of Figure 5 plots the energy difference as reactive load at 
bus 11 is increased until voltage collapse occurs. As was the case 
with the Figure 2, the shape of the curve is approximately linear. 
This allows for quite reasonable approximations of distance to 
voltage collapse, even when the current system operating point is 
quite far from the point of collapse. Figure 5 may be compared to 
the plots of proximity measures for the same scenario presented in 
W I .  

To complete this example, a series of contingencies from [20] 
were applied to the system: 

1. basecase (same as [21]), 
2 .  
3.  
4. 

5 .  
6 .  

after generator 6 is removed, 
after generator 10 is removed, 
after generation at buses 2, 25, and 29 is increased 
by 200 MW, 
after line (9.30) suffers an outage, and 
after a capacitor bank of 500 MVAR is placed at 
bus 11. 
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Note that this contingency list is cumulative; for example, number 
5 includes all the system changes in numbers 1 through 5. 

2 5.6 

4.8 

3.2 

Reactive Load at  Bus 11 

FIGURE 5: Energy Curve 30 Bus System 

The lower five curves in Figure 6 display the energy function 
associated with each contingency as the reactive load at bus 11 is 
increased. Again, as in the three bus examples, the energy curves 
remain relatively parallel, though progressively less so as more 
and more major changes were made to the system structure. This 
suggests that when rapid on-line evaluation is required, a single 
energy curve identifying " M W  distance to collapse" might be 
applied to a number of contingencies simply by identifying energy 
level for a given case. 

. . .  
0 150 300 450 600 750 900 1050 1200 1350 

Reactive Load at Bus 11 (MVAR) 
FIGURE 6: Energy Curves 30 Bus System w/contingencies 

In an actual system there may be more than one area vulnerable 
to voltage collapse. Thus a particular low voltage solution and an 
energy difference to the high voltage solution can be associated 
with each area of vulnerability. As noted above, experience in 
locating multiple unstable equilibria in transient stability models 
might lead the reader to believe that this process will be difficult. 
However, use of the full powerflow equations with reactive power 
constraints makes the task much easier in our analysis. Extensive 
work by Tamura and his co-workers [21]-[24] has confirmed the 
practicality of locating relevant low voltage solutions in 
realistically sized networks (43 and 81 buses in [24]). The 
method used in this example is similar to that described in [22] and 
[23], where an algorithm is presented to calculate all of a system's 
low voltage solutions using a rectangular Newton-Raphson 
technique with the optimal multiplier. Additionally, a "simplified 
method" is presented to calculate the up to N-1 (where N is the 

number of buses in the system) low voltage solutions 
corresponding to a low initial voltage guess at only a single bus. 

References [21] and [24] show that the number of multiple 
solutions tends to decrease as the system approaches voltage 
collapse, and that at the point immediately before voltage collapse 
only a pair of closely located solutions exist. These two are the 
operable high voltage solution and its low voltage counterpart; the 
two coalesce at the point of voltage collapse. Calculations in [22] 
indicate that the "counterpart" solution is typically one of the 
solutions obtained by the "Simplified method." Which solution 
from the subset of simplified method solutions will become the 
operating point "counterpart" depends upon the assumed path of 
load changes that lead to the point of voltage collapse. In an 
operating or planning environment where many possible patterns 
of load increase must be considered, energy measures could be 
calculated for each vulnerable area. The energy measures could 
then be used to determine the most vulnerable bus groups at the 
present operating point and also to rank contingencies based upon 
proximity to voltage collapse in each area. Computationally the 
calculation of the simplified method solutions at the present 
operating state would require at most N-1 powerflow solutions. 
However, the application of localized voltage screening methods 
([20] and [25]) to identify vulnerable areas could greatly reduce 
this figure. The method also has the attractive property that as the 
system approaches the point of voltage collapse, the number of 
simplified solutions reduces ultimately to one; i.e., the 
computational burden of the method actually goes down as the 
system becomes more heavily loaded. 

VI. CONCLUSIONS 

This paper has introduced a new method of assessing 
vulnerability of a power system operating point to voltage collapse 
based upon an energy function method. The method offers a 
smoothly varying measure of proximity to the critical point of 
voltage collapse which operators might use to anticipate when 
corrective action is needed before collapse occurs. Var limits on 
generators are taken into account even before those limits have 
been reached at the current system operating point. 

