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Abstract The Internet of Things (IoT) is a vision in which billions of smart
objects are linked together. In the IoT, “things” are expected to become active
and enabled to interact and communicate among themselves and with the en-
vironment by exchanging data and information sensed about the environment.
In this future interconnected world, multiple sensors join the internet dynam-
ically and use it to exchange information all over the world in semantically
interoperable ways. Therefore, huge amounts of data are generated and trans-
mitted over the network. Thus, these applications require massive storage, huge
computation power to enable real-time processing, and high-speed network. In
this paper, we propose a data prediction and processing approach aiming to
reduce the size of data collected and transmitted over the network while guar-
anteeing data integrity. This approach is dedicated to devices/sensors with
low energy and computing resources. Our proposed technique is composed of
two stages: on-node prediction model and in-network aggregation algorithm.
The first stage uses the Lagrange interpolation polynomial model to reduce
the amount of data generated by sensor nodes while, the second stage uses a
statistical test, i.e. Kolmogorov-Smirnov, and aims to reduce the redundancy
between data generated by neighbouring nodes. Simulation on real sensed data
reveals that the proposed approach significantly reduces the amount of data
generated and transmitted over the network thus, conserving sensors’ energies
and extending the network lifetime.
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1 Introduction

In our modern era, the number of smart connected devices (Smartphones,
smartwatches, smart glasses, smart TVs, smart cars, etc.) is increasing signif-
icantly; all of which collect and share data in an IoT based architecture [43].
Thus, the accumulated volume of data has reached, in many applications, the
order of petabyte and, sometimes, the zettabytes. This amount is expected, by
the data scientists, to be doubled every two years. Hence, new techniques and
mechanisms need to be proposed in order to analyze and discover meaningful
knowledge in IoT and sensing based applications.

As mentioned earlier, data acquisition is the first step in the life cycle of
data. Hence, sensors and wireless sensor networks (WSNs) are used in IoT
applications to collect and process data before sending them to the end-user.
Generally, WSN consists of a large number of sensor nodes to monitor a phe-
nomenon or a physical condition in environmental or industrial process. The
primary practice of WSN is in the area where humans are not able to fetch
the data and can get support from sensor nodes. Consequently, the efficiency
of a WSN totally relies on the minimum dis-chargeable battery in the nodes.
However, sensing the massive volume of data with transmission operation cost
consumes a significant amount of the sensor energy. Hence, on-node and in-
network data mechanisms are becoming mandatory in IoT and sensing based
applications to consume the energy in an intelligent way so that the network
can run for a long period.

In this paper, our efforts are devoted to present a novel big data predic-
tion and statistic mechanism encompasses two main stages to maintain the
network and minimize the energy consumption in sensor nodes or things. The
first stage is a data prediction scheme for the IoT network. It is applied at the
nodes/things themselves. At this stage, we consider that sensors are collecting
and broadcasting a huge volume of data packets periodically to a specific inter-
mediate node called aggregator. In order to save energy and reduce the amount
of the transmitted data, we propose that each node sends the coefficients of La-
grange interpolation polynomial, instead of sending the whole collected data.
Thus, the sink will be able to recover data based on received Lagrange coeffi-
cients. At the second stage, the aggregator uses a statistical-based data model
to search neighbouring nodes that periodically generate similar data then to
eliminate redundancy and reduce data transmission. Thus, it will provide a
great reduction in power consumption in the aggregator node. The proposed
model is mainly based on the Kolmogorov-Smirnov test. Furthermore, to show
the efficiency of our proposal we conducted several simulations on real collected
data. The obtained results show clearly that our approach saves nodes ener-
gies and reduces the size of the collected and transmitted data while preserving
data integrity.

The rest of the paper is organized as follows. In Section 2, we briefly present
literature on on-node and in-network approaches. Section 3 defines terminolo-
gies and network design that are related to the paper. Section 4 details the
data prediction model proposed at the sensor node level while in Section 5,
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a data statistical model based on Kolmogorov-Smirnov test is developed and
detailed at the CH node. A set of simulations are conducted to evaluate the
proposed mechanism in Section 6. Section 7 concludes this paper.

