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Abstract—Virtual machine placement (VMP) and energy
efficiency are significant topics in cloud computing research. In
this paper, evolutionary computing is applied to VMP to min-
imize the number of active physical servers, so as to schedule
underutilized servers to save energy. Inspired by the promis-
ing performance of the ant colony system (ACS) algorithm for
combinatorial problems, an ACS-based approach is developed to
achieve the VMP goal. Coupled with order exchange and migra-
tion (OEM) local search techniques, the resultant algorithm is
termed an OEMACS. It effectively minimizes the number of
active servers used for the assignment of virtual machines (VMs)
from a global optimization perspective through a novel strat-
egy for pheromone deposition which guides the artificial ants
toward promising solutions that group candidate VMs together.
The OEMACS is applied to a variety of VMP problems with
differing VM sizes in cloud environments of homogenous and het-
erogeneous servers. The results show that the OEMACS generally
outperforms conventional heuristic and other evolutionary-based
approaches, especially on VMP with bottleneck resource char-
acteristics, and offers significant savings of energy and more
efficient use of different resources.

Index Terms—Ant colony system (ACS), cloud computing,
virtual machine placement (VMP).

I. INTRODUCTION

C
LOUD computing is a large-scale distributed computing
paradigm, driven by an increasing demand for various

Manuscript received November 17, 2015; revised March 10, 2016, June 22,
2016, and October 5, 2016; accepted October 25, 2016. Date of publica-
tion November 21, 2016; date of current version January 26, 2018. This
work was supported in part by the National Natural Science Foundations
of China (NSFC) under Grant 61402545, in part by the Natural Science
Foundations of Guangdong Province for Distinguished Young Scholars under
Grant 2014A030306038, in part by the Project for Pearl River New Star in
Science and Technology under Grant 201506010047, in part by the GDUPS
(2016), and in part by the NSFC Key Program under Grant 61332002.
(Corresponding authors: Zhi-Hui Zhan; Jun Zhang.)

X.-F. Liu, Z.-H. Zhan, and J. Zhang are with the School of Computer
Science and Engineering, South China University of Technology, Guangzhou
510006, China (e-mail: zhanapollo@163.com; junzhang@ieee.org).

X.-F. Liu is also with the Department of Computer Science, Sun Yat-sen
University, Guangzhou 510006, China.

J. D. Deng is with the Department of Information Science, University of
Otago, Dunedin 9054, New Zealand.

Y. Li is with School of Computer Science and Network Security, Dongguan
University of Technology, Dongguan 523808, China.

T. Gu is with the School of Computer Science and Engineering, Guilin
University of Electronic Technology, Guilin 541004, China.

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.orgprovidedbytheauthors.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2016.2623803

levels of pay-per-use computing resources [1]. Cloud facili-
tates three major types of services to the customer via the
Internet. Infrastructure as a service for hardware resources,
such as Amazon Elastic Compute Cloud. Platform as a ser-
vice for a runtime environment, such as Google App
Engine. Software as a service, such as Salesforce.com [2], [3].
These services are offered mainly through virtualization [4].
This way, the physical resources are virtualized as uniform
resources and therefore are efficient for parallel and dis-
tributed computing [5], [6]. Virtual machines (VMs) are cre-
ated according to the type of operating system and the amount
of required resources such as CPU, memory, and storage, spec-
ified by the customers and then run on a physical server to host
application to meet requirements of customers [7], [8]. On the
other hand, virtualization allows multiple VMs to be executed
on the same physical server and share hardware resources. This
enables VM consolidation, which allocates the maximum num-
ber of VMs in the minimum number of physical servers [9].
The unused servers can be switched off to cut the cost for
cloud provider and customers.

With a rapid growth in the number and size of cloud
data centers [10], the energy consumption, as well as equip-
ment cooling costs has risen to new highs [10]. Studies
have shown that data centers around the world consumed
201.8 TWh of electricity in 2010, enough to power 19 million
average U.S. households [12]. This consumption accounted for
1.1%–1.3% of the worldwide total and the rate was expected
to increase to 8% by 2020 [13]. At present, most cloud
servers utilize between 11% and 50% of their total resources
most of time [14]. The power consumed by an active but
idle server is at the ratio between 50% and 70% of a fully
utilized server [15]. Therefore, placing the VMs of a lowly uti-
lized server onto other servers and gracefully schedule down
the lowly utilized server will efficiently reduce the power
consumption.

The consolidation of VMs has an implication in energy effi-
ciency. This leads to a VM placement (VMP) problem, a com-
putational problem that seeks to obtain an optimal deployment
of VMs onto physical servers [16], [17]. Various methods have
been reported in the literature for VMP according to different
objectives, such as energy efficiency of the physical servers
that are used to host the VMs by optimizing the assignment
of VMs [15], maximization of the resource utilization ratio
of the physical servers through VM consolidation [19], and
load balancing on different physical servers to improve the
overall system efficiency [20], [21]. Further, a guideline of

1089-778X c© 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:zhanapollo@163.com
mailto:junzhang@ieee.org
http://ieeexplore.ieee.org provided by the authors
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


114 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 1, FEBRUARY 2018

VMP mechanisms for backup (snapshots of each VM) and
working VMs to support a disaster-resilient cloud has been
proposed in [22].

For the energy efficiency objective, the VMP problem
is an NP-hard problem [23]–[25]. This VMP problem was
first solved as a linear programming (LP) problem. For
example, stochastic integer programming was used to mini-
mize the cost for hosting VMs in a multiple cloud provider
environment [26]. In [27], a server consolidation problem is
also formulated as an LP problem, solved with heuristics
for a minimized server cost. Using a VM mixed integer LP
model, Lawey et al. [4] proposed a framework for design-
ing energy efficient cloud computing services over nonby-
pass IP/wavelength division multiplexing core networks. They
adopted an approach slicing the VMs into smaller VMs and
placing them in a proximity to their users so as to minimize
the total power consumption.

In comparison, heuristic methods have offered higher effi-
ciency in solving the VMP problem. In particular, evolu-
tionary computation (EC) algorithms [28] such as genetic
algorithm (GA) [29] have been used to improve resource uti-
lization and reduce energy consumption. A modified GA with
fuzzy multiobjective evaluation was developed for the VMP
in [30]. Wang et al. [31] designed an improved GA to maxi-
mize resource utilization, balance multidimensional resources,
and minimize communication traffic. Wilcox et al. [32] mod-
eled the VMP problem as a multicapacity bin packing problem
so as to find an optimal assignment homogeneously problem
to simplify the VMP with the often heterogeneous servers in
cloud data centers. Foo et al. [33] proposed to use a GA to
optimize the neural network, so as to forecast and reduce
energy consumption in cloud computing.

As the VMP problem can be regarded as a combi-
natorial optimization problem (COP) [44], [45], many
EC algorithms may be applicable [28]. EC algorithms
have been successfully applied to many COPs, such as
protein structure prediction [46], music composition [47],
multiple sequence alignment [48], distribution network
restoration [49], constrained optimization [50], scheduling
problems [51], and haystack problem [52], and have shown
promising performance. However, among the EC algorithms,
the ACO paradigm [53], [54], especially its ant colony
system (ACS) variant, fits COPs better and has shown
particular strengths in solving real-world COPs. Compared
with other EC algorithms, such as a GA and particle swarm
optimization (PSO) [55], [56], the adoption of global shared
pheromone in ACS allows the experience information to be
spread rapidly among the colony and thus help the cooperation
among multiple ants. Moreover, the introduction of heuristic
information enhances the exploration capacity. The balance
of exploration of new solution and exploitation of accumu-
lated experience about the problem ensure fast convergence
and good performance of ACS. Therefore, the ACS-based
algorithm for VMP optimization is extensively studied in this
paper. In cloud computing domain, Feller et al. [11] applied
an ACO-based approach to minimize the number of cloud
servers to support current load. However, this method has
a high computing cost and consolidates VMs only on a single

resource. In this paper, we consolidate VMs according to
multiple resources (i.e., both CPU and memory), being more
applicable in cloud computing, but more challenging [34].
There also exist some reports on the use of multiobjective
algorithms to minimize the total resource wastage and
power consumption. These algorithms include multiobjective
ACS [35], multiobjective ACO (MACO) [36], and hybrid
ACO with PSO, termed HACOPSO [37]. In [38], an ACS
is employed for VMs consolidation in dynamic environment
to reduce energy consumption but not directly to reduce the
number of servers.

