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ABSTRACT

In this paper, we describe an adaptive softening length formalism for collisionless N-body

and self-gravitating smoothed particle hydrodynamics (SPH) calculations which conserves

momentum and energy exactly. This means that spatially variable softening lengths can be

used in N-body calculations without secular increases in energy. The formalism requires the

calculation of a small additional term to the gravitational force related to the gradient of the

softening length. The extra term is similar in form to the usual SPH pressure force (although

opposite in direction) and is therefore straightforward to implement in any SPH code at almost

no extra cost. For N-body codes, some additional cost is involved as the formalism requires

the computation of the density through a summation over neighbouring particles using the

smoothing kernel. The results of numerical tests demonstrate that, for homogeneous mass

distributions, the use of adaptive softening lengths gives a softening which is always close

to the ‘optimal’ choice of fixed softening parameter, removing the need for fine-tuning. For

a heterogeneous mass distribution (as may be found in any large-scale N-body simulation),

we find that the errors on the least-dense component are lowered by an order of magnitude

compared to the use of a fixed softening length tuned to the densest component. For SPH codes,

our method presents a natural and an elegant choice of softening formalism which makes a

small improvement to both the force resolution and the total energy conservation at almost

zero additional cost.

Key words: gravitation – hydrodynamics – methods: N-body simulations – methods:

numerical.

1 I N T RO D U C T I O N

This paper is concerned with the question of how best to represent

the gravitational force when simulating self-gravitating systems us-

ing particles. The simplest of such systems is a collection of stars

which is usually replaced by a very much smaller number of com-

putational particles. A more complicated example is the simulation

of self-gravitating gas with or without a stellar component, using

the smoothed particle hydrodynamics (SPH) method (Monaghan

2005).

Provided the number of computational particles is sufficient to

resolve the important dynamical scales, the simulation can give sat-

isfactory results for most quantities though the slow relaxation of

a galaxy is number-dependent. In the case of N-body simulations,

it is, however, necessary to soften or smooth the forces between

pairs of particles so that the binary collisions of the computational

particles will not cause numerical artefacts.

The simple Plummer form of the softening where the force F(r)

between a particle pair with masses ma and mb separated by a

⋆E-mail: dprice@astro.ex.ac.uk

distance r is

F(r ) = −G
mambr

(r 2 + h2)3/2
, (1)

and h is the softening length. Dehnen (2001), amongst others

(e.g. Dyer & Ip 1993), has shown that a better choice is to use

Kernel smoothing with kernels W(r, h) that have compact support.

The softened force at a due to b then takes the form

F = −G
4πmambr

r 3

∫ r

0

W (r , h)r 2 dr . (2)

Provided h is constant, Poisson’s equation shows that the softening

is equivalent to calculating the local gravitational force on a point

particle a due to a density

ρ(ra) = mbW (|ra − r b|, h), (3)

or, when there is a collection of particles contributing to the force

on particle a, the density is

ρ(ra) =
∑

b

mbW (|ra − r b|, h), (4)

which is identical to the SPH density estimate.
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1348 D. J. Price and J. J. Monaghan

Kernels with compact support are zero beyond some specified

distance proportional to the length-scale h, and the pair force then

has the correct value for the two sets of real particles represented by

two computational particles.

The usual practice is to use a fixed value of h for all the N-body

particles. A key issue which arises in this context, and which has

been the subject of a number of studies (Merritt 1996; Romeo 1998;

Athanassoula et al. 2000; Dehnen 2001; Rodionov & Sotnikova

2005), is the ‘optimal’ choice of softening length, for too small

a softening length will result in noisy force estimates, while too

large a value will systematically ‘bias’ the force in an unphysical

manner. In general, however, the ‘optimal’ choice depends on par-

ticular system under investigation and may not be known a priori

(Athanassoula et al. 2000). Dehnen (2001) quantified the errors aris-

ing from both Plummer and kernel softening of the above form. In

all cases, he found that the accuracy is improved if h is allowed to

vary according to the local particle number density n in such a way

that h is smaller when n is larger. Typically h ∝ 1/n1/3. For self-

gravitating SPH calculations, using a softening length which differs

from the smoothing length can lead to unphysical results (Bate &

Burkert 1997).

To retain conservation of linear and angular momentum, it is

necessary to use a symmetric form of F so that each particle in a

pair interaction experiences an equal but opposite force. This can

be achieved by using, for example, h̄ = 1

2
(hi + h j ) in place of h

in equation (2). However, because the softening length then varies

in space, the total energy of the system will not be conserved. The

errors are often not large but can lead to secular increases in the

total energy of the system, destroying the phase-space conservation

which is crucial for accurate N-body simulation (Hernquist & Barnes

1990; Dehnen 2001; Rodionov & Sotnikova 2005).

In this paper, we show how a Lagrangian for a self-gravitating gas

can be devised which has the softening of the force and the variation

of h built-in. The advantage of using a Lagrangian is that, provided

it is constructed correctly, the conservation laws are automatically

satisfied. In particular, the conservation of energy and momentum

is exact though, in practice, the accuracy is determined by the time-

stepping algorithm. The new equations of motion have an extra term

in addition to the standard SPH and gravity terms. It is this term

which guarantees energy conservation. We apply our algorithm to

both static and dynamic problems. In some cases, the new equations

give results which are very similar to results obtained previously,

but in some cases the results are very much improved.

2 K E R N E L S O F T E N I N G

A general formulation for force softening was given by Dehnen

(2001) and we use a similar formulation here. The modified gravi-

tational potential per unit mass may be written in the form

�(r ) = −G

N
∑

b=1

mbφ (|r − r b|, h) , (5)

where φ is the softening kernel which is a function of the particle

separation and the softening length h (we use h to denote the soften-

ing length since it corresponds to the smoothing length used in the

SPH density estimate). The kernel determines the functional form

of the modified gravitational force law. For example, in the case of

Plummer softening, the softening kernel is given by

φ(r , h) =
1

h

[

1 +
(

r

h

)2
]−1/2

. (6)

Neglecting the spatial variation of h, the force estimate corre-

sponding to equation (5) is given by

F̂(r ) = −∇� = −G

N
∑

b=1

mbφ
′ (|r − r b|, h)

r − r b

|r − r b|
, (7)

where φ′ = ∂φ/∂|r − rb|. The underlying smooth density field can

be obtained from Poisson’s equation

∇2� = 4πGρ, (8)

giving

ρ(r ) =
N

∑

b=1

mbW (|r − r b|, h) , (9)

where the density kernel is related to the softening kernel according

to

W (r ) = −
1

4πr 2

∂

∂r

(

r 2 ∂φ

∂r

)

. (10)

The kernel density given by equation (9) corresponds to the mass

distribution of each particle being smoothed. Readers familiar with

SPH will note that equation (9) corresponds to the density estimate

used in SPH calculations, where W is the usual SPH smoothing

kernel.