2 Related Work

WSNs are self-awareness networks and they face many benefactions like dense
deployment of nodes, sever energy, computation power and massive data col-
lection. Hence, on-node and in-network data processing are beneficial to big
data applications in WSN [34]. Researchers on [1–4] have presented a review
article to identify the importance of such approaches as well as to briefly de-
scribe and compare most of the proposed techniques existing in the literature.

The on-node data approach is used at each sensor node itself and aims to
accumulate data in an energy efficient manner by reducing data redundancy,
before sending data to the parent node [5–13,32,33]. In [5], the authors pro-
pose a data prediction model applied at both sensors and sink. The prediction
model is based on line equation trough two n-dimensional vectors and aims to
predict the future readings of the sensors based on the previous one. Another
data prediction model has been proposed in [6]. The authors use the concept of
time series analysis in order to analyze the variations in sensed data so as it can
be interpreted based on an autoregressive model of order p. The authors in [7]
propose an Adams-Bashforth-Moulton algorithm aims to optimize the accu-
racy of prediction obtained with Milne Simpson scheme proposed in [8]. Both
algorithms are simulated on real data sensor and an optimization level of en-
ergy and accuracy is noticed. In [9], the author propose a control scheme based
on data compression and sensing rate in order to reduce the amount of data
collected at the sink node. The idea behind this scheme is that every parent
node sends a threshold, called data quota, to all its node children. According
to the received quota and its remaining energy, the children node selects its
suitable compression method and its sensing rate during the next period. In
[10], a coding provenance scheme (CBP) has been proposed. Compared to tra-
ditional compression techniques, CBP ensures a high provenance compression
rate as well as it encodes and decodes incrementally the compression ratio
at the base station depending on the condition observed. Finally, the authors
in [13] propose an efficient and robust compression method named Sequential
Lossless Entropy Compression (S-LEC). S-LEC uses a differential predictor
that arranges the alphabet of integer residues into a number of groups. For
each group, two codes are assigned: entropy and binary codes. The first code
specifies the group where the second one represents the index inside the group.
In [45–47], the authors tackle a new area of IoT by integrating with cloud com-
puting and big data technologies. First, they propose an efficient algorithm for
advanced scalable media-based smart big data, i.e. 3D Ultra HD, on intelligent
cloud computing systems [46]. 3D Ultra HD is based on encoding methods and
can outperform the traditional HEVC standard. Then, an architecture relying
on the security of the network has been proposed to improve the privacy of
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data transmitted between IoT and cloud [47]. The idea is to install a security
wall between the cloud server and the different users on the Internet.

The in-network data approach is used at an intermediate node, mostly
called aggregator or Cluster-Head (CH), and aims to a find correlation between
neighboring nodes so as to transfer valuable data to the sink [14–23,35]. The
authors in [14] propose a structure fidelity data collection (SFDC) technique
dedicated for cluster-based periodic applications in WSNs. SFDC searches
both spatial and temporal correlation between nodes, using distance functions
and similarity metrics respectively. Another spatiotemporal node correlation,
based on the Pearson Product-Moment Coefficient (PPMC) metric, has been
proposed in [15]. PPMC aims to conserve sensor energies by switching high cor-
related nodes into sleep mode. Compared to other existing methods, PPMC
has been evaluated based on experiments on real sensors. In [16], the au-
thors propose a polynomial regression-based data aggregation protocol that
conserves network energies as well as the privacy of sensed data. Instead of
sending its raw data, each sensor uses coefficient regression polynomials to
represent their data while the aggregation is made on such secret coefficients.
In [17], a two-level node mechanism has been proposed which is dedicated
to periodic sensor applications. First, the authors propose an on-node aggre-
gation method to remove redundant data collected by the sensor. Then, an
in-network data reduction called prefix frequency filtering (PFF) is introduced
at the CH level. PFF allows CHs to find similarities between data collected by
neighboring nodes in the same cluster, using Jaccard similarity function. The
authors in [18] propose a Semi Distributed Heuristic Energy efficient Aggrega-
tion Tree (SDHEAT) algorithm for WSN. Mainly, SDHEAT is based on three
concepts: heuristic tree formation, sensing priority and distributed nature and
aims to reduce the overall network consumption while conserving information
integrity. Finally, the authors in [19] propose an energy-efficient communica-
tion method that is dedicated to periodic underwater sensor applications. on
the basis of the proposed technique, each node cleans its collected data before
transmitting to the appropriate CH. When receiving datasets, the CH applies
Kmeans algorithm adopted to the ANOVA model with statistical tests in order
to eliminate inter-node correlation.