In this paper, we develop an ACS-based approach to allocat-
ing the VMs in minimum number of physical servers to reduce
energy consumption for cloud computing. This is a substan-
tially extension of a feasibility study in our early work [39]
on consolidating VMs and has significant differences, not only
from the algorithm design aspect, but also from the exper-
imental environment aspect. To handle both homogeneous
and heterogeneous server environment, we also develop an
order exchange and migration (OEM) mechanism for the ACS,
resulting in an OEMACS algorithm. Further, the OEMACS
algorithm incorporates a new solution evaluation method with
a hierarchical structure.

The remainder of this paper is organized as follows.
Section II outlines a model of the VMP problem and an
ACS approach. Section III develops the OEMACS algorithm
in detail. It is then applied in Section IV to various cloud com-
puting environments, including 17 homogeneous and five het-
erogeneous server VMP scenarios with bottleneck resources.
Experiments are undertaken to validate the effectiveness and
efficiency of OEMACS, by comparing not only with heuris-
tic approaches such as first-fit decreasing (FFD) [40], but
also with EC-based approaches such as reordering grouping
GA (RGGA) [32], ACO-based method [11], multiobjective
MACO [36], and HACOPSO that hybrids ACO and PSO [37].
Finally, the conclusions are drawn in Section V.

II. BACKGROUND

A. Virtual Machine Placement

Virtualization lies in the heart of cloud computing. Once the
cloud data center receives an application request from a cus-
tomer, a VM is created to host the application based on the
required resources (CPU, memory, and storage) and the type
of operating system specified by the customer. Then, the VM
is assigned to one available server according to the place-
ment strategy. How to assign the VMs to suitable servers to
reduce the energy consumption is an important problem. This
paper tracks the VMP for minimizing the number of active
servers and presents a special case in which VMs are consoli-
dated with respect to two resources: 1) CPU and 2) RAM,
referring to the fact that many cloud applications such as
Google AppEngine hosts mostly e-commerce applications and
charges the users based on their CPU consumption [19], [41].
Assume that there are N VMs and M servers. Let V =

{1, 2, . . . , N} be a set of VMs, and P = {1, 2, . . . , M}

a set of servers. As we consider the two most representative
resources (i.e., CPU and RAM) for a VM, we use symbols
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vcj and vmj to represent the CPU and RAM requirements of
VMj ∈ V, respectively. Similarly, CPU and RAM capacities of
server i ∈ P are denoted as PCi and PMi, respectively. Since
VM is not allowed to be assigned across servers, we assume
that none of the VMs requires more resources than the capac-
ity of a single server. We aim to achieve an assignment with
a minimum number of active servers to improve resource uti-
lization and energy efficiency. In a placement solution S, each
VM is placed onto one and only one server. The assignment
is attributed by a zero-one adjacency matrix X, where element
xij represents whether VMj is assigned to server i. If VMj is
placed on server i, then xij = 1, otherwise xij = 0. Each server
must have enough resources to satisfy the demand of all VMs
on it. The VMP problem for minimizing the number of active
servers is formulated as

minimize f (S) =

M
∑

i=1

yi (1)

subject to

xij =

{

1, if VMj is assigned to server i

0, otherwise
∀i ∈ P and ∀j ∈ V

(2)

yi =

{

1, if
∑N

j=1 xij ≥ 1
0, otherwise

∀i ∈ P (3)

M
∑

i=1

xij = 1 ∀j ∈ V (4)

N
∑

j=1

vcj · xij ≤ PCi · yi ∀i ∈ P (5)

N
∑

j=1

vmj · xij ≤ PMi · yi ∀i ∈ P. (6)

Constraint (3) shows whether server i is used (yi = 1) or
not (yi = 0). Constraint (4) helps ensure that a VM is assigned
to one and only one of the servers. Constraints (5) and (6) help
guarantee that each server satisfies the resource requirement
of VMs on it.

Recent studies [42] have shown that the power consumed by
servers can be assumed to be linear with the CPU utilization.
An active but idle server burns between 50% and 70% of
the power consumed by the server working at full load [15].
Therefore, we defined the power model as

P(u) = k · Pmax + (1 − k) · Pmax · u (7)

where Pmax is the maximum power consumed by a full-
loaded server; k is the fraction of power consumption in
idle state; and u(u ∈ [0, 1]) is the CPU utilization of the
server. Since power consumed by the idle state is the major
source of wasted energy, reducing the number of active
servers can save energy significantly. In the experiments,
the consumed power is calculated according to the power
model in (7).

B. Ant Colony System

With major improvements over the origi-
nal ACO algorithms, the ACS was proposed by

Fig. 1. (a) Example of a construction scheme, with N = 5 and Mt = 4.
(b) Simplified bipartite graph of VMP, with solid lines representing VMs
assigned to servers. (c) Grouping relationship graph of VMs in VMP. The
ellipsoid represents a VM group onto a server. The solid line represents the
link between VMs which are assigned on the same server. The dotted lines
represent an assignment.

Dorigo and Gambardella [43] initially for solving the
traveling salesman problem (TSP). Real ants are capable of
finding the shortest path between the nest and the food source
according to information passed via pheromone. Inspired
by the foraging behavior of ants, ACS uses pheromone to
record historical searching experience. Moreover, heuristic
information is introduced to provide greedy information to
guide the search. In solving a TSP, ants construct a solution
by visiting the cities one by one until all are visited. During
the construction process, the next city to visit is selected
according to the pheromone and heuristic information.
Similarly, a VMP can also use such a step-by-step con-
struction as shown in Fig. 1(a), assigning the VMs one by
one to suitable servers. Thus, ACS is applicable to VMP
problems.

C. Pheromone in ACS

Pheromone records accumulated historical experience and
helps the search more directed. Under the guidance of
pheromone, ants search in the neighborhood of the best solu-
tion that has been found. Since VMP can be described as
a bipartite graph with links between VM and server as shown
in Fig. 1(b), an intuitive idea is to deposit the pheromone
on the edge between a VM and a server. However, for two
homogeneous servers, e.g., servers 1 and 2, there is no differ-
ence for a VM to be assigned to either servers 1 or 2. What
influence the assignment are the VMs that have been assigned
onto the same server. From this angle, an assignment can be
described as a graph with links between VMs as shown in
Fig. 1(c). The interconnected VMs are assigned to the same
server. Since each group corresponds to a server, the links
between VM and server [dotted line in Fig. 1(c)] is implied in
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the link between VMs. Based on this consideration, we intro-
duce pheromone between VM pairs to record the grouping
relationship of VMs.

III. OEMACS ALGORITHM FOR SOLVING THE VMP

A. Initialization State Configurations

To minimize the number of active servers and then reduce
the energy consumption for cloud computing, we develop
an ACS-based approach here, with OEM operations. The
resultant OEMACS algorithm searches for a solution with min-
imal number of servers to host all the VMs. We denote this
minimal number as Mmin in the feasible globally best solu-
tion Sgb. Since Mmin is our optimization objective which is
unknown in advance, we begin with Mmin = N in the ini-
tialization state, where N is the number of VMs. This means
that the initial feasible globally best solution Sgb is to place
the N VMs on N servers with one VM mapping to one
server. For each pair VM k and VM j(j �= k), we introduce
a pheromone value τ(k, j) and initialize it as τ0 = (N)−1.