In general, the functional form of the softening kernel may be

specified for either the potential term φ, the force evaluation term φ′

or W. In each case, the corresponding kernel for the other cases may

be determined by a straightforward integration or differentiation.

For example, in N-body codes, it may be preferable to choose a

kernel primarily for the force evaluation, from which the functional

form of the potential and density kernel can be derived. In SPH, the

kernel is primarily used for the density estimate, where the most

commonly used form is the cubic spline of Monaghan & Lattanzio

(1985):

W (r , h) =
1

πh3

⎧

⎨

⎩

1 − 3

2
q2 + 3

4
q3, 0 � q < 1,

1

4
(2 − q)3, 1 � q < 2,

0. q � 2,

(11)

where q = r/h. The corresponding force kernel is given by

φ′ =
4π

r 2

∫ r

0

Wr ′2dr ′, (12)

the functional form of which is given for the cubic spline in

Appendix A. The softening kernel for the gravitational potential

may be calculated from the force kernel using

φ =
∫

F dr , (13)

the form of which is also given in Appendix A for the cubic spline.

For general kernels (13) combined with equation (12) can be inte-

grated by parts to give

φ(r , h) = 4π

(

−
1

r

∫ r

0

Wr ′2 dr ′ +
∫ r

0

Wr ′ dr ′ −
∫ 2h

0

Wr ′ dr ′
)

,

where the last term is the constant of integration, determined by the

requirement that φ → 0 as r → ∞ (note that we have also assumed

a kernel with compact support of size 2h).

The modified potential, force functions and the density kernel are

shown in Fig. 1 for the cubic spline. The reader should note that

while we use the cubic spline as an example throughout this paper,

the results derived in the following sections are quite general and

any smoothing kernel may be used (including any of those suggested

by Dehnen 2001).
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Adaptive softening with energy conservation 1349

Figure 1. The functional form of the modified potential (-), gravitational

force and the density profile using the cubic spline kernel. For r/h � 2, the

smoothing is zero and the potential and force are exact.

3 L AG R A N G I A N F O R M U L AT I O N

The Lagrangian describing a self-gravitating gas is given by

L =
N

∑

b=1

mb

(

1

2
v

2
b − �b − ub

)

, (14)

where � is the gravitational potential (5) and u is the thermal energy

per unit mass. The equations of motion may be obtained through

the Euler–Lagrange equations

d

dt

(

∂L

∂va

)

−
∂L

∂ra

= 0, (15)

giving

ma

dva

dt
=

∂L

∂ra

. (16)

The advantage of using a Lagrangian to derive the equations of

motion is that, provided the Lagrangian is symmetrized appropri-

ately, momentum and energy conservations are guaranteed. Varia-

tional principles have been used extensively to derive conservative

SPH formalisms for relativistic fluid dynamics (Monaghan & Price

2001), magnetohydrodynamics (Price & Monaghan 2004) and in

the case of a spatially variable smoothing length (Monaghan 2002;

Springel & Hernquist 2002).

An adaptive softening length formalism may be derived by writ-

ing the gravitational part of the Lagrangian in the form

Lgrav = −
∑

b

mb�b,

= −
G

2

∑

b

∑

c

mbmcφbc(hb), (17)

where φbc refers to φ(|rb − rc|). Swapping indices in the double

summation shows that equation (17) is equivalent to averaging the

softening kernels in the form

Lgrav = −
G

2

∑

b

∑

c

mbmc

[

φbc(hb) + φbc(hc)

2

]

. (18)

The derivative of equation (17) is given by

∂Lgrav

∂ra

= −
1

2

∑

b

∑

c

mbmc

[

∂φbc(hb)

∂|rbc|

∣

∣

∣

∣

h

∂|rbc|
∂ra

+
∂φbc(hb)

∂hb

∣

∣

∣

∣

r

∂hb

∂ra

]

, (19)

where

∂|rbc|
∂ra

=
r b − r c

|r b − r c|
(δba − δca). (20)

We relate the smoothing length to the particle coordinates, assuming

h = h(ρ), using

∂hb

∂ra

=
∂hb

∂ρb

∂ρb

∂ra

, (21)

where ρ is the density calculated by a summation over neighbouring

particles in the form

ρa =
∑

b

mbW (|ra − r b|, ha) , (22)

where W is the density kernel. The relationship between h and ρ

means that this is a non-linear equation for both ha and ρa which can

be solved self-consistently for each particle. The iterative method

we use for doing so is described in detail in Section 4.2. The spatial

derivative of equation (22) is

∂ρb

∂ra

=
1

�b

∑

d

md

∂Wbd (hb)

∂ra

(δba − δda) , (23)

where W is the density kernel and � is a term accounting for the

gradient of the smoothing length given by

�a =

[

1 −
∂ha

∂ρa

∑

b

mb

∂Wab(ha)

∂ha

]

. (24)

Using equations (20), (21) and (23) in equation (19) and simpli-

fying, we have

∂Lgrav

∂ra

= −ma

∑

b

mb

[

φ′
ab(ha) + φ′

ab(hb)

2

]

ra − r b

|ra − r b|

−ma

∑

b

mb

1

2

[

ζa

�a

∂Wab(ha)

∂ra

+
ζb

�b

∂Wab(hb)

∂ra

]

. (25)

The quantity ζ is defined as

ζa ≡
∂ha

∂ρa

∑

b

mb

∂φab(ha)

∂ha

. (26)

where ∂φ/∂h can be tabulated (or calculated) directly for the partic-

ular smoothing kernel used. For the cubic spline, the expression is

given in Appendix A.

The derivation of the SPH pressure force from the thermal en-

ergy term in the Lagrangian (equation 14) in the case of a spatially

variable smoothing length has been described in detail else-

where (e.g. Monaghan 2002; Springel & Hernquist 2002; Price &

Monaghan 2004) and we simply use the result here. The final

equations of motion take the form

dva

dt
= −G

∑

b

mb

[

φ′
ab(ha) + φ′

ab(hb)

2

]

ra − r b

|ra − r b|

−
G

2

∑

b

mb

[

ζa

�a

∂Wab(ha)

∂ra

+
ζb

�b

∂Wab(hb)

∂ra

]

−
∑

b

mb

[

Pa

ρ2
a�a

∂Wab(ha)

∂ra

+
Pb

ρ2
b�b

∂Wab(hb)

∂ra

]

. (27)
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1350 D. J. Price and J. J. Monaghan

The first term in equation (27) corresponds to the softened gravita-

tional force. The second term is present only in the case of adaptive

softening lengths and it is the incorporation of this term which re-

stores the energy conservation. The third term is the usual SPH

pressure force allowing for a spatially variable smoothing length.