3 Network Design and Preliminaries

3.1 Network Design

In this paper, we consider the scenario where several sensor nodes are grouped
together to form a WSN network in view of sensing data and ahead of this data
to the sink [24,25]. In order to reduce the energy consumption, an important
approach seeks to divide the whole network into subareas termed as clusters
within which a head or a leader is elected. This particular node is called a
cluster head (CH) and has a mission to gather data from its subordinate
cluster members and sends them to the sink node. Obviously, the selection
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of CHs is itself a trending research challenge that considers several factors
like node, battery life of node, and distance to/from the sink. Fortunately,
the significance of selecting cluster-based network design is to ensure network
scalability, reduce the distance between source nodes and sink, perform data
fusion and aggregation, and consumes less network energy.

Fig. 1 presents the cluster-based network design that we consider in our
study. Our proposed mechanism consists of two stages: on-node and in-network.
The on-node operation is performed by the sensor nodes themselves while the
in-network is applied at the CH level. After data being periodically collected,
the sensor nodes use a data prediction model in order to reduce the data size
sent to its corresponding CH. Upon receiving the prediction model for all its
sensors, the CH uses a statistical model in order to prevent sending similar
prediction models generating by neighbouring to the sink node. Finally, the
sink receives the subset of prediction models and try to recover data of the
whole sensors.

Data recovery 

In-network 

On-node (data prediction) 

(data statistical) 

Fig. 1 A cluster-based network architecture

Indeed, dividing the network into clusters is not an easy task and it faces
many challenges. Hence, one can find a lot of works in the literature that
are interested in issues related to cluster network like the selection of cluster
heads [36–38], optimization of cluster size [39,40], communication between
sensors/CHs and CHs/sink [41,42], etc. However, our concern in this paper is
to study the variation of data collected by the sensors and not the formation of
clusters themselves. Therefore, we consider a geographical clustering scheme
in which near sensors are already assigned to the same cluster.

3.2 Problem Description and Notations

WSN is represented as a connected graph G =(N ,E), where N = {N1,
N2, . . . , Nn} is a set of n (sensor) nodes and E is a set of edges. A sensor
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node collects data over a period of time (Pk) and subsequently transmits all
the sensed data to the next level of hierarchy (e.g. CH). Sensor networks sup-
porting this kind of applications are known as periodic wireless sensor networks
(PWSNs). Each period Pk of a sensor node Ni is divided into a finite number
of time slots as follows: Pk = [s1, s2, . . . , sF ]. At each slot sj , each sensor node
Ni captures a new data value vikj

, and eventually forms a vector of sensed
data during the period Pk as follows: Vik = [vik1

, vik2
, . . . , vikF

]. Fig. 2 depicts
the data collection scenario of a node Ni which takes four measures (= F )
during each period Pk (k ∈ [1, 3]) and transmits the resulted vector of data
Vik = [vik1