Computationally, the on-line requirements consist of only one 
powerflow solution (in addition to the solution of the current 
operating point) and an associated evaluation of a scalar energy 
fyct ion for each vulnerable bus. Fast screening methods and 
other heuristic methods could be used to determine the subset of 
vulnerable buses. If one wishes only to rank various operating 
points with respect to vulnerability to voltage collapse, one energy 
evaluation at each operating point (with two power flows each) is 
needed. To examine a single possible patterns of expected load 
increase and produce a curve of the type pictured in Figure 5, the 
off-line calculations require a moderate number of powerflow 
solutions (roughly ten) to evaluate energy along the "projected 
path" of operating points. The number of powerflow solutions 
required to accurately produce a graph such as Figure 5 for a 
single load pattern depends primarily on the projected path of load 
increase, not on the size of the network. On the other hand, the 
number of vulnerable areas of interest (and hence the number of 
possible "paths") in the network can be expected to grow with 
network size. If one uses only low voltage powerflow solutions 
to identify vulnerable groups of buses, the number of power flow 
calculations grows linearly with the number of buses. However, 
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analysis," I.S.C.A.S. Proc., pp. 597-601, Montreal, May 1984 
(abridged version); also Electronics Research Laboratory, Memo. 
No. UCB/ERL M84/7, U. of CA, Berkeley (complete version). 
[14] S.S. Sastry, C.A. Desoer, and P. Varaiya, "Jump Behavior 
of Circuits and Systems," IEEE Trans. Circuits and Systems, vol. 
CAS-28, no. 12, Dec. 1982. 
[ 151 M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, 
Englewood Cliffs, NJ, 1978. 
[16] C. L. DeMarco, "A New Method of Constructing Lyapunov 
Functions for Power Systems," Proc. IEEE Int. Symp. on 
Circuits and Systems, pp. 905-908, Espoo, Finland, June 1988. 
[17] C. L. DeMarco and A. R. Bergen, "A Security Measure or 
Random Load Disturbances in Nonlinear Power System Models," 
IEEE Trans. Circuits and Systems, pp. 1546-1557, vol. CAS-34, 
no. 12, Dec. 1987. 
[18] A. A. Fouad et al., "Direct Transient Stability Analysis 
Using Energy Functions: Applications to Large Power 
Networks," IEEE Trans. on Power Systems, vol. PWRS-2, pp. 
37-44, Feb. 1987. 
[19] C-C. Liu, "Analysis of a Voltage Collapse Mechanism Due 
to the Effect of On-Load Tapchangers," Proc. IEEE Int. Symp. on 
Circuits and Systems; pp. 1028-1030, San Jose, CA, May 1986. 
[20] R. A. Schlueter, A. G. Costi, J. E. Sekerke and H. L. 
Forgey, "Voltage Stability and Security Assessment", EPRI 
Report, El-5967, Project 1999-8, August 1988. 
[21] Y. Tamura, K. Sakamoto, Y. Tayama, "Voltage Instability 
Proximity Index (VIPI) Based on Multiple Load Flow Solutions in 
Ill-Conditioned Power Systems", Proc. 27th IEEE Con5 Decision 
and Control, Austin, TX, Dec. 1988. 
[22] Y. Tamura, K. Iba and S. Iwamoto, "A Method for Finding 
Multiple Load Flow Solutions for General Power Systems", IEEE 
PES Winter Meeting, A 80 043-0, New York, Feb. 1980. 
[23] S. Iwamoto and Y. Tamura, "A Load Flow Calculation 
Method for Ill-Conditioned Power Systems", IEEE Trans. Power 
App. and Sys., vol PAS-100, pp. 1736-1743, April 1981. 
[24] Y. Tamura et. al., "Monitoring and Control Strategies of 
Voltage Stability Based on Voltage Instability Index", Engineering 
Foundation Conference on Bulk Power System Voltage 
Phenomena: Voltage Stability and Security, Potosi, MO, Sep. 
1988. 
[251 G. C. Ejebe, H. P. Van Meeteren, and B. F. Wollenberg, 
"Fast Contingency Screening and Evaluation for Voltage Security 
Analysis," IEEE PES Winter Meeting, WM 161-2, New York, 
Feb. 1988. 

it is likely that heuristic judgements based on engineering 
experience could significantly reduce the number of bus groups 
that are judged vulnerable to voltage collapse, thereby reducing the 
required calculation. Once these energy curves are produced off- 
line, a single energy value calculated on-line can then be used to 
identify where the system lies on a particular curve. 