The terms � and ζ required in the adaptive softening term (and

for � also in the pressure force) are easily calculated alongside the

density summation.

The additional adaptive softening length term can be seen to have

the same form as the pressure force, with the quantity P/ρ2 replaced

by ζ . Note, however, that ζ is, for positive kernels, a negative def-

inite quantity and therefore that the adaptive softening term acts in

opposition to the usual pressure term (i.e. in the direction of increas-

ing the gravitational force). This is in line with the recent findings

of Hubber, Goodwin & Whitworth (2006), that SPH always under-

estimates the gravitational force at low resolution. In fact, they sug-

gested adding an additional contribution to the gravitational force

based on the ‘self-gravity’ of an SPH particle. The new term derived

above provides a similar contribution without the need for ad hoc

prescriptions.

Alternative formulations of the adaptive softening formalism

given above are possible by symmetrizing the Lagrangian in dif-

ferent ways. We use the formulation given above since it is simple

and efficient to implement. As an example, we derive an alterna-

tive version based on the average softening length in Appendix B.

While the force derived using the average softening length is very

similar to equation (27) but in keeping with the average h used in

the variable smoothing length SPH formalism of Benz (1990), it has

the practical disadvantage that we do not use the average smoothing

length elsewhere in the calculations, neither in the density summa-

tion (since the density for particle a is calculated using only ha) nor

in the SPH force term (see equation 27). Thus, the calculation of the

quantity ζ̄ (see Appendix B, equation B6) for each particle requires

the calculation of the kernel not only using ha (for the density and

�) but, additionally, also using h̄ab which is not only inefficient but

also rather inelegant in the numerical code. Thus, we do not use the

average h formalism in this paper.

A further possibility, not examined in this paper, would be to

use the product of the softening kernels in the force evaluation. The

situation is complicated slightly in this case as the product form must

be used either in the potential or in the force but not both. In any case,

the differences in the force evaluated using different symmetrized

forms are very small. The suggestion put forward by Dyer & Ip

(1993) that the force should be symmetrized by considering two

overlapping spheres may also be used in a similar manner to derive

an energy-conserving formalism, but it is not clear if there is any

advantage to be gained by doing so (see Dehnen 2001).

For reference, the consistent forms of the continuity and internal

energy equations for SPH simulations are given by

dρa

dt
=

1

�a

∑

b

mb(va − vb) ·

∂Wab(ha)

∂ra

(28)

and

dua

dt
=

Pa

�aρ2
a

∑

b

mb(va − vb) ·

∂Wab(ha)

∂ra

, (29)

respectively, where v is the particle velocity. The continuity equa-

tion can be used to make a starting guess for the h iteration procedure

used to determine the density (described in the following section).

An alternative to using the internal energy equation is to evolve the

entropy as an independent variable (Springel & Hernquist 2002)

which is possible for ideal equations of state.

4 N U M E R I C A L T E S T S

We test the adaptive softening length formalism derived in the pre-

vious section using three examples. The first (Section 4.3) is a se-

ries of static tests used by Dehnen (2001) and Athanassoula et al.

(2000) in order to estimate the force errors associated with soft-

ening formulations. We also consider a dynamic version of one of

these tests in order to study the energy-conservation properties of

our new method (Section 4.3.3). The second example (Section 4.4)

involves self-gravitating SPH and the static structure and dynamical

oscillation of a polytrope.

4.1 Errors

In the static halo tests, we calculate the average square error (ASE)

in the gravitational force according to

ASE =
C

N

N
∑

i=1

| fi − fexact(xi )|2, (30)

where fi is the force on particle i, N is the particle number and

C is a normalization constant. Unless otherwise specified, we use

C = 1/f 2
max, where fmax is the maximum value of the exact solution.

The mean averaged square error (MASE) is then the mean over all

realizations:

MASE =
C

N

〈

N
∑

i=1

| fi − fexact(xi )|2
〉

. (31)

We choose this quantity rather than the mean integrated square error

(MISE) used by Merritt (1996) and Dehnen (2001), given by

MISE =
C

M

〈
∫

ρ(x)| f (x) − fexact(x)|2 dx

〉

, (32)

where ρ(x) is the true density at a point x, f(x) is the force calcu-

lated at that point from the N-body distribution and M is the total

mass. Calculation of the MISE is complicated by the need to in-

tegrate along radial grid points (involving calculation of the force

at positions other than particle positions), and Athanassoula et al.

(2000) found little difference between their results using MASE or

MISE error measures. In our case, the correction terms derived in

Section 3 depend on a particle’s own density estimate, so it makes

sense to calculate errors only at particle positions (i.e. using the

MASE estimate).

The reader should bear in mind that, using either the MASE or

the MISE as defined above, the total error tends to be dominated

by the regions containing the largest forces. This can be somewhat

misleading in comparing adaptive softening with fixed softening, as

the fixed softening length is generally chosen to minimize the error

in the densest regions, where the adaptive softening will not show

a large difference. An example is given in Section 4.3.2 where a

two-halo system is set up and we explicitly show the contribution to

the MASE from each halo, even though the total error is dominated

by the densest component.

4.2 Setting the softening length

The method we use for setting the softening length is identical to

the method used by Price (2004) (see Price & Monaghan 2004) for

setting the smoothing length in SPH calculations. A similar method

is also used by Springel & Hernquist (2002) and hence also in the

publicly available GADGET-2 code for N-body and SPH (Springel
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Adaptive softening with energy conservation 1351

2005). The idea is to regard the smoothing length as a function of

density through the relation

ha ∝ ρ−1/3
a , (33)

or more specifically

ha = η

(

ma

ρa

)1/3

, (34)

where m is the particle mass, ρ is the mass density and η is a dimen-

sionless parameter which specifies the size of the smoothing length

in terms of the average particle spacing (similar to the parameter ǫ

used by Dehnen 2001). The derivative is given by

∂ha

∂ρa

= −
ha

3ρa

. (35)

An equivalent interpretation of (34) is that the mass contained

within a smoothing sphere is held constant (Springel & Hernquist

2002), that is,

4

3
π(σha)3ρa = constant = ma Nneigh, (36)

where σ is the compact support radius of the kernel (=2 for the

cubic spline) and Nneigh ≡ 4

3
π(ση)3 may be used as an approximate

measure of the number of neighbours contained within a smoothing

sphere. Unless otherwise specified, we use η = 1.2 in the variable

smoothing/softening length formulations used throughout this pa-

per, which in three dimensions is equivalent to ∼60 neighbours.

