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Abstract—By reconfiguring part of the cache as software-
managed scratchpad memory (SPM), hybrid caches manage to 
handle both unknown and predictable memory access patterns. 
However, existing hybrid caches provide a flexible partitioning of 
cache and SPM without considering adaptation to the run-time 
cache behavior. Previous cache set balancing techniques are 
either energy-inefficient or require serial tag and data array 
access. In this paper an adaptive hybrid cache is proposed to 
dynamically remap SPM blocks from high-demand cache sets to 
low-demand cache sets. This achieves 19%, 25%, 18% and 18% 
energy-runtime-production reductions over four previous 
representative techniques on a wide range of benchmarks.  

Keywords—Energy Reduction; Hybrid Cache; Scratchpad 
Memory 

I.  INTRODUCTION 
Caches are widely used in modern processors to effectively hide 

the data access latency, since the memory reference patterns in most 
applications have good spatial/temporal locality. For applications with 
predictable data access patterns, it is possible to let the software 
directly manage the on-chip storage. This alternative is called 
scratchpad memory (SPM). Because the SPM does not need to 
perform tag comparisons and drive associative ways, it is much more 
energy-efficient than caches [1]. Embedded architectures use SPM in 
conjunction with caches to reduce power consumption. 

However, certain applications may prefer SPM (e.g., with 
predictable array access patterns) while other applications may prefer 
cache (e.g., with dynamic and random accesses). Even for applications 
that prefer SPM, the SPM size required by different applications may 
vary [1]. Under these circumstances, designing the cache and SPM 
separately at the physical level with a fixed size for each of them is 
likely to be suboptimal for particular applications. 

As a result, reconfigurable caches have been proposed to provide 
good support for flexibly sizing the cache and SPM based on 
application requirements in a hybrid cache design. Column caching [2] 
and FlexCache [3] expose part of the cache as software-controlled 
memory. The reconfigurable cache [4] and virtual local store [5] 
enable the cache to be dynamically partitioned at a granularity from 
cache ways to cache blocks. Besides the reconfigurable caches, an 
adjustable-granularity cache-locking function—available on multiple 
embedded architectures such as Freescale e300 [6]—can also be 
utilized to achieve flexible partitioning of cache and SPM. Way 
stealing [7] uses special cache preload and locking instructions to 
provide local memory for instruction set extensions. 

However, all of the above hybrid cache designs partition the cache 
and SPM without adaptation to the run time cache behavior; i.e., when 
allocating cache blocks into SPM, they will select blocks from cache 
sets uniformly. Since cache sets are not uniformly utilized [8], this 
uniform mapping of SPM blocks onto cache blocks may create hot 
cache sets at run time, which will increase the conflict miss rate and 
degrade the performance. Figure 1 shows the cache set utilization stats 
for a hybrid cache design (system configuration is shown in Section 
IV.A). Each column represents a set in the cache, and each row 
represents 1 million cycles of time. A darker point means a hotter 

cache set. As can be seen, the cache set utilization varies for different 
cache sets and different times. It becomes more serious for low-power 
processors with low cache associativity due to a tight power budget. 

     
(a) astar (SPEC)            (b) jpeg (MiBench)           (c) h264ref(SPEC) 

Figure 1. Non-uniformed cache sets utilization in hybrid cache. 

Balancing cache set utilization has been intensively investigated. 
Most of these techniques, such as V-way cache [8], indirect index 
cache [9] and set balancing cache [10] require that the cache tag array 
and data array be serially accessed. However, since SPM is designed 
for fast local access, the hybrid cache is typically at the primary (L1) 
cache level, which generally requires a parallel access to tag/data array. 
Therefore, these pseudo-associative cache techniques are not suitable 
for hybrid caches. There are also techniques that do not require serial 
tag/data array access. Victim cache [11] uses a small fully associative 
cache to store the victim cache blocks to mitigate the conflict-miss. It 
increases the per-cache-access energy since victim cache is searched 
in parallel with the regular cache. Serializing the victim cache access 
can save energy but incurs additional cycles when hitting in the victim 
cache. Balanced cache [12] uses a content-addressable memory (CAM) 
inside the cache decoder and increases the decoder length to associate 
cache sets. Although the CAM access latency fits in the decoder slack 
and introduces only 10% per-cache-access energy overhead at 0.18um 
technology, as it comes to a nano-scale technology such as 32nm, the 
CAM access latency exceeds the decoder slack by 20%~40% and 
incurs a large per-cache-access energy overhead [13]. 