The pheromone value indicates the preference of two VMs
to be assigned to the same server according to the historical
experience.

B. Solution Construction

After the initialization, OEMACS goes to construct solu-
tions iteration by iteration so as to find better feasible solutions
with fewer servers. In each iteration t(t ≥ 1), OEMACS
aims to find a feasible solution with one server less than
Mmin. Therefore, the ant tries to place the N VMs to the
Mt = Mmin − 1 servers.

In each iteration, multiple ants construct their own solu-
tions (assignment) with the guidance of the construction rule.
Each ant maintains a construction process by choosing ver-
tices from a construction scheme. Fig. 1(a) shows an example
of the construction scheme with N = 5 VMs and Mt = 4
available servers. It can be observed that the vertices of the
construction scheme are arranged into an Mt ×N matrix. Each
vertex xij denotes a VM assignment to a server. The undirected
arc between two vertices in the adjacent columns indicates
the potential route of ants. Taking Fig. 1(a) as an example,
a solution S = {s1, s2, s3, s4}, where si indicates a set of VMs
assigned to server i, is constructed by the ant according to
the path (x11, x42, x23, x34, x15) (denoted by black arrows line).
This solution shows that all the four servers are active to host
the five VMs, with the consolidation as s1 = {1, 5}, s2 = {3},

s3 = {4}, and s4 = {2}.

Each ant adopts similar process to construct a solution
according to the construction scheme like Fig. 1. Note that
the VMs are randomly shuffled before each construction pro-
cess. Then the ant constructs a solution by assigning VMs one
by one to the servers. Therefore, the VMs are not in particular
order for solution construction in the evolutionary process. We
describe the solution construction process based on one ant in
the follows. It should be noted that the following description
is based on a partial solution under construction. There are
totally N steps for an ant to construct a solution, with each
step to select a proper server for the corresponding VM. In the

lth (1 ≤ l ≤ N) step for placing VMj, a set of available servers
Ij is first defined as

Ij =

{

i

∣

∣

∣

∣

∣

N
∑

n=1

xin · vcn + vcj ≤ PCi and
N

∑

n=1

xin · vmn

+ vmj ≤ PMi, 1 ≤ i ≤ Mt

}

(8)

whose element i stands for that server i has enough remain-
ing resources (both CPU and memory) to host the unassigned
VMj. Then the ant uses a state transition rule to select a proper
server i from the set Ij. The pheromone and heuristic values
in the state transition rule are described as follows.

For the pheromone, OEMACS deposits the pheromone
between VMs rather than between a VM and a server. So
we design a method to translate the pheromone between VM
pairs into the preference between VM and server (the server
here is also the existing VMs group which includes the links
between VMs). The preference between VMj and server i rep-
resents the historical experience of packing the VMj together
with those VMs (the set of si) that have already been placed
on server i. Suppose the pheromone between two VMs, VM
k and VMj, is denoted by τ(k, j). We calculate the pref-
erence value T(i, j) of VMj to be assigned to server i as
the average of the pheromone between VMj and the VMs
that have been placed on server i. If there is no any VM
deployed on server i, the value of T(i, j) is set as τ 0. Therefore,
we have

T(i, j) =

{ 1
|si|

∑

k∈si
τ(k, j), if |si| �= 0

τ0, otherwise
(9)

where si is the existing VM set on server i and |si| is the
number of VMs deployed on server i.

Unlike the pheromone that provides historical information,
the heuristic information is for deriving a better selection at
the current local situation by a greedy strategy. In order to
use a smaller number of active servers, each active server
needs to host more VMs, which results in an increase of
resource utilization of the server. On the other hand, the
balance use of resources in all dimensions helps avoid the
situation that some resources are highly utilized while other
kinds are lowly utilized, which is not beneficial to the full
use of the servers. Based on these, the heuristic information
is designed to improve the utilization of different resources
as well as to balance the usage of different resources in the
servers (the utilization of different resources being high and
similar). The heuristic information is associated to each VM
assignment for measuring the utilization improvement that VM
j can bring to server i, whose value is calculated as

η(i, j) =
1.0 −

∣

∣

∣

PCi−UCi−vcj

PCi
−

PMi−UMi−vmj

PMi

∣

∣

∣

∣

∣

∣

PCi−UCi−vcj

PCi

∣

∣

∣
+

∣

∣

∣

PMi−UMi−vmj

PMi

∣

∣

∣
+ 1.0

(10)

where UCi and UMi represent the usage of CPU and memory
of server i before joining VMj. OEMACS considers two fac-
tors when designing the heuristic message: one is the resource
utilization in all dimensions (e.g., both CPU and memory), as



LIU et al.: ENERGY EFFICIENT ACS FOR VMP IN CLOUD COMPUTING 117

the denominator of (10); another is the balance of the remain-
ing resources on the server, as the numerator of (10). The
increase of the resource utilization and the balanced use of
different resources benefit VM consolidation and then reduce
the number of active servers.

With the design of pheromone and heuristic information,
the probability for assigning an unassigned VMj to server i is
calculated by

p(i, j) =
T(i, j)η(i, j)β

∑

k∈Ij
T(k, j)η(k, j)β

, ∀i ∈ Ij (11)

where β(β > 0) is a predefined parameter that controls the
relative importance of heuristic information.

In the OEMACS algorithm, the state transition rule is as
follows: for VMj, it chooses server i from the servers set Ij

by applying the rule given by

i =

{

arg max
k∈Ij

T(k, j)η(k, j)β , if q ≤ q0

I, otherwise
(12)

where q is a random number uniformly distributed in [0, 1],
I is a random number selected from Ij by a roulette wheel
selection according to probability distribution in (11), and q0
is a predefined parameter (0 ≤ q0 ≤ 1) and is used to con-
trol the exploitation and exploration behaviors of the ant. If q

is not larger than q0, then the ant chooses the server whose
preference value T and heuristic η are maximal, measured by
T(i, j)η(i, j)β . Otherwise, the ant chooses server i which is
probability selected according to (11).

A special case is that all servers are overloaded after join-
ing VM j (i.e., Ij = ϕ). To address this issue, we design
a complementary rule to assign VMj to server i as

i =

{

arg min
1≤k≤Mt

over(k), if q ≤ q0

R, otherwise
(13)

where R is a random integer in [1, Mt] selected by a roulette
wheel selection according to the probability distribution
in (15). If a randomly generated number q is not larger
than q0, then the ant chooses the server whose overload rate
after joining VMj is minimal. The overload rate describes
the difference between the usage and the resource capacity
after joining VMj. We calculate the overload rate over(i) of
server i as

over(i) =

∣

∣PCi − UCi − vcj

∣

∣

PCi

+

∣

∣PMi − UMi − vmj

∣

∣

PMi

. (14)

Otherwise, VMj will be assigned to server i(1 ≤ i ≤ Mt)

which is selected according to the probability distribution

r(i, j) = 1 −
over(i)

∑Mt

k=1 over(k)
. (15)

C. Objective Function

After an ant has finished constructing a solution, we must
evaluate its fitness value. Assume that S is an assignment

solution to the VMP problem. We evaluate the solution in
a two hierarchical structure as

f1(S) =

{
∑Mt

i=1 yi, if S satisfies the capacity constraint
Mt + 1, otherwise

(16)

f2(S) =

Mt
∑

i=1

((

|PCi − UCi|

PCi

+
|PMi − UMi|

PMi

)

· yi

)

(17)

where Mt is the number of servers provided in current iteration
t, yi means that whether server i is used in the solution S.
In (16), if the solution is feasible, f1(S) is the number of active
servers, which is not larger than Mt. Otherwise, f1(S) is set to
Mt +1 to distinguish from the feasible solutions, which means
that the number of servers we really need to use is the same
as the best feasible solution in the last iteration, that is, equals
to Mmin because Mt = Mmin − 1. Equation (17) calculates
the approximation of the placement to fill up the servers, to
evaluate the resource utilization or distinguish the easiness of
being transformed into a feasible solution. For two solutions,
we compare their f1 values first, and select the solution with
a smaller f1 value. If two solutions have the same f1 value,
we compare their f2 values, then select the one with a smaller
f2 value. That is, the solution with fewer servers and higher
utilization is preferred.