For a pure N-body simulation using unequal-mass bodies, it may

be advantageous to use a number density rather than the mass density

for setting the softening length. The resulting gravitational force in

that case is identical to the first two terms in equation (27) with mass

density replaced by number density. In this paper, we assume a mass

density dependence consistent with SPH simulations.

The density is calculated by a direct summation over the parti-

cles in the form (22) which, through the relation (34) becomes a

non-linear equation to be solved for both h and ρ. Dehnen (2001)

suggested that even a rough approximation of the (number) den-

sity is sufficient for the purpose of adapting the softening length in

N-body calculations. A similar argument may be made for set-

ting the smoothing length in SPH calculations. In both cases, how-

ever, the situation changes once the gradient terms are incorporated

into the equations of motion (as in this paper), since these terms

are calculated on the basis of the h(ρ) [or h(n)] relation and may

therefore introduce substantial inaccuracies into the solution if the

density and smoothing (or softening) length are far from being con-

sistent with equation (34).

From a practical point of view, obtaining a self-consistent solution

to equations (34) and (22) is a relatively straightforward root-finding

problem. The function to be solved may be written in terms of either

h or ρ. Written in terms of h, we have

f (h) = 0, (37)

in the form

ρa(ha) − ρsum(ha) = 0, (38)

where ρa is the density consistent with the current smoothing length

ha calculated from the relation (34) and ρsum is the density cal-

culated using ha from the summation over neighbouring particles

(equation 22). We use a Newton–Raphson iteration method, that is,

ha,new = ha −
f (ha)

f ′(ha)
(39)

where the derivative of equation (38) is given by

f ′(ha) =
∂ρa

∂ha

−
∑

b

mb

∂Wab(ha)

∂ha

= −
3ρa

ha

�a. (40)

We find this method to be efficient and cost effective, particularly

since the quantity � (defined in equation 24) is already calculated

alongside the density summation for use in the equations of motion.

Convergence is determined for each particle individually accord-

ing to the criterion |hnew − h |/h0 < ǫ where h0 is the smoothing (or

softening) length at the start of the iteration procedure and typically

we use ǫ = 10−3. We find that it is more efficient to perform the

iterations by looping over the particles as the outer loop and iter-

ating each particle at a time to convergence. We also find that it is

no longer efficient to store a global neighbour list for all particles

but rather to perform a neighbour search on-the-fly (e.g. using a

treecode), recalculating where necessary and being stored only for

the particle being iterated. This also represents a significant reduc-

tion in memory requirements for SPH calculations.

The Newton–Raphson iterations work extremely well, provided

that the initial estimate of h is reasonably close to the actual solution.

This is almost always the case in the calculations since there is only

a small change in ρ between time-steps. The only problems which

may arise are in the first iterations on the initial conditions where

h and ρ may be far from relation (34). For this reason, it is useful

to revert to a bisection scheme (which is guaranteed to converge) in

the case where the Newton–Raphson iterations do not converge (we

set the limit for this as > 20 iterations).

In terms of cost, the density iterations add only a small amount of

extra work to SPH calculations. The exact work required depends

on the nature of the simulation, since more iterations are required

when the density is changing rapidly. However, the scheme is very

efficient since iterations are only performed on the subset of particles

whose densities are changing. The scheme can be made still more

efficient by predicting an initial guess for h in the time-evolution

scheme using the time derivative

dh

dt
=

∂h

∂ρ

dρ

dt
, (41)

where for the summation (22) the time-derivative is given by equa-

tion (28). Using a prediction step, we find that in general (although

dependent on the dynamics of a particular simulation) only a small

fraction of the particles require extra density calculations and that

these particles then converge rapidly (in approximately two to three

iterations).

4.3 N-body tests

4.3.1 Isolated haloes

The first test we perform is to compare the (softened) gravita-

tional force to the exact force, given an analytic density profile

(corresponding to typical structures formed in cosmological sim-

ulations or used as initial conditions in galaxy models). Follow-

ing Dehnen (2001), we consider two different density profiles –

Plummer spheres and Hernquist models. The density profile for the

Plummer spheres is given by

ρ(r ) =
3G Mr 2

s

4π
(

r 2
s + r 2

)5/2
, (42)

where M is the mass and rs is a parameter determining the concen-

tration of the halo. The corresponding gravitational potential and
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1352 D. J. Price and J. J. Monaghan

force are given by

�(r ) = −
G M

(

r 2
s + r 2

)1/2
(43)

and

�′(r ) =
G M

(

r 2
s + r 2

)3/2
, (44)

respectively. The cumulative mass profile for the Plummer sphere

is given by

M(r ) =
G Mr 3

(

r 2
s + r 2

)3/2
. (45)

The Hernquist (1990) model consists of a density profile given

by

ρ(r ) =
G Mrs

2πr (rs + r )3
. (46)

The density and gravitational forces in this model are more difficult

to resolve, since the density profile is cusped near the origin. The

potential and force are given by

�(r ) = −
G M

(rs + r )
(47)

and

�′(r ) =
G M

(rs + r )2
, (48)

respectively, while the mass profile is given by

M(r ) =
G Mr 2

(rs + r )2
. (49)

The density profiles in each case are set up in the usual man-

ner choosing three random deviates (x1, x2, x3) uniformly on (0, 1).

The first is used as a position in the mass profile from which the

radial coordinate is determined by rearranging M(r) to give r(m)

where m is the mass fraction. In practice, we use only mass frac-

tions < 0.99 in order to prevent isolated particles being placed at

extremely low densities. The second random number x2 is used

to give a random azimuthal angle ϕ = π(2x2 − 1), while the

third is used to give a spherical angle θ through the transforma-

tion θ = cos−1(2x3 − 1) (necessary to prevent the distribution from

clumping towards the poles). The result is a particle distribution

which closely mirrors the analytic density profile although with er-

rors decreasing like 1/
√

N due to the Monte Carlo nature of the

distribution.

In the numerical simulations, we use units of mass [M] = 1,

length [R] = 1 and time [τ ] = (GM/R3)−1/2. In these units GM = 1

such that the gravitational constant does not appear in the numerical

equations. Correspondingly, force and energy (both per unit mass)

are measured in units of GM/R2 and GM/R, respectively. For cal-

culation of the mean error, we compute 3 × 106/N realizations for

a halo of N particles.