Therefore, it is important to find an energy-efficient approach to 
addressing the hot cache set problem in hybrid caches without 
requiring serial tag/data array access. Fortunately, the nature of hybrid 
cache provides another possibility for balancing the cache set 
utilization. Instead of pseudo-associating the cache sets (as done in the 
previous approaches) and maintaining a fixed SPM mapping, we can 
dynamically remap SPM blocks from high-demand cache sets to low-
demand cache sets. Intuitively, it is similar to the previous cache-
energy reducing techniques which dynamically activate and deactivate 
cache lines based on the cache set utilization [14]. However, switching 
on/off cache lines in one cache set will not influence the other cache 
sets, but migrating SPM blocks from a high-demand set to a low-
demand set will increase the pressure of the destination cache set. 
Therefore, directly applying the previous approaches may result in a 
situation where several cache sets just keep passing SPM blocks 
among themselves repeatedly (referred to as circular bouncing effect).  

Another challenge caused by dynamically remapping SPM blocks 
is to that of quickly locating the SPM block in the cache, since the 
SPM block locations may change. Obviously, using software to 
manage the remapping can be costly due to inefficiency and the 
impact on code portability. Therefore, hardware support is desired so 
that software can focus on the use of a logically continuous SPM.  
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To the best of our knowledge, this is the first work that considers 
run-time adaptation in hybrid cache designs. The main contributions 
of the proposed adaptive hybrid cache (AH-Cache) are as follows: 

• The look-up operation of the SPM location is hidden in the 
execution (EX) pipeline of the processor, and a clean 
software interface is provided as a non-adaptive hybrid cache. 

• A victim tag buffer is used to assess the cache set utilization 
by sharing the tag array, resulting in no storage overhead. 

• An adaptive mapping scheme is proposed for fast adaptation 
to the cache behavior without the circular bouncing effect 
using a floating-block-holders queue. 

The remainder of this paper is organized as follows: Section II 
describes the software interface of AH-Cache. The AH-Cache 
architecture design and overhead is detailed in Section III. Section IV 
presents experimental results, and Section V concludes the paper. 

II. SOFTWARE INTERFACE 
First we will briefly talk about the software interface of AH-Cache, 

where we want to emphasize that the software only needs to be aware 
of a logically continuous SPM, but does not care where the SPM 
blocks are physically mapped. By providing such a clean software 
interface, 1) all of the previous compilation techniques that target SPM 
utilization optimization, such as dynamic data placement [1], stack and 
heap support in SPM [15], etc., can be directly used on AH-Cache 
since the compiler only views a logically continuous SPM; 2) in a 
multi-threaded architecture, the previous context switching schemes 
for SPM (e.g., [16]) can be directly used on AH-Cache, since the 
operating system only views a logically continuous SPM.  

 
Figure 2. (a) Original code. (b) Transformed code for AH-Cache. (c) 
Memory space view of SPM in AH-Cache. (d) SPM blocks. (e) SPM mapping 
in AH-Cache. (f) SPM mapping look-up table (SMLT). 

A simple example is shown in Figure 2. To manage the SPM in 
AH-Cache, the software is provided with two system APIs to specify 
the SPM base address and size. As shown in Figure 2(b), spm_pos sets 
the SPM base address register as the address of the first element of 

array amplitude, and spm_size sets the SPM size register as the size of 
the array amplitude and state. Note that these system APIs do not 
impact the ISA since they use regular instructions for register value 
assignment. The base address and size of the SPM can be set multiple 
times across the software. If the software sets the SPM size larger than 
the maximum SPM size (discussed in Section III.A), it can still run on 
AH-Cache, but AH-Cache will only provide its maximum SPM size. 
The SPM references beyond this size are treated as regular memory 
references and are supported by the cache. This scheme allows 
portability of the software on different AH-Cache sizes.  We have 
developed a compilation pass [17] inside the LLVM [18] compilation 
infrastructure to automatically transform and optimize original 
application code for better SPM utilization on AH-Cache. 