, vik2
, vik3

, vik4
] to the next hierarchical node. The data collected by

sensor nodes are highly dependent on the rate of change of the environmental
condition or the sensed phenomena. The sensed data is more correlated and
redundant when monitored condition changes slowly or short slot is taken. A
data vector Vik created by the sensed data of node Ni may contain redundant
data (or similar data), especially when the monitored condition varies slowly
or when the frequency of sensing is high or the time slots are short.

 vi21   
vi22    

vi23    
vi24    

vi25 

 

 vi31   
vi32    

vi33    
vi34    

vi35 

 

s1        s2         s3       s4        s5 s1        s2         s3       s4        s5 s1        s2         s3       s4        s5 

 vi11   
vi12    

vi13    
vi14    

vi15 

 

0 p1 p2 p3 
time 

Ni 

CH (Parent node of Ni) 

 Vi1 
 Vi2 

 Vi3 

Fig. 2 Data collection at node Ni in PWSN.

4 On-Node Data Prediction

In IoT and WSN applications, sensors are able to collect all kinds of data
like ecological conditions (relative humidity, pressure, temperature, sound pol-
lution, etc.), motion monitoring (traffic, animals, enemy), and disaster phe-
nomenon (tsunami, volcano, forest fire, etc.) [44]. However, the issue of the
huge bulk of datasets produced by these sensors forms a very serious chal-
lenge. Furthermore, data transmission in WSN consumes a significant amount
of sensor energy and occupies a large volume of its memory. In this section,
we present the first stage, e.g. on-node , of our mechanism which is applied
at each sensor node. The on-node stage aims to prevent sending similar data
points sensed by each sensor at each period Pk, based on a prediction model
that uses the Lagrange interpolation polynomial.
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4.1 Lagrange Interpolation Polynomial Model

In numerical analysis, Lagrange polynomials are used for polynomial inter-
polation. For a given set of points (xj , yj), the Lagrange polynomial is the
polynomial of lowest degree that assumes at each value xj the corresponding
value yj .

Definition 1 Given a set of k data points, (x1, y1), . . . , (xj , yj), . . . , (xk, yk),
the interpolation polynomial in the Lagrange form is a linear combination of
the form:

L(x) =
k

∑

j=1

yj lj(x) (1)

where lj(x) =
∏

1≤m≤k

x− xm

xj − xm
=

(x− x0)

(xj − x0)
× . . .

×
(x− xj−1)

(xj − xj−1)
×

(x− xj+1)

(xj − xj+1)
× · · · ×

(x− xk)

(xj − xk)
, (2)

4.2 Illustrative Example

Given the three points A(−2,−5), B(−1,−1) and C(1, 1). The interpolating
polynomial of Lagrange degree d = 2 can be calculated as follows:

L(x) = (−5)×
x+ 1

−2 + 1
×

x− 1

−2− 1
+ (−1)×

x+ 2

−1 + 2
×

x− 1

−1− 1

+ (1)×
x+ 2

1 + 2
×

x+ 1

1 + 1
= −x2 + x+ 1. (3)

with the coefficients a2 = −1, a1 = 1, a0 = 1.

4.3 Data Prediction Model

As mentioned before, every data sets collected by each sensor at the end of each
period, e.g. Vik, can contain redundant values. In order to reduce the size of
data sent to the CH, we propose to find the Lagrange interpolating polynomial
of the data vector Vik and send only the coefficients of the Lagrange polynomial
instead of the whole vector Vik. As a result, the data transmission between
sensor/CH will be reduced while the sink can, at any time, retrieve/recover
all the collected data based on the coefficients of the received equation.
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Indeed, we need d + 1 points in order to calculate a Lagrange polynomial
of degree d. For instance, in the previous subsection, Lagrange polynomial of
degree 2 was needing 3 data points to find the Lagrange coefficients. However,
the period size in our case contains F readings where F is much greater than
Lagrange degree, i.e. F >> d. Hence, in order to overcome this problem, we
propose to select d readings among Vik in order to calculate the set of Lagrange
coefficients of each sensor Ni, e.g. Lik, based on the following equation:

Lik = {v1+j×⌊F/d⌋, vF } (4)

where d1+j×⌊F/d⌋ are all readings collected at slot numbers s1+j×⌊F/d⌋ (such
that j ∈ [0, F ] and 1 + j × ⌊F/d⌋ < F ) and dF is the last reading in Vik.