The MASE calculated for Plummer haloes of N = 102, 103, 104

and 105 particles with M = 1 and rs = 1 are shown in Fig. 2. The

left-hand panel shows the results using a fixed softening length, com-

paring both Plummer (solid lines) and cubic spline (dashed lines)

softening kernels. The right-hand panel shows the results using (cu-

bic spline) adaptive softening, with (dashed line) and without (solid

line) the energy-conserving term, and also shows the variation with

the ‘Number of Neighbours’, by which we mean the parameter Nneigh

defined in equation (36).

Figure 2. MASE calculated for 3 × 106/N realizations of an isolated Plum-

mer sphere with M = 1, rs = 1 and N = 102, 103, 104 and 105 particles.

The left-hand panel shows results using a fixed softening length, comparing

Plummer softening (solid line) with cubic spline softening (dashed line).

The right-hand panel shows results using adaptive softening with (dashed

line) and without (solid line) the new energy-conserving term. To guide the

reader, our fiducial choice of Nneigh ≃ 60 is indicated by the open circles.

Some general features are worth pointing out. First, using a fixed

softening length, there is a large variation in the total error depend-

ing on the choice of softening length (left-hand panel). For soften-

ing lengths too small, the error is dominated by noise, reaching a

maximum value once the softening length is smaller than the small-

est particle separation. For softening lengths too large, the error

is dominated by the bias in the force introduced by the softening

procedure. For some intermediate choice of softening length, there

is a balance between noise and bias which produces a minimum

error. This gives rise to the concept of ‘optimal softening’ intro-

duced by Merritt (1996) and examined in detail by Athanassoula

et al. (2000) and Dehnen (2001), whereby the softening length can

be ‘fine-tuned’ for a particular simulation for minimum error. In

principle, this means that, for every N-body calculation, there is an

optimal choice of softening length. The problem, demonstrated in

the left-hand panel of Fig. 2, is that this ‘optimal’ choice not only

depends on the parameters of the problem (e.g. Fig. 2 shows that

the optimal choice changes with resolution, but Athanassoula et al.

2000 also discussed the dependence on the shape and degree of

central concentration of the halo), but may also change for different

components of the same simulation.

By contrast, use of adaptive softening (right-hand panel) shows

only a weak dependence on the choice of the (adaptive) softening

parameter, provided that the neighbour number is small compared to

the total number of particles. To guide the reader, our fiducial choice

of Nneigh ≃ 60 (given by η = 1.2 in equation 34) is marked by the open

circle in each case. Making this reasonable choice in all cases gives

a softening which (according to the MASE estimate) is close to the

optimal choice of fixed softening. The exception is perhaps for the

104 particle halo, where the optimal choice of fixed softening gives

a MASE approximately 2.5 times lower than that obtained using

adaptive softening with energy conservation. However, changing

the fixed softening length up or down by a factor of 2 in either

direction (i.e. not a large range if the optimal choice is not known

a priori) means that even in this case that adaptive softening, even

with the energy-conservation term added, wins.

Comparison of the dashed (Plummer kernel) and solid lines (cubic

spline kernel) in the left-hand panel of Fig. 2 confirms the conclusion

reached by several authors that use of the cubic spline kernel is
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Adaptive softening with energy conservation 1353

Figure 3. The same as in Fig. 2 but for an isolated Hernquist model with

M = 1 and rs = 1.

advantageous over the standard Plummer softening. In particular,

the optimal error for each halo is reached at a higher softening

length for the cubic spline kernel and the slope in the error curve

at high softening lengths is steepened, demonstrating that the cubic

spline reduces the bias in the force estimate. This is a result of the

compact support of the cubic spline kernel, which gives a force with

zero bias outside the kernel radius (see discussion in Section 1).

The right-hand panel of Fig. 2 also shows the influence of the

new energy-conserving term in equation (27) on the force errors in

a static configuration. This term appears to increase the noise but also

lower the bias in the (adaptively softened) force estimate, meaning

that the total error is greater for smaller neighbour numbers but lower

for larger neighbour numbers. We attribute this to the fact that the

extra term is related to the gradients in softening length: where these

gradients are spurious (due to noise), the extra term may increase

the total error, and where the gradients are due to actual gradients in

the density, the extra term correspondingly leads to a more accurate

force estimate. This conclusion is also borne out by the results using

Hernquist models (right-hand panel of Fig. 3). Here, the extra term

leads to a smaller MASE (compare the dashed and solid lines in the

right-hand panel of Fig. 3) at a lower Nneigh than that obtained in the

Plummer case (dashed versus solid lines in the right-hand panel of

Fig. 2). The density profile in the Hernquist model is strongly cusped

near the origin, meaning that any improvement in the resolution of

density gradients (e.g. from the new term) tends to improve the error

estimate.

The Hernquist model was computed using M = 1, rs = 1 and

N = 102, 103, 104 and 105 particles. The results using fixed Plum-

mer (solid lines) and cubic spline (dashed lines) softening on the

Hernquist model are shown in the left-hand panel of Fig. 3. The

differences between Plummer and cubic spline softening are much

smaller in this case than that for the Plummer spheres (Fig. 2), apart

from a factor of ∼2 difference in the optimal choice of softening

length for each kernel (i.e. the optimal softening length for Plum-

mer softening is approximately half of the optimal value using cubic

spline softening).

These tests demonstrate that, for an isolated halo, the use of adap-

tive softening gives force errors which are close to optimal. While

there is not a significant improvement in the MASE compared to the

use of an optimally chosen fixed softening length, the use of adap-

tive softening removes the need for such fine-tuning. Furthermore,

it may not be possible to find a softening which is ‘optimal’ for all

components of a simulation. In the following section, we consider

such an example, where the use of adaptive softening shows a clear

improvement.

4.3.2 Two Plummer spheres

Next, we consider two Plummer spheres placed at a fixed distance

from each other, of equal mass but where one halo is much denser

than the other. This situation may be representative of two haloes

present in a typical cosmological N-body simulation or in a simula-

tion of galaxy dynamics where more than one galaxy is present. A

similar test was considered by Athanassoula et al. (2000) where a

variety of mass ratios were also examined. Here, we simply choose

one representative case.

Both haloes are Plummer spheres, set up as described in Sec-

tion 4.3.1. We use equal-mass spheres with M = 0.5. The first sphere

is placed at the origin, with concentration parameter rs = 1 while

a second sphere with rs = 0.1 (i.e. much denser) is placed some

distance away at [x, y, z] = [10, 0, 0]. The MASE is calculated un-

normalized in this case, that is, with the normalization factor C =
1 in order to make a meaningful comparison between the errors in

each component.