III. AH-CACHE ARCHITECTURE 
A. SPM Mapping Look-Up 

As shown in Figure 2(d)(e), the partition between cache and SPM 
in AH-Cache is at a cache-block-wise granularity. If the requested 
SPM size is not a multiple of a cache block, it will be increased to the 
next block-sized multiple. The mapping information of SPM blocks 
onto the cache blocks is stored into an SPM mapping look-up table 
(SMLT). The number of entries in SMLT is the maximum number of 
cache blocks that can be configured as SPM. Since AH-Cache must 
hold at least one cache block for each cache set to maintain the cache 
functionality, the maximum SPM size on a M-way N-set set-
associative cache is (M-1)*N  blocks. In each SMLT entry, there are 1) 
a valid bit indicating whether this SPM block falls into the real SPM 
space, since the requested SPM size may be smaller than the 
maximum SPM size; and 2) a set index and a way index which locate 
the cache block upon which the SPM block is mapped.  

In a most recent non-adaptive hybrid cache design [5], the high-
order bits of the virtual address of a memory reference are checked in 
the early pipeline (after the ALU computes the virtual address) to 
determine whether it is targeting the SPM or regular cache. The 
checking is done by comparing these high-order bits with the SPM 
base address. This enables fast checking, but requires that the SPM 
base address be aligned with all of its low-order bits as 0.  

 
Figure 3. SPM mapping look-up and access in AH-Cache. 

AH-Cache needs an additional step to use the low-order bits of the 
virtual address to look-up the SMLT. This further increases the 
pipeline critical path. To solve this problem, inspired by the zero-cycle 
load idea [19], we perform the address checking and SMLT look-up in 
parallel with the virtual address calculation of the memory operation in 
a pipelined architecture, as shown in Figure 3. Assuming a base + 
displacement address calculation mode, memory reference instructions 
will compute their virtual addresses from a base address and an offset 
address; these are obtained either from the register file or the 
immediate value of the instruction in the Instruction Decode (ID) stage. 
In the Execution (EX) stage, the ALU calculates the virtual address 
from these values. Simultaneously, the base address is compared to the 
SPM base address, and the offset is sent to the SMLT to obtain the 
mapping information (here the cache-set-index part of the offset bits 
will be used to index SMLT). When the output of the comparator is 
true and the valid information of the indexed SMLT entry is true, this 
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memory reference is considered an SPM access instruction. In this 
way, both the address-checking and SMLT look-up are done in the EX 
stage, and SPM access time in AH-Cache will not be increased. 

This architecture imposes a constraint on the compiler. The 
compiler should generate the memory reference instructions to SPM in 
such a way that the base address of this instruction must be the SPM 
base address and the offset must be the offset related to the SPM base 
address. This constraint does not impact the optimization ability of the 
compiler since this transformation can be performed in the last stage 
of the code optimizations. However, extra care needs to be taken when 
a pointer of some element of the SPM is passed as a parameter to a 
function, and all memory references inside the callee function are 
based on the input pointer parameter. The compiler should first divide 
the callee’s input pointer parameter into two parts, a base pointer base 
and an offset of the original input pointer to base. Then, inside the 
callee, all memory references related to the original input pointer are 
generated with base as the new base pointer. For the caller, the SPM 
base address is passed to the callee’s base, and the offset of original 
input pointer to SPM base address to the callee’s offset. 

One concern is whether the virtual address calculation at the ALU 
can hide the look-up time of the SMLT (obviously the comparator is 
not in the critical path since it is much simpler than the ALU). For an 
M-way N-set set-associative cache, the size of SMLT is (M-1)*N 
entries with each entry containing (1+logM+logN) bits. TABLE I 
shows the access latencies for various L1 cache configurations using 
Cacti [20] at 32nm technology (cache block size is 64B). As shown in 
the table, all the SMLT accesses can be finished in 0.2 ns which fits 
into the cycle time of a 4GHz core. Given the fact that previous non-
adaptive cache [5] could add a comparator after the ALU, the small 
delay of the 1-level MUX added after the ALU will be much smaller 
in timing. It should be noted that the way index encoder is also used in 
the non-adaptive hybrid cache [5] to avoid TLB look-ups and tag 
comparisons at SPM accesses. It is not an overhead of AH-Cache.  