Finally, each sensor node will calculate its set of Lagrange coefficients, e.g.
Cik = {ad, ad−1, . . . , a0}, that will send toward the CH at the end of each
period. Obviously, Cik contains the coefficients of equation computed based
on the Lagrange interpolation model mentioned in equation 1.

Fig. 3 shows an illustrative example of data prediction model proposed at
sensor node level. We consider a period of 10 slots (F = 10) where a data vector
Vi is formed at the period p1. Suppose we want to find a Lagrange polynomial
of degree 4, so the readings in Li can be selected as follows: {v1+0×⌊10/4⌋ =
v1, v1+1×⌊10/4⌋ = v3, v1+2×⌊10/4⌋ = v5, v1+3×⌊10/4⌋ = v7, vi10}, where vi10 is
added because it represents the last reading in Vi. Then, we find the Lagrange
coefficient set Ci by applying the Lagrange interpolation model as shown in
equation 1.

s1        s2         s3       s4        s5        s6        s7         s8       s9        s10 

 vi1       
vi2       

vi3       
vi4      

vi5  
   vi6      

vi7       
vi8      

vi9      
vi10 

 

0 p1 
Ni 

CH 

Slot number 

Readings 

𝑽𝒊 = {𝒗𝒊𝟏, 𝒗𝒊𝟐, 𝒗𝒊𝟑, 𝒗𝒊𝟒, 𝒗𝒊𝟓, 𝒗𝒊𝟔, 𝒗𝒊𝟕, 𝒗𝒊𝟖, 𝒗𝒊𝟗, 𝒗𝒊𝟏𝟎 } 

 

Data vector 

Readings Selection  𝑳𝒊 = 𝒔𝟏, 𝒗𝒊𝟏 , 𝒔𝟑, 𝒗𝒊𝟑 , 𝒔𝟓, 𝒗𝒊𝟓 , 𝒔𝟕, 𝒗𝒊𝟕 , 𝒔𝟏𝟎, 𝒗𝒊𝟏𝟎  

 

Apply Lagrange       interpolation model 

𝑪𝒊 = 𝒂𝟒, 𝒂𝟑, 𝒂𝟐, 𝒂𝟏, 𝒂𝟎  

 

Polynomial of        degree d = 4  

Coefficient set 

Fig. 3 Illustration of data prediction model at the sensor node.

In order to be more formally, Algorithm 1 describes the on-node data model
that is applied at each sensor node. As an input, the algorithm takes the pe-
riod size F and the desired Lagrange degree d and it returns the Lagrange
coefficient set that will send to its CH (lines 22-23). First, the sensor collects
the vector of readings during a period (lines 1-5) then, it selects readings at
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indexes determined by equation 4 (lines 6-10). Finally, the sensor calculates
its Lagrange coefficient set that to be sent to its CH based on the Lagrange
model (lines 11-21).

Algorithm 1 On-Node Stage Algorithm.

Require: Node: Ni, period size: F , Lagrange degree: d.
Ensure: Coefficient set: Ci.
1: Vi ← ∅
2: for k = 1 to F do

3: take reading value vk
4: Vi ← Vi ∪ {vk}
5: end for

6: Li ← ∅
7: for k = 1 to F/d do

8: Li ← Li ∪ {v1+k×⌊F/d⌋}
9: end for

10: Li ← Li ∪ {vF }
11: y = 0
12: for each lk ∈ Li do

13: prodfunc = 1
14: for each lt ∈ Li do

15: if t 6= k then

16: prodfunc = prodfunc× (x− xt)/(xk − xt)
17: end if

18: end for

19: y = y + st × prodfunc
20: end for

21: simplify y
22: Ci ← {yad

, . . . , ya0
}

23: return Ci

5 In-Network Data Reduction

In this stage, our objective is to allow CH to reduce the total number of data
set coefficients sent to the sink node. Indeed, statistical analysis approach
is an important primitive that aims to search correlation between data sets
so that overall communication bandwidth and energy consumption of CH is
reduced. The motivation behind applying the statistical approach is that data
of multiple sensor nodes can be summarized by the CH so that only the useful
information is sent to the sink.
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5.1 Kolmogorov-Smirnov Test