The MASE resulting from 300 realizations of this configuration

using a total of 10 000 particles (5000 per sphere) is shown in Fig. 4

(solid line), using fixed cubic spline softening (left-hand panel)

and adaptive softening with the energy-conservation term included

(right-hand panel), showing the variation with softening length in

the former case and Nneigh in the latter (where again the open circles

correspond to our fiducial choice of Nneigh ≃ 60). The total MASE

(solid line) is completely dominated by the densest component, with

results comparable to those shown in Fig. 2. However, we also plot

the contribution to the total MASE from the less-dense component

(i.e. the rs = 1 sphere at the origin) (dashed line).

The problem with the use of a fixed softening length in a general

N-body simulation is evident from Fig. 4, namely that the ‘opti-

mal’ choice of softening length differs for each component. The

choice which minimizes the errors in the densest component pro-

duces errors in the least-dense component that are over 1.5 orders

of magnitude larger than the optimal choice of softening for that

Figure 4. MASEs in the gravitational force calculated for 300 realizations of

a configuration involving two Plummer spheres. The total MASE is given by

the solid line, while the contribution to the total MASE from the least-dense

component is given by the dashed line. Results using a fixed cubic spline

softening, varying the softening length, are shown in the left-hand panel. The

right-hand panel shows the results using our adaptive softening formalism

(including the energy-conservation term), varying the Nneigh parameter. The

open circles correspond to our fiducial choice of Nneigh ≃ 60.
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1354 D. J. Price and J. J. Monaghan

component. Conversely, choosing the softening which is optimal

for the least-dense component produces a bias in the force esti-

mate in the densest component leading to a MASE approximately

two orders of magnitude larger than the optimal choice of soften-

ing length in the dense component. Usual practice is therefore to

choose the softening which minimizes the softening in the densest

component(s) (since this represents the largest contribution to the

total error). However, frequently one is interested in the properties

of both (or all) components in an N-body simulation. This leads

naturally to a need for adaptive force softening.

The results using our adaptive softening length formalism (in-

cluding the energy-conservation term) are shown in the right-hand

panel of Fig. 4. For both components, the resulting error is, as pre-

viously, close to the optimal choice of fixed softening, but here the

softening is close to optimal for both components. This means that

the force errors in the least-dense component are approximately one

order of magnitude smaller than that obtained using a fixed softening

length tuned to the densest component.

4.3.3 Halo relaxation

An extension to the static halo test is to examine the dynamic influ-

ence of the energy-conserving term. The initial conditions for this

test are a Plummer sphere with an isotropic velocity distribution

corresponding to a (dynamic) steady state. The particle velocities

are set up in the manner described by Aarseth, Henon & Wielen

(1974): the distribution function is

f (r ,v, 0) =

{

24
√

2

7π
3

r2
s

G5 M4 (−E)7/2 E < 0,

0 E > 0,
(50)

where f(r, v, t) dr dv is the total mass of particles with position r

and velocity v at time t, and E is the energy per unit mass of a body:

E =
1

2
v2 + �. (51)

The distribution function is sampled by scaling the velocities in

terms of the maximum velocity at r, that is, the escape velocity

vesc =
√

−2� =
√

2G M
(

r 2 + r 2
s

)1/4
. (52)

Writing q = v/vesc, from equations (50) and (51) the probability

distribution for q is proportional to

g(q) = q2(1 − q2), (53)

where |q| < 1. This distribution is sampled using the Von Neumann

rejection technique (Press et al. 1992): two uniform random deviates

x4 and x5 are drawn. Noting that g(q) is always less than 0.1 (since

|q| < 1), we adopt q = x4 if 0.1x5 < g(q), otherwise a new pair

of random numbers is tried until the inequality is satisfied. The

velocity modulus v is obtained using equation (52) and, using two

more uniform random deviates x6 and x7, the velocities are given by

vx = (1 − 2x6)v,

vy =
√

v2 − v2
x cos (2πx7),

vz =
√

v2 − v2
x sin (2πx7). (54)

The halo is evolved forwards in time using a standard second-

order leapfrog integrator with a global time-step controlled by the

condition

�t = 0.15

(

h

f

)1/2

, (55)

Figure 5. Total energy conservation during the dynamical evolution of the

1000-particle Plummer sphere. Using adaptive softening lengths without the

additional term (solid line) leads to fluctuations in the total energy which

dominate over the time-stepping errors. Incorporating the new adaptive soft-

ening length term (dashed line), energy conservation is restored to time-

stepping accuracy.

where h is the softening length, f is the force per unit mass and the

minimum over all particles is used.

The energy conservation during the evolution of the equilibrium

halo is shown in Fig. 5. Using adaptive softening without the addi-

tional term (solid line), fluctuations in the energy are observed from

the changes in softening length which, although small, dominate

over the errors due to time-stepping. With the energy-conserving

term added (dashed line), only a small non-conservation of energy

remains which can be shown to decrease as the time-step is made

shorter.

As a slightly more demanding test, we also consider the relaxation

of a perturbed Plummer sphere – that is, with the velocities drawn

from the equilibrium distribution function as described above, but

then multiplied by a factor of 1.2. This means that the halo initially

expands before slowly relaxing into a dynamical equilibrium state.

The evolution of the total energy in this case is shown in Fig. 6. Using

Figure 6. Total energy conservation during the dynamical relaxation of the

perturbed 1000-particle Plummer sphere. In this case, the initial velocities

were multiplied by a factor of 1.2. Using adaptive softening lengths but

without the new term (solid line), the change in the softening lengths caused

by the initial expansion can be seen to cause a secular increase in the total

energy. Adding this term (dashed line), the total energy is conserved to a

time-stepping accuracy.
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Adaptive softening with energy conservation 1355

adaptive softening lengths, the change in softening lengths corre-

sponding to the initial expansion is reflected as a secular increase in

the total energy (solid line). Using the new energy-conserving for-

malism (dashed line), this secular increase is not present and total

energy is conserved to a time-stepping accuracy.

4.4 SPH tests

4.4.1 Static structure of a polytrope

A simple test of self-gravitating gas dynamics is to verify the static

structure of a polytrope by allowing an initial arrangement of gas

to settle into hydrostatic equilibrium. In order to do so, we set up

∼1000 SPH particles in a quasi-uniform spherical distribution and

damp them into an equilibrium state using a polytropic equation of

state P = Kργ with γ = 5/3. The low resolution is chosen in order

to highlight the differences between various softening formalisms.