TABLE I. SMLT LATENCY OF VARIOUS CACHE CONFIGURATIONS 
Cache Size       8KB 16 KB 32 KB 64 KB 

Cache associativity 2 4 2 4 2 4 2 4 
SMLT entries 64 96 128 192 256 384 512 768

SMLT width (bits) 8 8 9 9 10 10 11 11
Access latency(ns) 0.14 0.15 0.16 0.17 0.17 0.18 0.18 0.19

B. Cache Set Demand Assessment 
As in [8], we refer to cache sets that highly utilize most or all 

cache blocks as high-demand sets, and cache sets that underutilize 
their available blocks as low-demand sets. We want the low-demand 
sets to accommodate proportionally more SPM blocks than the high-
demand sets, as shown in Figure 2(e). Miss rate can not be used to 
recognize a high-demand cache set, since for streaming applications 
with little locality or applications hopelessly thrashing the cache, even 
if the miss rate is high, there is little benefit in increasing the cache 
blocks. Therefore, we use a victim tag buffer (VTB) to capture the 
demand of each set; this is similar to the miss tag introduced in [14], 
but with no memory overhead (as explained below). 

 
Figure 4.  (a) A VTB in the tag array. (b) VTB counters and insertion flags. 

Logically, the VTB consists of the same number of sets as the tag 
array and one less way in each set (since at least one cache block in 
each set is retained). When a cache block is configured as an SPM 
block, its tag is disabled, while its corresponding VTB tag is enabled. 

Once it is recovered from an SPM block and becomes a regular cache 
block, its tag is enabled, and its corresponding VTB tag is disabled. 
This way, we can naturally combine the original tag array and the 
VTB. For each tag entry in the original tag array, one bit is added to 
indicate whether this tag is a regular tag or a victim tag. Figure 4(a) 
shows the VTB inside the tag array for the mapping in Figure 2(e).  

When a replacement happens in the cache part of AH-Cache, the 
tag of the victim block is written into the corresponding set of the 
VTB with pseudo LRU policy. There is a VTB counter for each set 
(not for each cache block, as shown in Figure 4(b)). The VTB is only 
accessed at a miss in the cache part of AH-Cache. If there is a hit in 
VTB, the set’s VTB counter will be increased by 1, since this situation 
indicates that if this block had been enabled in the cache part of AH-
Cache, it would have been a hit. Cache misses due to streaming or 
thrashing will not lead to a VTB hit, as there is no reuse. 

C. Adaptive Mapping 
If the application only requires P SPM blocks while AH-Cache 

can provide Q SPM blocks at most, then there will be S=Q-P  cache 
blocks (referred to as floating blocks) used to adaptively satisfy the 
high-demand cache sets. When we say that cache set A gets a floating 
block from cache set B, it means that A sends one of its SPM blocks to 
B and enables the vacant cache way as a regular cache block, while B 
needs to evict one of its cache blocks to accommodate the SPM block 
from A. We can not simply make a cache set with a high VTB counter 
get a floating block from a cache set with a low VTB counter, since a 
low VTB counter only means that this cache set does not need more 
floating blocks; it does not mean that it can afford to lose one. 
Therefore, it is possible that several cache sets just keep passing SPM 
blocks among themselves repeatedly. 

To solve this problem, we propose a mapping scheme based on a 
floating block holder (FBH) queue. The queue records the cache sets 
which are currently holding the floating blocks. Each queue node 
consists of the index of a floating block holder set and a re-insertion 
bit. A re-insertion bit indicates whether this cache set is re-inserted to 
the queue in the current adaptation interval (a fixed number of cycles). 
Each cache set holds a 1-bit insertion flag to indicate whether it has 
been inserted in the queue in the current interval, as shown in Figure 
4(b). At the beginning of each adaptation interval, all the re-insertion 
bits in the queue and the insertion flags in the cache sets are reset to 0. 