D. Pheromone Management

The pheromone records the historical preference informa-
tion. A local pheromone updating and a global pheromone
updating rule are implemented in the optimization process.
After a solution has been constructed by each ant, the local
pheromone updating operation is performed on each VM-pair
(k, j) on the same server. The updating rule is

τ(k, j) = (1 − ρ) · τ(k, j) + ρ · τ0 (18)

where 0 < ρ < 1 is the pheromone decay parameter.
In contrast, only is the best solution of the current iteration

allowed to perform the global pheromone updating operation
at the end of each iteration. When all the ants have built their
solutions, the best solution of the current iteration can be found
and denoted as Sb. The solution Sb, however, can be either
feasible or infeasible. If Sb is feasible, it means that OEMACS
has found a new feasible solution with servers no more than
Mt, then we update the feasible globally best solution Sgb to
Sb and update Mmin to f1(S

b). That is, the active servers used
in the solution Sb. On the other hand, if Sb is infeasible, it
means that OEMACS cannot find a feasible solution with only
Mt servers. In this case, OEMACS carries out the OEM local
search on Sb, which is described in Section III-E. No matter
the Sb is feasible or not, the global pheromone updating rule
is carried out on Sb after the above operations, to increase the
pheromone on the VM-pair of the same server of Sb as

τ(k, j) = (1 − ε) · τ(k, j) + ε · � τi, if(k, j) ∈ si,∀si ∈ Sb

(19)

�τi =
1

f1
(

Sb
) +

1

LCi + LMi + 1
. (20)
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Fig. 2. Example of the ordering exchange operation on a solution where
server 1 is overloaded while servers 2–4 are not overloaded, and the solution
becomes feasible after exchanging VM 11 on server 1 with VM 7 on server 4.

where ε(0 < ε < 1) is the pheromone enhance parameter,
f1(S

b) is the number of servers used in Sb, LCi and LMi rep-
resent the normalized remaining CPU and memory resource of
server i (the ratio of remaining resource to the total resource).
The key idea behind the above equation is to record an almost
“full” VM group (the utilization of server is high) and a better
solution. The pheromone of VM pairs in the more “occupied”
server will increase more.

The local and global pheromone updating rules play dif-
ferent roles in guiding the search act of the ants. The local
pheromone updating rule reduces the appeal of grouping VM
pair which has been found by the last ant, and to help the
other ants explore new assignment space. It is able to avoid
rapid convergence toward a narrow neighbor region of the best
previous route and enhance the population diversity. Global
pheromone updating rule is used to strengthen the ties between
VM pairs in the good assignments and guides the ants to
construct better solutions in a more promising direction.

E. Local Search Procedure

Local search is significant in transforming an infeasible
solution into a feasible solution. At the end of each iteration,
before the global pheromone updating, the OEM local search
is carried out on the current best solution Sb if Sb is infea-
sible. The OEM includes two procedures. First, an ordering
exchange operation and then a migration operation. Both oper-
ations try to adjust the VM assignments to ease or eliminate
the overloaded servers. If Sb becomes feasible after the local
search, we update the feasible globally best solution Sgb to
Sb and update Mmin to the server number of the new feasible
solution.

1) Ordering Exchange Operation: The ordering exchange
operation swaps VMs between different servers. The operation
is used to enhance the resources utilization of nonoverloaded
servers and to avoid unbalance resources utilization of over-
loaded servers. For each overloaded server, we can try to
exchange every VM on it with every VM on a nonoverloaded
server, to observe whether the overloaded server can become
nonoverloaded while the nonoverloaded server is still nonover-
loaded. In order to reduce the computational burden of this
process, we design the following exchange strategy.

For every overloaded server i, we sort the VMs on it
according to the absolute difference between CPU and RAM
requirements and give preference to the VM with higher dif-
ference for exchange (i.e., sort to front). Then we select one
nonoverloaded server k for exchange. The VMs on server
k are sorted by the rule contrary to server i (i.e., VM with
smaller resource difference is sorted to front). Subsequently,

Fig. 3. Example of the migration operation where VM 1 on server 1 is
moved to server 3. The dotted rectangular with VM number represents a VM,
and the large solid rectangular represents a server.

we check the VMs on server i one by one with the VMs on
server k one by one to determine whether the two VMs can be
exchanged. The process ends until the exchange makes server
i become nonoverloaded while the server k is still nonover-
loaded, or all VMs on server k have been checked whether
to exchange. If server i cannot turn to nonoverloaded after all
exchange attempts, another nonoverloaded server is selected
for exchange.

Fig. 2 presents possible transition directions of the exchange
operation in an example. The dotted rectangular with VM
number represents a VM, and the large solid rectangular rep-
resents a server. The length of horizontal line of rectangular
represents CPU size, and the length of vertical line represents
the RAM size. Two VMs connected by arrow line are the
exchange objects. Server 1 is overloaded because the required
RAM exceeding the size. Servers 3 and 4 are not overloaded.
After the ordering exchange operation, VM 11 on server 1 is
exchanged with VM 7 on server 4. Then the solution becomes
feasible. The exchange makes the resource utilization be less
than or get near to the resource upper bound of servers.

2) Migration Operation: The migration operation sched-
ules a VM from an overloaded server to a nonoverloaded
server that has enough remaining resource to satisfy the
resource requirement of this VM. The operation is similar
to Falkenauer’s remove mutation [57]. Check the VMs on
the overloaded servers one by one with the nonoverloaded
servers one by one to determine whether the VM can move to
the server. The operation terminates when all servers become
nonoverloaded or there is no VM movement that can be car-
ried out. A possible transition scenario of migration operation
is illustrated in Fig. 3. The length of horizontal line of rect-
angular represents CPU size, and the length of vertical line
represents the RAM size. The pale VM 1 on server 3 shows
that VM 1 fits server 3. The arrow line connects a VM and
a server, which highlights the direction of VM migration.

Local search is based on the idea of lowering resource
utilization of overloaded servers. The migration operation is
performed after the ordering exchange operation. In an early
stage, the number of servers is large enough to find a feasible
solution, so local search does not work. In a later stage, the
searching approaches the optima and becomes harder. Local
search can improve searching by converting the infeasible
solution into a feasible one.

F. Complete OEMACS Algorithm

The overall flowchart of the OEMACS algorithm is shown
in Fig. 4 and is described in the following six steps.

Step 1: Initialization. Set the parameters τ0. Set the feasi-
ble globally best solution Sgb as placing the N VMs
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Fig. 4. Flowchart of the OEMACS algorithm.

on N servers with one VM mapping to one server.
Therefore, set the number of minimum servers
Mmin as N. Set the iteration t = 1.

Step 2: Set Mt = Mmin−1. Let m ants construct m solutions
according to the construction rule, and perform
local pheromone updating on each solution.

Step 3: Evaluate the fitness values of the m solutions.
Step 4: Find out the current iteration best solution Sb; if

Sb is feasible, update Sgb as Sb and set Mmin =

f1(S
b); otherwise, perform OEM local search on Sb.