The exact manner in which the particles are initially set up is

not particularly important, although a perfectly uniform arrange-

ment tends to produce numerical artefacts in the collapsed particle

configuration, while a clumpy initial set-up takes longer to settle

to equilibrium. In this paper, we use a quasi-uniform distribution

achieved by placing particles initially on a uniform square lattice,

cropped to ensure that r < 1 and with a small, random perturbation

of amplitude 0.2� (where � is the lattice spacing). The particle

configuration is shifted slightly to ensure that the centre of mass is

placed at the origin. Using a lattice spacing of � = 0.15 results in

a total of 1086 particles in the calculations.

The exact solution for the polytrope static structure is computed

by solving the equation

γ K

4πG(γ − 1)

d2

dr 2
(rργ−1) + rρ = 0 (56)

numerically using a simple finite difference scheme. The solution

is then scaled to give a polytrope of radius unity. In code units

(discussed in Section 4.3), a polytrope of radius unity is obtained

by choosing K = 0.4246 in P = Kργ .

In all simulations, the density and SPH smoothing length are cal-

culated by direct summation using the iterative method described in

Section 4.2. Also the variable smoothing length terms in the SPH

equations are used throughout. In order to isolate the effects of the

softening formalisms, we calculate the gravitational term by a di-

rect summation over the particles (rather than using a tree code)

with a standard second-order leapfrog scheme for time-integration

using a time-step controlled by a Courant condition based on the

signal velocity (Monaghan 2005). The particles are damped to an

equilibrium using a standard form of the SPH artificial viscosity

(Monaghan 1997) together with a damping in the force equa-

tion which is independent of particle number, given by

dv

dt
= −0.05v+ f , (57)

where f is the force per unit mass. Note that the polytropic equation of

state means that the kinetic energy removed by the artificial viscosity

and damping terms is not deposited as thermal energy but rather

allowed to escape from the system.

The equilibrium configurations of the γ = 5/3 polytrope with

various softening formulations are shown in Fig. 7 and may be com-

pared in each case to the exact solution given by the solid line. The

fractional errors (fi − fexact)/fexact are also shown in an inset plot in

each panel. The top two panels show the results using fixed Plummer

(top left-hand panel) and cubic spline (top right-hand panel) soften-

ing, where, not knowing the ‘optimal’ choice a priori, we have used

Figure 7. Static structure of the γ = 5/3 polytrope calculated using 1086

SPH particles (solid points). The results are shown using fixed plummer

softening with softening length h = 0.03 (top left-hand panel), fixed cubic

spline softening with h = 0.06 (top right-hand panel), using adaptive soften-

ing lengths (bottom left-hand panel) and finally using the energy-conserving

formalism including the additional force term (bottom right-hand panel). The

exact solution is given by the solid line, the fractional deviation from which

is shown in the inset plot in each case. Note that the SPH smoothing length

is adaptive in all cases.

the rule-of-thumb given by Springel (2005), whereby the softening

length is chosen to be ∼1/40 of the average particle spacing in the

initial conditions. Thus guided we choose h = 0.06 for the cubic

spline softening, using half of this value, h = 0.03, in the Plummer

softening (see discussion in Section 4.3.1).

Using adaptive softening lengths without the energy-conservation

term (bottom left-hand panel) shows a small improvement over

the fixed softening results, mainly in the outer regions where the

force estimate is much less noisy. The density resolution in the cen-

tre is slightly lower in this case, but this is substantially improved

when the energy-conserving term is incorporated (lower right-hand

panel). The error in the outer regions is also improved by the energy-

conservation term. The more compact distribution produced in this

case is consistent with the additional term being always in the di-

rection of increasing the gravitational force (see Section 3).

4.4.2 Polytrope oscillations

Having obtained the static structure, studying the radial oscillations

of the polytrope provides a test of the energy-conservation prop-

erties of the code. In order to do so, we apply a radial velocity

perturbation of vr = 0.2r to the static solutions obtained in the pre-

vious section. In order to distinguish effects due to the softening

formulation from effects due to the time-stepping algorithm, we use

a very low Courant number of Ccour = 0.05 for this test. In general,

however, non-conservation effects from the softening formalism are

much larger than effects due to time-stepping. No artificial viscosity

or damping is applied for this problem.

The evolution of the total energy of the system is shown in

Fig. 8 using cubic spline softening with fixed and adaptive soft-

ening lengths. Using a fixed softening length (solid line), the total

energy is conserved exactly (i.e. to time-stepping accuracy). Adapt-

ing the softening length using the method described in Section 4.2

results in non-conservation of energy (dashed line). Incorporating

the additional pseudo-pressure term into the adaptive softening for-

mulation restores the total energy conservation (dot–dashed line).
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1356 D. J. Price and J. J. Monaghan

Figure 8. Total energy conservation during the radial oscillations of the

polytrope. The results are shown using a fixed softening length (solid line),

adaptive softening lengths (dashed line) and using the new adaptive soft-

ening length formalism (dot–dashed line). Note the improvement in energy

conservation in the adaptive softening case when the new term is included.

The absolute value of the total energy differs slightly between runs because

of the difference in equilibrium structure (Fig. 7).

5 S U M M A RY

In this paper, we have described an algorithm for using adaptive

softening lengths in both SPH and N-body codes which retains the

conservation of both momentum and energy. The formalism requires

the computation of an additional gravitational force term which is

similar in form to the SPH pressure force and is therefore straight-

forward to implement in any SPH code at almost no added cost. For

pure N-body codes, calculation of the additional term requires some

extra work since quantities, such as the density, must be evaluated

using the smoothing kernel. However, even in this case the cost is

small compared to the evaluation of the long-range gravitational

forces using a tree code.

The softened gravitational force can be symmetrized by using

either an average of the softening lengths or, alternatively, an average

of the softening kernels, where the latter is preferred because of the

manner in which the density is calculated. The choice of softening

kernel is completely arbitrary, with calculations in this paper were

made using the standard SPH cubic spline kernel (although any of

the kernels proposed by Dehnen 2001 could be used).

Use of spatially variable (‘adaptive’) softening lengths is found

to provide near-optimal softening for arbitrary mass distributions

using a single, fiducial choice of the adaptive softening parameter

Nneigh. This contrasts to the results of Athanassoula et al. (2000)

where the optimal (fixed) softening length was found to depend

strongly on the number of particles and parameters, such as the

central concentration and shape of the mass distribution. For a mass

distribution where more than one component is present, we find

that the use of our adaptive softening length formalism can give

more than an order of magnitude improvement in the errors on the

least-dense component.