When a cache set A’s VTB counter achieves a threshold T, the 
FBH queue will be searched, starting from the head, until a node with 
a re-insertion bit of 0 is found. Assume the set index in this node is B. 
Then set B will accommodate one SPM block from set A. This node is 
removed from the queue and a new node with set index A is inserted to 
the tail of the queue with its re-insertion bit as the current insertion 
flag of set A. Then set A’s insertion flag is updated to 1. With the re-
insertion bit as 1, a high-demand set will not give up its floating blocks 
once it is re-inserted to the queue in the current interval. Once all the 
re-insertion bits in the queue are 1, the remapping of this interval is 
stopped. This will effectively remove the potential circular bouncing 
effect. With a small number of SPM block migrations, the proposed 
mapping scheme can form an SPM mapping which adapts to the cache 
set demands in the current interval, as shown in TABLE IV. The 
threshold T determines the size of the VTB counter. The selection of T 
and the interval length I should be co-considered to make a lazy or 
aggressive adaptation. In this work we set T to 16 and I to 1 million 
cycles. Then the length of the VTB counter for each cache set is 4 bits. 

Since a node removal is always accompanied with a node insertion, 
the FBH queue can be simply implemented with an SRAM controlled 
by a pointer. As shown in Figure 5(a), the number of active entries of 
this SRAM equals the number of floating blocks, and the total number 
of entries equals the maximum number of SPM blocks. When a VTB 
counter reaches the threshold and requests an SPM migration, the 
pointer will move from its current place until it finds one entry with a 
re-insertion bit of 0. Then the new node will overwrite this entry, and 
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the pointer moves to the next entry. It turns back to the head of the 
SRAM when it reaches the end of the active region. 

 
Figure 5. (a) FBH queue. (b) Parallel FBH search using RIBT. 

Serially searching the FBH queue may incur a worst-case delay of 
S cycles, where S is the maximum SPM size. To reduce the searching 
time, a parallel search scheme is developed as follows. We store the 
re-insertion bits in another SRAM called re-insertion bit table (RIBT), 
as shown in Figure 5(b). Each RIBT entry contains 16 re-insertion bits. 
Then an S-entry FBH queue will have an S/16-entry and 16-bit wide 
RIBT. Every 16 re-insertion bits can be searched in parallel using a 
priority encoder which outputs the index of the first zero-bit of its 
input vector. Then the longest search time is decreased to S/16 cycles. 

The FBH queue is searched when a cache set has a miss and its 
VTB counter achieves the threshold for requesting an SPM migration; 
thus, if the search can be finished before the missed cache block is 
fetched from the L2 cache, it will not affect the time of acquiring new 
data from the L2 cache. In our evaluation architecture, the L2 cache 
access latency is 20 cycles, while the maximum FBH queue length is 
256 and the worst-case search time is 16 cycles, which is smaller than 
the L2 cache access latency. The FBH search latency can be further 
reduced by increasing the number of parallel searched re-insertion bits, 
at a cost of increasing the width of the priority encoder. We use the 
priority encoder designed in [21]. According to the Synopsys Design 
Compiler, the searching logic circuit has around 500 gates, which is 
less than 1% of the cache design.  

D. Storage and Energy Overhead 
To quantify the storage overhead of AH-Cache, we use a 16KB 2-

way set-associative, 128 sets, 64B data block size, 4B tag entry size 
(including the tag, coherence state bits, dirty bits etc.) hybrid cache as 
an example. It can provide at most 128 64B SPM blocks. Then the 
SMLT contains 128 9-bit entries (1 valid bit + 6-bit set index + 2-bit 
way index). The VTB physically shares the tag array, thus it only 
incurs one additional bit for each tag entry. Each cache set also has 
one additional insertion flag and 4-bit VTB counter. The FBH queue 
contains 128 7-bit entries. The RIBT contains 8 16-bit entries. The 
migration buffer contains one 64B cache block. Therefore, the total 
storage overhead introduced by AH-Cache is around 0.4KB, which is 
3% of the baseline hybrid cache size.  