Update Sgb and Mmin if the local search successes.
Step 5: Perform global pheromone updating on Sb.

Step 6: Termination detection. When the maximum number
of iterations is reached, the algorithm terminates.
Otherwise, set t = t + 1 and move to step 2 for the
next iteration.

Throughout the procedure, step 2 is a main process of the
OEMACS algorithm. A detail description is shown in the
subflowchart in Fig. 4.

IV. EXPERIMENTS AND COMPARISONS

Experimental tests are carried out in this section to verify
the performance of OEMACS. All the algorithms have been
implemented in C ++, and ran on a PC with a Pentium Dual
CPU i7 and 4.0GB RAM.

The experiment instances in [32] are used to test the
performance of the OEMACS algorithm. Moreover, we design
two other test sets, tests B and C, with a bottleneck resource
(one resource demands more) under homogeneous and het-
erogeneous server environments, respectively. The efficiency

of OEMACS is also evaluated by comparing with the corre-
sponding results obtained by the FFD heuristic approach [40],
the RGGA approach [32], the ACO-based approach [11],
multiobjective MACO [36], and HACOPSO [37]. FFD sorts
the VMs in descending order by first considering CPU require-
ment and then RAM requirement and assigns each VM to the
first server with enough remaining resource. FFD gives the
result which is less than or equal to 11/9 ∗ OPT + 1, and per-
forms well compared with other deterministic algorithms [40].
Therefore, FFD can be regarded as a representative of heuris-
tic and deterministic algorithms. The RGGA is compared
because of its superiority over traditional approaches [32].
In an RGGA, a crossover operator is performed to generate
a candidate solution. The servers in two parents are combined
together and sorted by resource utilization. Then, the more
full servers with different VMs are selected. The remaining
unassigned VMs are sorted in a decreasing order accord-
ing to the requirement of CPU first and then memory, and
are placed by the FFD strategy. The ACO algorithm based
on max-min ant system in [11] is compared to verify the
efficiency of the proposed ACS approach. The MACO and
HACOPSO are compared because they are the most recent
well-performed approaches that are reported to have bet-
ter performance than other algorithms, so as to evaluate the
performance and advantages of OEMACS.

The OEMACS related parameters are m = 5, q0 = 0.7,
ρ = 0.1, ǫ = 0.1, β = 2.0, M1 = N − 1, τ0 = (N)−1, and
maximal iteration T = 50. We assume that the resource uti-
lization can reach 100%. Parameter settings of RGGA, ACO,
MACO, and HACOPSO are consistent with their original lit-
eratures, with their population sizes being 75, 5, 8, and 20,
respectively, while their maximal iterations are 100, 50, 100,
and 500, respectively. Therefore, the maximal function eval-
uations (FEs) for RGGA, ACO, and MACO are 7500, 250,
800, and 10 000, respectively. Therefore, RGGA, MACO, and
HACOPSO all have much larger FEs than the one used by
OEMACS, which is only 5×50 = 250, because we anticipate
that OEMACS converges faster. As EC algorithms all con-
tain certain randomness in the search process, they perform
30 independent runs on each instance in all the test environ-
ments for fair comparison. The runtime of FFD is a few micro
seconds in all instances. So it is not listed. The best results
are marked in bold face.

A. Test A: Large-Scale Homogenous Environment

The data setproposed in [32] were created so that every VM
would fit the set of servers perfectly (i.e., there is no redun-
dant resources in any server), based on server consolidation
studies by VMware. It includes nine different two-capacity
problem instances of differing size from 1000 to 6000 VMs,
numbered from A1 to A9. Each server has 500 CPUs and
500GB RAM. The CPU requirement of VM is an integer
within the range of [1,128], and the memory requirement is
an integer within the range of [0,100]. Therefore, the ratio of
total requirement of CPU and memory is around 1:1. As the
optimal placement has no remaining resources in any server,
these problems are meant to be very hard. The OPT column
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TABLE I
EXPERIMENTAL RESULT COMPARISONS IN TEST A WITH DIFFERENT SIZE OF VM

Fig. 5. Average utilization of CPU and RAM of all active servers on A9.

in the table represents the minimal number of servers used for
deploying all the VMs.

It can be observed from Table I that OEMACS obtains
the best solution. More significantly, OEMACS obtains the
same number of active servers in 30 runs, indicating its sta-
ble performance. The FFD yields very poor solutions using
the maximal number of servers. ACO, and MACO always
perform worse than OEMACS and RGGA but better than
FFD. HACOPSO performs better than FFD on some cases.
Moreover, as the problem size increases, the advantages of
EC-based algorithms become more significantly when com-
pared with the traditional algorithm FFD. For example, in A1,
ten physical servers are less in OEMACS than in FFD, while
in A9, more than 100 physical servers are less. Fig. 5 dis-
plays the utilization of CPU and RAM of active servers for
OEMACS, RGGA, ACO, MACO, HACOPSO, and FFD on
A9. OEMACS and RGGA obtain the highest CPU and RAM
utilization which is near to 100%. More significantly, the
utilization rates of the CPU and RAM resources are balanced.

Another advantage of OEMACS is that it can obtain better
solution than other approaches do with fewer FEs in much
shorter computational time. Table I records the average run-
ning time and FEs when the algorithm cannot improve the
solution quality any more. For example, in A1, OEMACS
uses average 39.6 FEs (with average 1.366 s) to obtain the
final result 113. However, when RGGA stops in the result
113, it needs average 2387.5 FEs (with average 3.300 s),
and ACO needs 45.8 FEs (with 1.836 s) to obtain the result
116.5, MACO needs 285.6 FEs (with 11.200 s) to obtain the
result 130.26, and HACOPSO needs 914 FEs (with 7.233 s)

to obtain the result 117.56. The convergence speed advan-
tage to obtain good result is very significant when compared
OEMACS with RGGA, MACO, and HACOPSO, although
ACO sometimes stops improving the solution early than
OEMACS. However, the early stop makes ACO result in
very poor solutions, especially in large-scale problems. The
detailed convergence of OEMACS will be further analyzed
and discussed in Section IV-E.

The results in test A show that OEMACS is able to solve
large-scale problems (even with number of VMs up to about
6000) under homogenous server environments where the rel-
ative overall demands of CPU and RAM are comparable
(the ratio being 1:1). Moreover, OEMACS has general better
performance in obtaining better solution with fast convergence
speed when compared with the compared FFD, RGGA, ACO,
MACO, and HACOPSO algorithms.

B. Test B: Bottleneck Resource Homogenous Environment

To further test the effectiveness and efficiency of OEMACS,
we designed a set of data that models the VMs and servers in
a cloud computing environment that has bottleneck resource.
We created eight different problem instances with different
sizes from 100 to 2000, numbered sequentially from B1 to
B8. Each server has a 16-core CPU and 32GB RAM. Each
VM has CPU requirement of 1–4 cores and memory require-
ment of 1–8GB, which is generated randomly from discrete
uniformly distributions. CPU is the bottleneck resource in this
case because the probability of 4-core VM is 0.25 but 7 or 8GB
VM is 0.125. Therefore, the overall ratio of requirement of
CPU to memory utilization is nearly 10:9. Since the instances
are generated randomly, we do not know the optimal solu-
tion. We estimate the lower bound of the optimum as M̃ and
calculate its value as

M̆ = max

{⌈
∑N

j=1 vcj

PCi

⌉

,

⌈
∑N

j=1 vmj

PMi

⌉}

(21)

where PCi and PMi are the CPU and RAM capacities of any
server because the servers are homogenous, while

∑N
j=1 vcj

and
∑N

j=1 vmj are the sum of CPU and RAM requirements of
all the VMs, respectively.