The main advantage of the formalism presented here is that adap-

tive softening lengths can be used while maintaining energy conser-

vation to a time-stepping accuracy. This was found to be particularly

important in the case of collisionless N-body simulations where sec-

ular increases in the total energy were found to result from the use

of adaptive softening lengths without the energy-conserving term.

For self-gravitating SPH simulations, the new formalism is a natural

and self-consistent choice which is found to give a small improve-

ment in resolution and energy conservation over traditional ad hoc

formulations for essentially zero additional cost.
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A P P E N D I X A : C U B I C S P L I N E S O F T E N I N G

In this appendix, we give the functional form of the softening corresponding to the cubic spline kernel (11). Integrating the kernel according

to (12), we find that the gravitational force is softened using

φ′(r , h) =

⎧

⎪

⎨

⎪

⎩

1/h2
(

4

3
q − 6

5
q3 + 1

2
q4

)

, 0 � q < 1;

1/h2
(

8

3
q − 3q2 + 6

5
q3 − 1

6
q4 − 1

15q2

)

, 1 � q < 2;

1/r 2 q � 2,

(A1)
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where q = r/h. Integrating a second time using equation (13) gives the kernel used in the gravitational potential, which in this case is given

by

φ(r , h) =

⎧

⎪

⎨

⎪

⎩

1/h
(

2

3
q2 − 3

10
q4 + 1

10
q5 − 7

5

)

, 0 � q < 1;

1/h
(

4

3
q2 − q3 + 3

10
q4 − 1

30
q5 − 8

5
+ 1

15q

)

, 1 � q < 2;

−1/r q � 2.

(A2)

The derivative of the potential with respect to h is given by

∂φ

∂h
=

⎧

⎪

⎨

⎪

⎩

1/h2
(

−2q2 + 3

2
q4 − 3

5
q5 + 7

5

)

, 0 � q < 1;

1/h2
(

−4q2 + 4q3 − 3

2
q4 + 1

5
q5 + 8

5

)

, 1 � q < 2;

0. q � 2.

(A3)

Alternatively, ∂φ/∂h can be evaluated from the potential and force functions according to

∂φ

∂h
= −

1

h2

[

K (q) + q K ′(q)
]

, (A4)

where K(q) = hφ and K ′(q) = h2φ′ are the functional forms of the potential and force kernels, respectively.

A P P E N D I X B : A DA P T I V E S O F T E N I N G L E N G T H F O R M A L I S M U S I N G AV E R AG E D

S O F T E N I N G L E N G T H S

An alternative way of symmetrizing the gravitational potential is to use an average of the particle softening lengths. This is similar to the

approach taken in the adaptive smoothing/softening length formalism used by Benz (1990). The main difference is that we symmetrize the

gravitational potential rather than the force and are therefore able to account for the spatial variation of softening length in the equations

of motion, leading to the conservation of both momentum and energy. Note that this is only made possible because of the self-consistent

relationship between the density and the smoothing length described in Section 4.2.

Using an average of the softening lengths, the gravitational part of the Lagrangian can be written in the form

Lgrav = −
∑

b

mb�b = −
G

2

∑

b

∑

c

mbmcφbc(h̄bc), (B1)

where φbc refers to φ(|rb − rc|) and h̄bc = 1

2
(hb +hc). It is then a straightforward matter to derive the equations of motion by using equation (B1)

in the Euler–Lagrange equations (15). The derivative of equation (B1) is given by

∂Lgrav

∂ra

= −
1

2

∑

b

∑

c

mbmc

[

∂φbc(h̄bc)

∂rbc

∣

∣

∣

∣

h

r b − r c

|r b − r c|
(δba − δca) +

∂φbc(h̄bc)

∂h̄bc

∣

∣

∣

∣

r

1

2

(

∂hb

∂ρb

∂ρb

∂ra

+
∂hc

∂ρc

∂ρc

∂ra

)]

. (B2)

Using the spatial derivative of the density given by equation (23) and a similar expression for ∂ρc/∂ra, we have

∂Lgrav

∂ra

= −
1

2

∑

b

∑

c

mbmc

∂φbc(h̄bc)

∂rbc

∣

∣

∣

∣

h

r b − r c

|r b − r c|
(δba − δca)

−
1

2

∑

b

∑

c

∑

d

mbmcmd

∂φbc

∂h̄bc

∣

∣

∣

∣

r

1

2

[

∂hb

∂ρb

1

�b

∂Wbd (hb)

∂ra

(δba − δca) +
∂hc

∂ρc

1

�c

∂Wcd (hc)

∂ra

(δca − δda)

]

. (B3)

Collecting terms and simplifying, this expression can be written in the form

∂Lgrav

∂ra

= −ma

∑

b

mbφ
′
ab

ra − r b

|ra − r b|
− ma

∑

b

mb

1

2

[

ζ̄a

�a

∂Wab(ha)

∂ra

+
ζ̄b

�b

∂Wab(hb)

∂ra

]

, (B4)

giving the N-body equations of motion in the form

dva

dt
= −G

∑

b

mbφ
′
ab(h̄ab)

ra − r b

|ra − r b|
−

G

2

∑

b

mb

[

ζ̄a

�a

∂Wab(ha)

∂ra

+
ζ̄b

�b

∂Wab(hb)

∂ra

]

, (B5)

where in this case we define the quantity ζ̄ according to

ζ̄a ≡
∂ha

∂ρa

∑

b

mb

∂φab

∂h
(h̄ab). (B6)

This term is again easily calculated alongside ρ and � during the density summation. However, this formalism is quite inefficient in general,

since the average h is only used in the calculation of ζ̄ . The density, SPH and gravity forces are naturally symmetrized by the formulation

from a Lagrangian. Calculation of ζ̄ in this case would require an extra loop over the particles. This is for the reason that, while the density

and smoothing length can be iteratively found for a single particle a (depending only on ha), quantities depending on an average smoothing

length must be updated when a neighbouring value of h has changed (i.e. hb), leading to a rather inefficient scheme.
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1358 D. J. Price and J. J. Monaghan

It is worth noting that Hernquist & Barnes (1990) suggested using a Lagrangian to derive an energy-conserving adaptive softening length

formalism using an average of the softening lengths some time ago. However, contrary to their assertion that ‘the terms involving ∇ǫ

will, in general, lead to a violation of linear and angular momentum conservation’, the force expressed by equation (B5) clearly conserves

linear momentum as the summations are antisymmetric in a and b. It is also straightforward to show that angular momentum is conserved

exactly.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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