For the energy overhead, AH-Cache needs to access the SMLT at 
each cache access, access the VTB at each cache miss, and trigger the 
adaptive mapping unit (including the FBH queue, RIBT, and the 16-
bit priority encoder) each time that a VTB counter achieves the 
threshold. According to Cacti [20], at 32nm technology, the access 
energy to the SMLT is up to 0.8pJ. The access to the VTB, which 
physically shares the tag array, adds an additional 0.8pJ for a 16KB 
cache and 0.9pJ for a 32KB cache per cache miss. The worst-case 
energy for the adaptive mapping unit when all the RIBT is searched is 
2pJ; this is obtained from the Synopsys Design Compiler and Cacti 
[20]. When an SPM block migration happens, the block will be first 
read out from the cache and written into the migration buffer, and then 
read out from the migration buffer and written back into the cache in 
the next cycle; thus the energy overhead is 66pJ for a 16KB cache and 
75pJ for a 32KB cache. As can be seen in TABLE IV, there are only 
4.4 SPM migrations for average every 1 million cycles. Therefore, the 

total per-cache-access energy overhead of AH-Cache is only less than 
6% of a non-adaptive hybrid cache with a per-cache-access energy of 
16.6pJ for 16KB and 18.9pJ for 32KB. But it can save energy by 
reducing the low-level (L2) cache energy (reducing the miss rate) and 
leakage energy (reducing run time) as shown in the next section.  

IV. EXPERIMENT RESULTS 
A. Evaluation Methodology 

To cover a diverse set of applications, our benchmarks are chosen 
from multiple benchmark suites. We select the benchmarks which 
have intensive memory accesses that SPM can help to improve; i.e., 
we choose the benchmarks which can benefit from a hybrid cache 
design (since our goal is to improve the hybrid cache designs). These 
benchmarks include: five benchmarks from the MiBench benchmark 
suite [24]: jpeg, gsm, dijkstra, patricia and susan; five memory 
reference intensive applications from the SPEC2006 benchmark suite 
[25]: h264ref, hmmer, astar, soplex and gobmk; and also four medical 
imaging benchmarks [26]: 1) biHarmonic performs 2D image 
registration with bi-harmonic regularization term, 2) mutualInfo 
computes the mutual information of two 2D images, 3) ricianDenoise 
performs iterative local denoising based on the rician noise model, 4) 
regionGrowing evaluates whether a region is part of an object in 
image segmentation. The number of memory references of these 
benchmarks is shown in TABLE II in order to indicate their scale. 

TABLE II. #MEMORY REFERENCES OF THE EVALUATED BENCHMARKS 
jpeg gsm susan hmmer soplex h264ref dijkstra patricia

19.8M 65.1M 76.1M 75.7M 22.1M 196.6M 47.7M 16.8M
astar gobmk biHarmonic mutualInfo ricianDenoise regionGrowing
93M 256.7M 48.6M 98.2M 7.9M 128.3M 

To demonstrate the advantage of the adaptation in AH-Cache, we 
implemented the following designs for comparison.  

Non-adaptive hybrid cache (N): This is the baseline design which 
uses a 2-way set-associative hybrid cache as the L1 data cache. The 
SPM mapping onto cache blocks is fixed. We evaluated two cache 
sizes—16KB and 32KB, which are typical L1 data cache sizes in low-
power processors. According to Cacti [20], the energy per access is 
16.6pJ for 16KB and 18.9pJ for 32KB at 32nm technology.  

Non-adaptive hybrid cache + balanced cache (B): This design 
enhances the baseline by using the balanced cache (B-Cache) [12]. It 
uses CAM and increases decoder length to increase the cache 
associativity. Due to the high energy overhead of CAM (90% more 
per-cache-access energy when BAS (B-Cache associativity) =8), to 
achieve a good performance and energy trade-off, we use BAS=4 and 
MF (mapping address mapping factor) =8 (1/8 of the memory address 
has a mapping to cache sets), which incurs additional per-cache-access 
energy of 6.4pJ for the 16KB cache and 7.8pJ for the 32KB cache. 
The energy data are obtained from [13] at 32nm technology, which 
extracts the technology parameters from Cacti [20]. It should be noted 
that the CAM access latency exceeds the original decoder slack, but 
we optimistically assume it does not increase the cache critical path.  

Non-adaptive hybrid cache + victim cache (Vp, Vs): The design 
Vp enhances the baseline design by using a parallel accessed fully 
associative victim cache [11]. We use a 4-entry victim cache for the 
16KB cache and an 8-entry victim cache for the 32KB cache; these 
have a per-cache-access energy overhead of 8.9pJ and 16.3pJ, 
respectively. Experiment results show that further increasing the 
victim cache size only marginally improves performance while using 
much more energy. We also implement a serially accessed victim 
cache Vs, where the victim cache is only accessed at a L1 cache miss 
to increase the energy efficiency, but it incurs additional cycles when 
blocks are in the victim cache. An additional pipeline is needed inside 
the hybrid cache to control the serial victim cache access.  