The method in its existing state of development appears quite 
promising. Further research would be valuable in several areas. 
First, more detailed dynamics should be included in the model and 
associated energy function. In particular, the effects of time 
delays in on-load tap changing transformers, and the influence 
HVDC links would be very relevant. Further work on efficient 
low voltage solutions methods is also important. 
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Discussion 

C. 0. Nwankpa and S. M. Shahidehpour (Department of Electrical and 
Computer Engineering, Illinois Institute of Technology, Chicago, 
Illinois): The authors should be commended for their interesting paper on 
the energy based security measure to indicate the voltage collapse. We 
agree with the authors that “ ... A key component in analyzing this scenario 
(i.e. voltage collapse) is the nature of the time variation of the load itself”. 
The authors investigated the effect of load variations on the proposed energy 
measure in a normal operating region before it reaches a critical point. 

Would the authors explain as to how multi-parameter (different loads) 
changes affect the proposed energy based measure? In case loads are not 
changing monotonically, the energy curves will not exhibit an approximate 
linear character as in the single parameter case. Even if the measure can 
exhibit a smoothly varying character in the multi-parameter case. the 
plotting of “projected path(s)” for eventual on-line use will encompass the 
consideration of a large number of system configurations which would 
reflect the possible system behavior. 

As pointed out by the authors, one of the applications of energy functions 
is in the estimation of the exit time from the domain of attraction of a 
specific operating point. When near a critical point, perturbations of system 
loads may play a major role in the voltage collapse explanation. A specific 
security index may indeed take into account various intensities and 
bandwidths of fluctuations in system loads, however, the approximate 
proportionality formula given in the paper is for the case of constant white 
noise intensities for all loads. In reality. due consideration of a whole 
spectrum of small fluctuations is in order, whose derivation process is 
described in [A]. In the case of colored noises, one may refer to [B. Cl. 
Authors’ comments on this subject will be appreciated. 

The proposed use o f a  single energy curve identifying the “MW distance 
to collapse” should be called into question. This is because. as long as the 
voltage collapse has not been reached, a multitude of stable opcrating points 
may refer to a given energy level. In other words, for on-line evaluation 
different contingencies may refer to completely different energy curves. 
thereby the procedure of simply identifying the proximity measure by the 
energy level for a given case is rather questionable. The authors’ input on 
this feature will be appreciated. 

It is a known fact, as the paper has also shown, that the voltage instability 
is the reflection of power system behavior under heavily loaded conditions. 
Because of this, losses in the transmission network would drastically 
increase as investigated in [21]. Will the authors consider the incorporation 
of these losses in the proximity measure since the losses are often of 
magnitudes that would affect the actual energy function‘! 

A main feature of any eventual on-line voltage collapse proximity 
measure is the ability to provide local information regarding voltage 
sensitivities as well as the system-wide information. The proposed security 
measure is the “MW distance to collapse” for a specific node in the system. 
So, is this measure capable of judging the overall system’s or subsystem’s 
proximity to voltage collapse, and would it be able to consider many 
possible load pattern of neighboring nodes in its evaluation? Authors‘ 
comments on these points will be appreciated. 
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C. L. Demarco and T. J.  Overbye: The discussers bring up a number of 
interesting points with regard to the use of the energy based security 
measure. Each paragraph of the discussion raises a distinct point; we will 
address these in order. 

The discussers ask how multi-parameter load changes affect the energy 
measure, in contrast to the one parameter increase that was used for the 
sample plots in the paper. The first point to make in this regard is that thc 
energy margin at the current operating state can always be evaluated to give 
an absolute measure of security; i.e. the instantaneous energy value can be 
evaluated without projections of system parameter changes. This instanta- 
neous measure of security would probably be the most useful energy 

calculation in cases where there is very large uncertainty in the load 
projections for the time horizon of interest. However, we envision many 
applications where an accurate load projection is available, and the operator 
wishes to know if the projected load increase will bring the system to an 
insecure state. In this case, it is reasonable to treat the vector of average 
load values at each bus as a known function of time. The vector of average 
load values then depends only on one parameter: time. The value of energy 
could simply be plotted versus time, as is done with Tamura’s VIP1 index in 
[21]. Note that the example used in the paper chose to plot the energy versus 
a single bus load increase to allow comparison to a large number voltage 
security measures in the literature that had already used this identical 
example. The generalization to allow multiple load increases as functions of 
a single parameter is straightforward. 