In our work, we are interested in the Kolmogorov-Smirnov (K-S) test which is
one of the most tests used in statistical analysis. Recently, K-S has been used
to detect changes in stationarity in big data [26], to check if the phylogeny
molecular is clock-like [27], to verify homogeneity of data measured at certain
high energy physics [28] and so on.

Generally, the K-S test is used to quantify the distance between empiri-
cal distribution functions of two data samples. The null distribution of this
statistic is calculated under the null hypothesis that the two data samples are
drawn from the same distribution. First, it calculates the cumulative distri-
bution functions of the two samples, then, it computes the maximal deviation
between them. If the maximal deviation exceeds a given threshold, then the
test fails and the distribution empirical function of the two data samples are
not theoretically drawn from the same distribution function.

Let consider two empirical distribution functions DFi and DFj of the same
size F . DFi (respectively DFj) is in the form {(si, vi) such that i ∈ [1, F ]}.
Then, assume that the corresponding cumulative distribution functions of DFi

and DFj are DFci and DFcj respectively. The Kolmogorov-Smirnov statistic
test between DFi and DFj is given as follows:

Di,j(DFi, DFj) = sup
x
|DFci(x)−DFcj(x)|, (5)

where sup is the supremum function between DFci and DFcj .
The null hypothesis is rejected at level α if:

Di,j(DFi, DFj) > C(α)

√

2× F

F 2
. (6)

Where the value of C(α) is given in the table below for the most common
levels of α:

α 0.10 0.05 0.025 0.01 0.005 0.001
C 1.22 1.36 1.48 1.63 1.73 1.95

5.2 Illustrative Example

Table 1 shows an illustrative example for the computation of the difference
between two empirical distribution functions DF1 and DF2 based on the K-S
test. The two functions have the same size of 25. First, K-S computes the
cumulative distribution functions of DF1 and DF2 represented by DFc1 and
DFc2 respectively. Subsequently, at the first slot, the value of DFc1(1) is the
same as that of DF1(1) whilst, for the next slots, the value of DFc1(j) can
be calculated as the sum of the value taken at slot j in addition to all values
taken at previous slots (< j) and so on. For instance, at slot #1, DFc1(1) =
DF1(1) = 0.09 whilst, in the slot #2, DFc1(2) = DF1(1) +DF1(2) = 0.06 +
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0.13 = 0.19. After calculating the cumulative values of DF1 and DF2, K-
S finds the difference, e.g. absolute value, for every pair of values of DFc1

and DFc2 at the same slot. For instance, at slot #1, the difference equals to
|DFc1(1) −DFc2(1)| = |0.06 − 0.09| = 0.03 and so on. Finally, K-S finds the
maximum value between all differences as the dissimilarity between DF1 and
DF2, e.g. supx |DFc1(x)−DFc2(x)| = 0.52998.

Table 1 Difference computation between two distribution function based on K-S test.