Phase-reconfigurable hybrid cache (R): This design modifies the 
idea in [14] and applies it to the hybrid cache by reconfiguring the 
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SPM mapping at each fixed interval based on the VTB counter stats. 
At the reconfiguration time, cache sets with a VTB counter higher 
than a high-threshold can migrate their SPM blocks to cache sets with 
a VTB counter lower than a low-threshold. The length of the interval 
and the two thresholds are tuned to achieve the best performance. The 
architecture of this design is almost the same as our proposed design 
(hides SMLT access in EX pipeline and shares VTB in tag array), but 
without the adaptive mapping unit. It is used to evaluate the 
effectiveness of our adaptive mapping scheme.  

Adaptive hybrid cache (AH): This is our proposed design. The 
energy overhead is discussed in Section III.D. The VTB counter 
threshold is 16 and adaptation interval length is 1 million cycles. 

Static optimized hybrid cache (S): This design uses the offline 
analysis of the cache set demand stats to optimize the remapping at 
each interval. This design point is impractical, but it serves as a 
reference point to check the optimality of the AH-Cache. 

Since all of the above designs can provide a clean software 
interface, from the software point-of-view they are the same. Thus the 
SPM configurations and utilizations for all the designs are the same. 
The benchmark binaries are generated by our compiler [17] to get the 
optimal SPM configurations. To accurately capture the system 
performance, we leverage the full system simulator SIMICS [22] and 
the GEMS toolset [23] as the timing model of the memory subsystem. 
All of the above designs are implemented in GEMS. The system 
configurations of SIMICS/GEMS are shown in TABLE III.  

TABLE III. SIMICS/GEMS SIMULATOR CONFIGURATION 
Core Sun UltraSPARC-III Cu processor core 
L1 Instruction 
Cache 

16KB/32KB, 2-way set-associative, 64-byte block, 
2-cycle access latency, pseudo-LRU 

L1 Data Cache 16KB/32KB, 2-way set-associative, 64-byte block, 
2-cycle access latency, pseudo-LRU 

L2 Cache 512KB, 8-way set-associative, 64-byte block, 20-
cycle access latency, pseudo-LRU 

Main Memory 4GB, 320-cycle access latency 

B. Performance Comparisons 
Figure 6 shows the comparison results of misses for the L1 data 

cache (hybrid cache). The results are normalized to the baseline 
(design N). By functionally increasing the cache associativity with 
increased decoder length, design B reduces the cache misses by 44%. 
By accommodating victim cache blocks, designs Vp and Vs reduce the 
cache misses by 42%. By reconfiguring the SPM mapping at each 
interval, design R reduces cache miss by 34%. AH-Cache reduces the 
cache miss by 52% compared to baseline, and outperforms designs B, 
Vp, Vs and R by 19%, 22%, 22% and 33%, respectively.  

The reason that AH-Cache outperforms design B is that the B-
cache associates cache sets in a uniform way without considering the 
cache set demands; thus it is possible that the associated cache sets are 
all high-demand cache sets. Victim cache performance is constrained 
by its size (and additional victim cache access cycles for Vs). It can 
achieve larger miss rate reductions with a much higher energy 
overhead. Note that Vp and Vs perform very well for ricianDenoise 
which has only a few extremely high-demand cache sets. The fact that 
AH-Cache outperforms design R indicates that simply applying the 
previous phase-based reconfiguration approach to the hybrid cache 
can be affected by the circular bouncing effect. It can be seen that AH-
Cache almost catches the optimality of design S in most cases (~1% 
difference), and even outperforms it at benchmarks h264ref and susan 
since design S is based on interval-level analysis, and it can not 
manage to adapt the dynamic variations inside an interval. This shows 
the positive effect of the run-time optimization of AH-Cache. 