The results obtained by OEMACS, FFD, RGGA, ACO,
MACO, and HACOPSO are given and compared in Table II.
Similar to the results in test A, results presented in Table II
also reveal the effectiveness and efficiency of OEMACS. It can
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TABLE II
EXPERIMENTAL RESULT COMPARISONS IN TEST B

TABLE III
EXPERIMENTAL RESULT COMPARISONS IN TEST C

Fig. 6. Average utilization of CPU and RAM of all active servers on B8.

be observed that FFD cannot find the optima in all instances
and performed the worst compared with other five algorithms.
OEMACS not only outperforms FFD, but also does better than
RGGA, ACO, MACO, and HACOPSO. From Table II, we can
see that RGGA and ACO achieve results that are equal to M̌ in
only two out of the eight instances whose number of VMs is
not larger than 200. However, the proposed OEMACS obtains
results that are equal to M̌ in all of the eight instances within
only 30 FEs. When the problem size increases, the superior-
ity of OEMACS is more apparent. In comparison with ACO,
the advantage of OEMACS is obvious. ACO cannot always
obtain the optima within the predefined maximum number of
FEs except for very small size instances like B1 and B2. For
instance B1, ACO is very fast to find the optima in the second
iteration while OEMACS in the fourth iteration. This may be
due to that ACO selects VM to be assigned to the current
server and open another server while no VM can be assigned
to it. ACO acts like the greedy algorithm FFD and can find
good solution in early stages to converge quickly in very small
size problems. OEMACS constructs solutions from VM’s view
and selects a server for each VM, so it converges a litter slow
in early stage and but jumps out of local optimal rapidly.
The results show that OEMACS outperforms not only tradi-
tional FFD and RGGA, but also other ACO-based algorithms,

in terms of both solution quality and the optimization speed,
especially in large-scale homogeneous server problems with
bottleneck resource.

Fig. 6 shows the average CPU and RAM utilization of
the active servers in the assignment obtained by OEMACS,
RGGA, ACO, MACO, HACOPSO, and FFD on test B8.
OEMACS obtains the largest CPU and memory utilization.
The CPU (the most critical resource) utilization is near to
100% and RAM is near to 90%. It shows that different
resource-intensive VMs are balanced, so that both resources
are better exploited. In general, OEMACS is able to obtain the
best assignment.

C. Test C: Hard Heterogeneous Environment

In tests A and B, all the servers are homogeneous, as in
real cloud environment servers are often heterogeneous. So we
designed another test environment with heterogeneous servers
and CPU-intensive and RAM-intensive VMs. Two kinds of
servers (type s0 16-core CPU, 32GB RAM, Pmax = 215 W
and type s1 32-core CPU, 128GB RAM, Pmax = 300W) are
provided. The number of servers of type s0 is set as Ms0 =

9N/10 (N is the number of VMs) and type s1 as Ms1 =

N/10. This makes that using only the large servers (e.g., type
s1) cannot host all the VMs, so that both types of servers have
to be used. We created five problem instances of different sizes
from 100 to 500, which are numbered sequentially from C1 to
C5. In every problem instance, VMs are generated by discrete
uniform distribution of [1, 8] for CPU and [1, 32] for memory.
The memory is the bottleneck resource. The lower bound of
the optimum M̃ is estimated as

M̆ = Ms1 + max

{⌈
∑N

j=1 vcj − PCs1 · Ms1

PCs0

⌉

,

⌈
∑N

j=1 vmj − PMs1 · Ms1

PMs0

⌉}

(22)

which is similar to (21) except that both types of servers are
considered because of the heterogeneous environment.
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Fig. 7. Average utilization of CPU and RAM of active servers of all, types
s0 and s1 on C5.

The results are given in Table III. As shown in the table,
FFD performs poorly. Neither can RGGA, ACO, MACO,
nor HACOPSO find the optima in all instances. In contrast,
OEMACS can obtain the best results among all the six algo-
rithms in all instances and can even find the optima in C2,
C3, and C5. In the instances C1 and C4, the results obtained
by OEMACS are only with one server away from the optima.
However, the results obtained by other algorithms are far away
from the optima. Moreover, OEMACS finds the optima within
250 FEs while RGGA and other ACO-based algorithms cannot
find even using more FEs. In summary, OEMACS outperforms
FFD significantly in terms of solution quality and outper-
forms RGGA and other ACO-based algorithms in terms of
both solution quality and search speed.

Fig. 7 shows the average CPU and memory utilization of the
active servers of all, types s0 and s1, respectively, in the assign-
ment obtained by different algorithms. Both average CPU and
RAM utilization of all active servers of FFD’s assignment are
the lowest. There is a significant gap between the utilization
of CPU and RAM both for types s0 and s1, which demon-
strates that FFD cannot efficiently balance different resource.
For OEMACS, the CPU utilization of the active servers of type
s0 is the highest, while type s1 is smaller than the RGGA. It
shows that the OEMACS prefers to highly integrate the VMs
on high configuration servers while RGGA prefers low-profile
servers. Memory is the bottleneck resource and limits the con-
solidation level. The average memory utilization of OEMACS
is the highest, near to 100%, which shows that OEMACS can
obtain the highest consolidation of VMs with high resource
utilization.

Compared with test B, OEMACS needs more FEs and
time to obtain the optima of the same problem size. This is
because the VMP problem becomes harder in heterogeneous
server environments. However, OEMACS can still find the
optima by using more computing power. Take C5 for exam-
ple, OEMACS can still achieve the optima of 500 VMs within
0.5 s. OEMACS can find the optima in acceptable time. FFD
does not seem suitable for large-scale problems as it performs
poorly. OEMACS performs well in all three tests. Tests A and
B are in homogeneous server environments with different cor-
relation ratios for CPU and memory utilization, and test C is
of a heterogeneous server environment. Therefore, our results

TABLE IV
COMPARISON RESULTS ON STATISTICALLY SIGNIFICANT DIFFERENCES

OF OEMACS WITH ALL CONTENDERS AND ON RUNTIME OF ALL

ALGORITHMS IN TESTS A, B, AND C

show that OEMACS can find optima or quasi-optimal solu-
tions for large-scale homogeneous and heterogeneous server
data center environments with resource-intensive VMs.

A nonparametric statistical test called Wilcoxon’s signed
rank test is conducted between the compared algorithm and
OEMACS at a 5% significance level to judge whether the
results obtained with the best performing algorithm signifi-
cantly exhibits superior performance. The null hypothesis in
each test is that no difference exists between the compared
algorithm and OEMACS. We mark the cases with “+” and
“−” when the null hypothesis is rejected to indicate that the
compared algorithm performs significantly better or worse
than OEMACS. The cases marked “=” means that there is no
statistically significant difference between the performance of
the two algorithms. The numbers of the three kinds of statisti-
cal significance cases (+/=/−) are reported in Table IV in this
paper and the details in each test are listed in Table S.I in the
supplementary file. From the table, we can see that OEMACS
performs significantly better than RGGA, ACO, MACO, and
HACOPSO on 16, 20, 20, and 22 out of 22 cases, respectively.
OEMACS is seen outperforming the algorithms compared.

The runtime required to obtain the best solution for
each algorithm (whose mean value has been reported in
Tables I–III) is also performed with a t-test at a 5% signifi-
cance level to compare with the one of OEMACS. The results
of t-value and p-value are reported in Table S.II in the supple-
mentary file. From Table S.II, we can see that OEMACS can
find better or similar solutions in significantly shorter time in
most cases. Although both number of FEs and runtime that are
required to obtain best solutions can reflect the convergence
speed of the algorithm, it is still interesting to investigate the
total runtime of the algorithm until it terminates. Therefore,
the mean total runtime of the 30 runs are presented and com-
pared in Table S.III in the supplementary file, for each problem
instance and for each algorithm. Table IV also reports the
total runtime ranks of OEMACS, RGGA, ACO, MACO, and
HACOPSO. From the table, we can observe that the runtime
of OEMACS ranks the first and is the shortest among the
compared algorithms.