The second point raised by the discussers relates to the interpretation of 
the energy measure as an “expected exit time.” which was mentioned 
briefly in the current paper, having been explored in detail in [17]. The 
discussers question the rationale behind a white noise model for small 
magnitude load variations. Our reasoning is as follows. The small 
magnitude random variations in loads at distribution points are the 
aggregate of many thousands of switching actions on individual customer 
devices. A reasonable model for the aggregation of such switching events at 
a distribution bus would be a filtered jump process: small jumps represent 
each switching event, filtered by the impedance separating the customer 
device from the distribution point. In [CI ]  the authors show that under 
certain assumptions (essentially requiring the switching events to be small 
magnitude and high frequency-as expected in the power systems context) 
the exit statistics in a model with white noise disturbances will closely 
approximate those predicted in a model with filtered jump disturbances. 
Moreover, several detailed studies of random disturbance models in power 
system loads have confirmed that whitc noise approximations are reason- 
able in many applications [IO]. [ I I ] .  However, if one wished to consider 
colorcd noise processes, as the discussers indicate they have in [B]. [C] 
(unfortunately these references were not available in the open literature at 
the time of this writing), the approach seems straightforward. One would 
augment the power system dynamic model with a fictitious filter at each 
load bus. A white noise process is input to this filter; the output is a colored 
noise process that would serve as the load disturbance. The critical question 
in such an approach is whether the optimal control problem associated with 
the expected exit time calculation remains solvable in closed form (see 

The discussers next comment that “for on-line evaluation different 
contingencies may refer to completely different energy curves.” This is 
indeed the case, as we attempted to indicate by the six different energy 
curves for the six contingencies illustrated in Figure 6 .  The contingency of 
interest must be known to determine the resulting operating point, and the 
operating point must be known to evaluate the energy. The paper does 
comment that once the energy is known, rapid (and certainly approximate) 
on-line evaluation of a single energy curve might be used for several 
contingencies. This is meant only as a rough approximation, to exploit the 
observed phenomenon that the energy curves are nearly linear and close to 
being parallel for a number of contingencies. The discussers are justified in 
questioning the accuracy of such an approximation if a contingency 
drastically alters the network structure. 

The discussers also ask if we will consider incorporation of losses in the 
proposed proximity measure. This is already done in the current formula- 
tion. though it was not adequately stressed in the paper. As noted in the 
paper, the function used is formally a Lyapunov function for the system 
model only if transfer conductances are neglected. However, the thirty bus 
test system examined in the paper did include realistic transfer conductance 
values in all calculations, so we were careful to use the terminology 
“energy function” when referring to the security measure proposed. Even 
though the function itself does not depend directly on G , ,  parameters. the 
energy difference depends indirectly on the line conductances though the 
high and low voltage power flow solutions (which change with conductance 
values). Therefore, we would argue that loss effects are already incorpo- 
rated in the security measure as described in the paper. 

In their final point, the discussers interpret thc rcaults of the paper as 
proposing “MW distance to collapse” for a specific node in the system as 
the only use of the energy based security measure. and ask if such a measure 
is capable of judging the overall system’s proximity to collapse. It was not 
our intention that MW distance to collapse for load increasing only at a 
single node be the main application of the energy measure. As noted above, 
wc chose to focus on this case because it allowed direct comparison to 
results for this scenario already in the literature. We apologize i f  over- 
emphasis on this simple application prevented inclusion of more general 
uses of the energy based security measure. For example. to obtain 
sensitivity information, we would propose cvaluating the first and second 

~ 7 1 ) .  



427 

order terms in a Taylor expansion of the energy margin (note that this would 
require evaluation of terms both at the operating point and the unstable 
equilibrium) as is done for transient stability application of energy functions 
in [C2]. 
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