Figure 7 shows the performance comparison results in terms of 
run-time (cycles), which are normalized to the baseline (design N). 
The results of AH-Cache and design R include the remapping penalty 
(the core to L1 cache queue is suspended for two cycles for each SPM 
block migration). As shown in TABLE IV, the average number of 

SPM block migrations of AH-Cache at each interval is 4.4, which 
results in a run-time overhead of less than 0.1%. Some applications, 
such as susan and gsm which have dramatic cache misses reduction, 
do not see a corresponding run-time reduction because most of the 
memory references access SPM. However, the AH-Cache still reduces 
the run-time by 18% compared to baseline, and outperforms designs B, 
Vp, Vs and R by 3%, 4%, 8% and 12%, respectively. 

TABLE IV. AVERAGE #SPM BLOCK MIGRATIONS IN EACH 1 MILLION 
CYCLE INTERVAL (UPPER: 16KB, LOWER: 32KB) 

jpeg gsm susan hmmer soplex h264ref dijkstra patricia
5.68 
0.28

0.04 
0.01

1.14 
1.20

8.66 
0.45 

15.9 
5.26 

20.2 
4.26 

6.39 
0.62 

0.79 
0.15 

astar gobmk biHarmonic mutualInfo ricianDenoise regionGrowing
10.5 
10.3

4.87 
2.65

0.03  
0.03 

1.95  
0.03 

0.03  
0.02 

0.04  
0.01 

C. Energy Comparisons 
In addition to the L1 data cache energy discussed in Section IV.A, 

we also obtain the dynamic and leakage energy data of other memory 
subsystem components including the L1 instruction cache, L2 cache 
and the main memory through Cacti [20] and McPAT [27]. Given 
these energy data, we record the access times to the logics and 
storages in our simulations and back-annotate them to our energy 
estimation models to generate the energy results for each design.  

The energy comparison results are shown in Figure 8 and are 
normalized to the baseline (design N). They are broken down into the 
dynamic energy of L1 cache (dominated by the L1 data cache), L2 
cache and main memory, and the leakage energy. The designs B and 
Vp can reduce the L1 data cache miss rates, but with a higher per-
cache-access energy. But they can still reduce the total energy in some 
cases by reducing the L2 cache energy (less access to L2 cache) and 
the leakage energy (less run time). Therefore, the average total energy 
overhead compared to baseline for designs B and Vp is 4% and 13%, 
respectively. By serializing the accesses to the regular L1 cache and 
victim cache, design Vs achieves an average total energy reduction of 
3% compared to baseline. Design R achieves an average total energy 
reduction of 7% compared to baseline, mainly through moderately 
reducing the L1 miss rate and the run time.  

With the additional energy of the SMLT, VTB, and adaptive 
mapping unit, AH-Cache can still achieve an energy reduction of 16%, 
22%, 10% and 7% compared to designs B, Vp, Vs and R, respectively. 
It consumes less energy than designs B, Vp and Vs since its per-cache-
access energy overhead is much less than the CAM in B-cache and 
victim cache. It consumes less energy than design R since its adaptive 
mapping more effectively reduces L1 miss and thereby consumes less 
L2 cache energy and leakage energy (less run time).  

In summary, AH-Cache achieves energy-runtime-production 
reductions of 19%, 25%, 18% and 18% over the designs B, Vp, Vs and 
R, respectively. This verifies the energy efficiency of AH-Cache. 

V. CONCLUSIONS 
In this paper an adaptive hybrid cache called AH-Cache is 

proposed. By providing dynamic remapping of the SPM blocks onto 
cache blocks based on the run-time cache behavior in hardware, AH-
Cache makes the software focus on the utilization of logically 
continuous SPM. Experimental results show that AH-Cache can 
achieve energy-runtime-production reductions of 19%, 25%, 18% and 
18% over representative previous techniques. Thus AH-Cache can 
serve as an energy-efficient hybrid cache in low-power processors that 
require flexible SPM sizes to satisfy various application requirements, 
but have low cache associativity due to a tight power budget. 
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Figure 6. Comparison results of L1 data cache (hybrid cache) misses (left: 16KB, right: 32KB). 
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Figure 7. Comparison results of run time (left: 16KB, right: 32KB). 
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Figure 8. Comparison results of memory subsystem energy (left: 16KB, right: 32KB). 
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