The OEMACS is also compared with CPLEX, which is
a linear program solver. The IBM ILOG CPLEX Optimization
Studio 12.6.1.0 using a mixed integer programming solver in
a parallel mode with four threads is adopted. The results in
Table V show that both CPLEX and OEMACS can obtain
similar good solutions on small scale instances, except that
CPLEX does slightly better than OEMACS on C1 which
is concerned with only 100 VMs, while performing worse
than OEMACS on B4 and C4 which are concerned with
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TABLE V
COMPARISON RESULTS BETWEEN OEMACS AND CPLEX

(a) (b)

(c) (d)

(e)

Fig. 8. Influence of the parameters in OEMACS on A1 and C5. (a) m. (b) q0.
(c) β. (d) ρ. (e) ǫ.

400 VMs (where CPLEX stops when it obtains the results
due to out-of-memory). On the running time, OEMACS is
much faster than CPLEX. The speed advantage becomes more
evident as the problem scale increases. Moreover, CPLEX con-
sumes too much time when dealing with VMP with more than
500 VMs, indicating that it may be not suitable for large-scale
VMP. Therefore, we only give the available results on B1–B4
and C1–C4 in Table V.

D. Analysis of OEMACS Parameters

The OEMACS parameters include the population size of
ants m, β, q0, ρ, and ǫ. In order to study the influences of the
parameters to the solution quality, we take A1 and C5 as an
example and perform parameter analysis in this section.

The investigation begins with the parameter m. We set m

from 5 to 50 with a step length of 5. All the other parameters
remain the same as stated above. Both the mean results of
A1 and C5 plotted in Fig. 8(a) are nearly invariant with the
increase of population size m. Nevertheless, a large population
size causes a high computational burden in each generation.

Fig. 9. Convergence curves of OEMACS and ACO on A9.

By considering both of these, this paper adopts the population
size of 5 in OEMACS.

The next parameter tested is q0. In the following investi-
gation, q0 varies from 0.1 to 0.9 with a step length of 0.1.
The mean number of active servers in obtained solutions are
plotted in Fig. 8(b). The tendency of the curves indicates that
it is better to use a larger q0 for better performance. However,
too large a q0 makes the algorithm perform poorly due to the
loss of exploration ability, e.g., the results for q0 = 1.0 are
too bad to be plotted within Fig. 8(b). Therefore, we set q0
0.7 in this paper.

Then parameter β is investigated. As shown in Fig. 8(c),
for A1, the performance of OEMACS with different configu-
rations is similar. For C5, when β is 2, 5, 6, or 9, OEMACS
performs the best. The results for β = 0 are poor and not plot-
ted in Fig. 8(c), which indicates that the heuristic information
plays an important role on the algorithm performance.

Finally, parameter ρ for pheromone local updating and ǫ for
global updating are tested. Fig. 8(d) and (e) shows the results
obtained. The results are poor when parameters ρ and ǫ are
set to 0 or 1.0; so they are not plotted in Fig. 8(d) and (e).
For A1, the performance of OEMACS is similar with different
values of ρ, while for C5, a relatively small ρ value seems
to be preferred. This may be due to the fact that a smaller
ρ is helpful to avoid a too rapid pheromone evaporation on
the visited assignment and to use the historical experience
recorded in the pheromone. The curves in Fig. 8(e) of the
impact of ǫ are nearly parallel to the horizontal axis. OEMACS
is seen insensitive to the value of ǫ.

From Fig. 8, the impact of β, ρ, and ǫ further confirms
that these parameters are promising and OEMACS is not very
sensitive to the parameters. This is also an advantage of the
OEMACS algorithm.

E. Further Convergence Analysis of OEMACS

In this section, we analyze the convergence of
OEMACS. Take A9 as an example. The situations on
the other problems are similar. The maximum number of
iterations is set as 100. Fig. 9 shows the optimization curves
of OEMACS and ACO. In the first iteration, 5949 servers
are provided, and OEMACS finds a feasible solution with
1519 servers in the first iteration, and obtains a feasible
solution with 1034 servers in the second iteration. It can be
noted that, while OEMACS initially finds worse solutions,
it quickly improves the performance following a steep curve
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(a)

(b) (c)

Fig. 10. Experimental results of OEMACS and its variants, noPhe, noHeu,
noPhe&noLS, noHeu&noLS, and noLS on A9. (a) Convergence curves with
error bars. Box plots of results at (b) 30 generations and (c) 50 generations.

and surpasses ACO, before slowing down when approaching
the optima (with 481 servers) from the fifth iteration, and
then converging to 482 at the 30th iteration. Conversely,
starting on lower server numbers initially, ACO undergoes an
incremental progress, and converges prematurely to a higher
level (resulting in 502 servers).

The above results demonstrate that OEMACS can converge
to a near-optima more effectively and more quickly.

F. Benefits of Pheromone and Heuristic Components

We are interested in identifying the benefit of the three
components of OEMACS: 1) pheromone; 2) heuristic infor-
mation; and 3) local search. For this purpose, we consider
five OEMACS variants, i.e., noPhe, noHeu, noPhe&noLS,
noHeu&noLS, and noLS. They differ from OEMACS only in
that noPhe does not use the pheromone (and “preference”),
noHeu does not adopt the heuristic information (β = 0),
and noLS does not perform local search. The A9 is taken
as an example. The convergence curves and box plots of
results are illustrated in Fig. 10. Experimental results have
shown that both the pheromone and heuristic information are
fundamental in helping the OEMACS algorithm find good
solutions within a reasonable period of time. As seen from
Fig. 10(b) and (c), the noPhe variant and noPhe&noLS vari-
ant have similar but poor performance. This is because that
heuristic information and local search are greedy strategies
and therefore the OEMACS variants without pheromone are
actually reduced to a stochastic restart greedy algorithm that
is easy to be trapped into local optima. Moreover, noHeu per-
forms better than noPhe, likely due to that it is guided by
reinforcements provided by the global updating rule in the
form of pheromone although noHeu is not helped by heuris-
tic information. Therefore, pheromone plays a significant role
in enhancing the algorithm performance, helping OEMACS
perform better than a randomized restart greedy algorithm.

When referring to the heuristic component, the results show
that the performance of noHeu&noLS is worse than both noLS
and noHeu, while all these three variants perform significantly
worse than OEMACS. These indicate the importance of both
the heuristic information and local search in enhancing the
algorithm performance. From Fig. 10(a) and (b), we can see
that OEMACS converges to solution with 482 servers within
30 generations while its noHeu variant gets significantly worse
solution with 504 servers. Even given more computational
budget (50 generations), noHeu still cannot obtain solution
of 482 as illustrated in Fig. 10(c). Along the whole con-
vergence process, OEMACS always keeps its result below
noHeu, especially with a large difference in the early stage.
Similarly, noHeu&noLS also performs worse than noLS. Thus,
the heuristic information helps speed up the convergence and
improves the performance of the algorithm.

G. Effectiveness of Local Search

Local search is an important feature in the proposed
OEMACS. Two operations of local search contribute in dif-
ferent ways to the optimization process. In this section,
we validate the effectiveness by comparing the results of
OEMACS with its variants without local search or with only
one operation of local search. The variants without local
search, ordering exchange operation or migration operation
are termed OEMACS-noLS, OEMACS-noE, and OEMACS-
noM, respectively. The settings of these variants are exactly
the same as OEMACS except that one of the three com-
ponents is not applied. The following study takes A2, B8,
and C5 as examples. A2 and B8 are large-scale problems of
homogeneous server settings, and C5 is a complex problem
in a heterogeneous server environment. The situations on the
other problems are similar.