Slot # DF1 DF2 DFc1 DFc2 Difference
1 0.06 0.09 0.06 0.09 0.03
2 0.13 0.11 0.19 0.21 0.01
3 0.15 0.11 0.34 0.32 0.02
4 0.29 0.22 0.63 0.54 0.09
5 0.31 0.4 0.94 0.94 0.0
6 0.42 0.49 1.36 1.42 0.07
7 0.54 0.56 1.9 1.98 0.08
8 0.51 0.54 2.41 2.52 0.11
9 0.54 0.53 2.95 3.04 0.09
10 0.52 0.56 3.47 3.6 0.13
10 0.44 0.48 3.91 4.08 0.17
12 0.37 0.32 4.28 4.4 0.12
13 0.13 0.18 4.41 4.58 0.17
14 0.03 0.13 4.44 4.71 0.27
15 0.01 0.13 4.46 4.84 0.38
16 0.06 0.19 4.51 5.03 0.51
17 0.28 0.3 4.8 5.33 0.53
18 0.5 0.4 5.3 5.73 0.43
19 0.69 0.64 5.99 6.37 0.38
20 0.59 0.51 6.58 6.88 0.3
21 0.39 0.35 6.97 7.23 0.26
22 0.25 0.22 7.22 7.45 0.23
23 0.2 0.11 7.42 7.56 0.15
24 0.09 0.02 7.51 7.59 0.08
25 0.01 0.01 7.52 7.59 0.08

Dissimilarity= 0.52998

Now, assume that α = 0.01, then C(α)
√

2×F
F 2 = 1.63 ×

√

2×25

252
= 0.46103.

Thus, D(DF1, DF2) = 0.52998 > 0.46103 then the null hypothesis is rejected
and DF1 and DF2 are not drawn from the same distribution function.

Fig. 4 presents the curves of both empirical distribution functions DF1 and
DF2 (Fig. 4(a)) and those of their corresponding cumulative functions DFc1

and DFc2 (Fig. 4(b)), according to slot number in x-axis and reading values
in y-axis. We can observe that the curves of both empirical functions are not
closer to each other (see Fig. 4(a)) due to the difference between their read-
ing values. As a result, their cumulative functions notice a notable difference
between the curves, especially at slot #15. This confirms the behaviour of the
K-S test that considers both functions as dissimilarly distributed.
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Fig. 4 Curves of empirical and cumulative distribution functions.

5.3 Data Reduction Algorithm Based on K-S Test

In this section, we present the in-network stage based on K-S test which is ap-
plied at each CH node (Algorithm 2). After receiving list of coefficient sets sent
from sensors at each period, the CH reconstructs first the empirical distribu-
tion function for each sensor, then it calculates its corresponding cumulative
function (lines 4-8). After that, for every pair of empirical functions where
the maximal distance between their corresponding cumulative functions is less
than the permitted threshold, the CH adds this pair to the list of a redundant
sets (lines 10-11). Finally, for each pair of redundant set, the CH adds one of
them to the final list of coefficient sets sent to the sink while removing remov-
ing all pairs of redundant sets that contain either one of them from the set of
pairs (which means it will not check them again) (lines 16-20). Subsequently,
in order to save the information integrity, the CH assigns to each set its weight
(line 21) when sending it to the sink.

Algorithm 2 In-Network Stage Algorithm.

Require: Number of slots per period: F , Set of coefficient sets: C = {C1, C2,
. . . , Cn}, Rejected level: α.

Ensure: List of sent coefficient sets among C: S.
1: S ← ∅ // list of pairwise similar distributed functions

2: E = C(α)×
√

2×F
F 2

3: for each set Ci ∈ C do

4: compute DFi of Ci

5: compute DFci of DFi

6: for each set Cj ∈ C such that j > i do
7: compute DFj of Cj

8: compute DFcj of DFj

9: calculate Di,j(DFi, DFj) based on Eq. 6
10: if Di,j ≤ E then

11: S ← S ∪ {(Ci, Cj)}
12: end if

13: end for
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14: end for

15: S ← ∅
16: for each pair of sets (Ci, Cj) ∈ S do

17: S ← S ∪ {Ci}
18: Remove all pairs of sets containing one of the two sets Ci and Cj

19: wgt(Ci) = number of removed pairs + 1
20: end for

21: return S

6 Experimental Results

This section conducts a set of simulations to investigate the effectiveness of
the proposed technique in respecting to several parameters. To address this
issue, the scalar dataset were picked up from sensors that they were deployed
in the Intel Berkeley Research lab [29]. Table II shows the information about
the deployed network. In the simulation, the results are obtained after imple-
menting our technique in Java-based simulator. Furthermore, our technique
has been evaluated in comparison with two recent techniques: S-LEC [13] and
PFF [17]. S-LEC and PFF are two data reduction techniques where the first
one is used to reduce the data transmission at sensor level while the second
one is used to reduce that at CH level.