Table VI lists the results of the four algorithms averaged
over 30 independent runs. It can be observed that OEMACS
obtains the best solutions, followed by OEMACS-noM and
OEMACS-noE, whereas OEMACS-noLS performs the worst.
The OEMACS-noLS and OEMACS-noE cannot achieve the
optima or approximate optima in 7500 FEs. The advantages
of OEMACS over the other three algorithms confirm that
the local search is indeed effective in finding high-quality
solutions. Compared with the migration operation, the order-
ing exchange operation contributes more in improving the
solutions since OEMACS-noM can find good solutions as
OEMACS using more FEs while OEMACS-noE cannot within
the maximum FEs.

Table VII shows the success rates of local searches
in improving infeasible solutions on A2, B8, and C5 in
OEMACS. If an infeasible solution is transformed into a fea-
sible solution by the operation, we say that it is successful.
Because the migration operation is carried out after the order-
ing exchange operation, the success rate only calculates the
case improved by the migration operation when the solution
is not improved by the ordering exchange operation. It can
be observed that the success rate of local search is high. For
A2 and B8, the infeasible solution can be improved by the
ordering exchange operation but not the migration operation.
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TABLE VI
EXPERIMENTAL RESULT COMPARISONS OF OEMACS, OEMACS-NOM, OEMACS-NOE, AND OEMACS-NOLS FOR PROBLEM A2, B8, AND C5

TABLE VII
SUCCESS RATE OF IMPROVING THE INFEASIBLE SOLUTION

OF LOCAL SEARCH ON A2, B8, AND C5

For C5, the solution, which is transformed by the ordering
exchange operation can be improved by the migration opera-
tion. This helps the exchange operation to improve the solution
further.

For B8, the ordering exchange operation improves all the
infeasible solutions on B8, so the migration operation is not
executed, and OEMACS performs the same as OEMACS-
noM. The time of OEMACS and OEMACS-noM is close.

For A2, the success rate of the ordering exchange operation
is just 88.60%; so the migration operation is involved. The
migration operation does not transform infeasible solutions
into feasible solutions. However, the migration effect results
in pheromone transmitting the VM group information into the
next generation. Thus the migration operation improves the
algorithm indirectly. OEMACS converges in 42.6 FEs with
4.097 s, while OEMACS-noM in 45 FEs with 4.760 s, which
shows that the migration operation leads to shorter time.

As for C5, although the success rate of the migration oper-
ation is only 9.57%, it helps the algorithm converge more
quickly. OEMACS uses only less than a half time to obtain
the final results when compared with OEMACS-noM (i.e.,
0.4526 versus 1.0). Moreover, the migration operation per-
forms better when it cooperates with the ordering exchange.
For all three problem instances, OEMACS takes the shortest
time. Hence, both the ordering exchange operation and the
migration operation are important for improving the solutions
and finding the optima in shorter time.

All the results in Tables VI and VII indicate that local
search is important and necessary in the proposed algorithm
OEMACS.

H. Energy Saved by OEMACS

The benefit of consolidation is determined primarily by the
amount of power wasted due to the resource underutiliza-
tion. The power consumed by active but idle servers, that
is, the quantity Pidle, is the major source of energy waste.
The value of Pidle is expressed as a percentage or fraction
k of the power consumed when the server operates at full
capacity, Pidle = kPmax in (7). Pidle is an inherent part of

power consumption of an active server. For the given VMs,
the utilization of CPU is determinant, so the second term
u · (1 − k)Pmax in (7) is certain to be included in the power
consumption. To reduce it, let us start with the first term
kPmax of (7). The Pidle is consumed only if the server is
active. By means of consolidation to increase the resource
utilization and reduce the number of active severs, the power
energy can be significantly reduced. The Pmax is set to 215W
in tests A and B. Fig. 11 shows the power consumption of
OEMACS, RGGA, ACO, MACO, HACOPSO, and FFD on
tests A, B, and C, when k = 0.6. We can observe that
OEMACS consumed less power than other algorithms in all
cases. To further analyze the benefit of consolidation, we cal-
culate the power consumption with different values of k in two
scenarios with or without bottleneck resource. The following
study takes A9 and B8 as examples. Both A9 and B8 are
large-scale problems of homogeneous server settings, while
B8 encounters bottleneck resources. The situations encoun-
tered by the other problems are similar. Fig. 12 displays the
overall amount of power consumption of various algorithms
on A9 and B8.

In Fig. 12(a), the consumed power of different algorithms
for A9 is illustrated. Compared with FFD, OEMACS allows
the data center to reduce the consumed power significantly,
from about 9–15 kW. OEMACS and RGGA consumed the
least power. In A9, the overall demands on the CPU and
RAM are approximate. Both the utilization of CPU and RAM
of OEMACS are incredibly closed to the permitted thresh-
old (100%) seen from Fig. 5. Different resources are utilized
effectively. The consolidation of VMs allows the idle servers
to be hibernated so as to reduce the consumed power. As the
value of k increases, the reduced power increases.

Fig. 12(b) gives the power consumption of different algo-
rithms for B8. The power consumed by OEMACS is the lowest
compared with traditional algorithm FFD and other evolution-
ary algorithms RGGA, ACO, MACO, and HACOPSO. This
result coincides with the highest utilization of CPU and the
lowest number of active servers of OEMACS. In B8, the
CPU is the pivotal resource and determinate the consolidation
degree. From Fig. 6, we can see that the CPU of OEMACS
utilized up to the permitted threshold 100% and RAM to
90%, while the CPU and RAM of FFD utilized up to 90%
and 80%, respectively. The number of the active servers of
OEMACS is minimal and is equal to the optimum, which
is shown in Table II. As servers get more power efficient
(k becomes smaller), the reduced power decreases, and the
superiority of consolidation decreases. Nevertheless, when
servers consume only 40% of the power at idle state,
OEMACS can still save power about 6%, compared with
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Fig. 11. Power consumption of different algorithms under different test cases.

(a) (b)

Fig. 12. Consumed power with different values of k (the ratio of power
consumed at idle state to maximum utilization) on (a) A9 and (b) B8.

FFD. The results in Fig. 12 confirm that OEMACS have
a substantial advantage in saving power.

V. CONCLUSION

Energy consumption contributes most to the total cost in
a cloud system. This motivates us to have developed an energy
efficient OEMACS for VMP in cloud computing. The optimal
VM deployment has been achieved with the minimum number
of active servers and by switching off the idle servers.

The VMP problem is a complex NP-hard problem. To
solve this problem, OEMACS, an ACS-based approach, has
been developed in this paper. The assignment of VMs is
constructed by artificial ants based on global search infor-
mation. OMEACS distributes pheromone between VM pairs,
which represents a bond among the VMs on the same server
and records good VM groups through learning from histor-
ical experience. To revise infeasible solutions, local search
is performed, which contributes significantly to improving
the solutions and speeding up global convergence of the
OEMACS. Moreover, the number of servers provided for plac-
ing VMs reduces as the generation number grows, avoiding
possible wastes of computation while providing guidance for
further advancement of the solutions. These distinct features
and the strong global search nature of an ACS make the

OEMACS efficient for large-scale problems. It shows a sig-
nificant advantage compared with other heuristic algorithms,
which often encounter difficulties when the problem scale
grows with cloud computing.

The OEMACS is applied to cloud systems of various sizes
and characteristics. Experimental results show that OEMACS
has achieved the objectives of minimizing the number of active
servers, improving the resource utilization, balancing different
resources, and reducing power consumption. Moreover, the
parameter analysis shows that the performance of OEMACS
is not very sensitive to the parameters, and this makes the
OEMACS more competitive. In conclusion, the OEMACS
is seen an effective and efficient approach to the VMP
problem.
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