Table 2 Simulation parameters and their values.

Parameter Value
Year 2004

duration February 28th to April 5th

Dimension of area 42× 33 meters
Number of sensors 46
Observed conditions temperature, humidity, light
Collected readings 2.3 million

Slot interval 31 seconds

6.1 Data Prediction at the Sensor Nodes Level

In this section, we aim to study and analyze the performance of our mecha-
nism at the sensor node level according to the following metrics:

6.1.1 Effect of Lagrange Degree Variation

In the on-node stage, each sensor will find the polynomial model of the data
collected at each period. Thus, the performance of this stage is highly depen-
dent on Lagrange degree d which we choose to vary, in our simulation, from
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2 to 8. Indeed, selecting an appropriate value of d is subject to the experts
which can decide based on two factors: application requirements and capacity
of sensor resources; Greater value of d is selected makes the computation more
complex and leads to reduce the integrity of information when recovering data
at the sink node. Fig. 5 shows the effect of varying the Lagrange degree in
comparison between raw data (data collected by sensors) and Lagrange data
(data recovered at the sink). We fixed the observed condition to the tempera-
ture readings and the period size to 100 slots. As expected, when the Lagrange
degree increases the curves of raw and Lagrange data becomes more closer.
This is because, when d increases, more points are taken to find the Lagrange
coefficients that increase the accuracy of the recovered data. In addition, we
observe that the accuracy of the information and the convergence between raw
data collected by the sensors and those recovered at the sink node fully occurs
when d arrives at 6.
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Fig. 5 Comparison between raw and Lagrange data, period = 100 slots.

6.1.2 Effect of Condition Variation

Fig. 6 shows the efficiency of the on-node stage when varying the observed con-
dition to temperature, humidity and light respectively. We fixed the Lagrange
degree to 6 and the period size to 100 slots. The obtained results reveal two
facts: first, the Lagrange data recovered at the sink node can differ from one
condition to another even though the Lagrange degree is fixed. Second, the
accuracy of the Lagrange data is dependent on the dynamic of the monitored
condition as well as the Lagrange degree; the more the monitored condition
varies slow, i.e. in temperature, Lagrange data will be much closer to the raw
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data thus, the accuracy is more conserved. Otherwise, i.e. condition speeds up,
Lagrange and raw data will diverge then, the accuracy will decrease (i.e. light
condition).
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Fig. 6 Effect of Lagrange degree when varying condition, period = 100 slots, d = 6.

6.1.3 Periodic Data Transmission Ratio

In this section, we show the average number of readings sent from each sensor
node to the CH (Fig. 7). In Fig. 7(a), we fixed the Lagrange degree to 6 and
we varied the period size from 50 to 500 slots while in Fig. 7(b) the period
size is fixed to 100 slots and the degree is changed from 2 to 8. In addition, at
the sensor level, we compared the results of on-node stage to the aggregation
phase used in PFF technique [17] and a data reduction technique called S-LEC
[13]. As shown, the on-node stage proposed in our technique reduces more data
transmission compared to other techniques. Subsequently, it reduces up to 86%
and 93% compared to PFF and S-LEC when fixing d (Fig. 7(a)), and up to
82% and 89% when fixing period size (Fig. 7(b)). This is because, the sensor
node only sends, using on-node stage, the Lagrange coefficients to the CH while
in the PFF and S-LEC, it uses aggregation and compression methods to send
a portion of collected data instead of the whole raw data. Furthermore, we
notice that the data transmission ratio at the sensor node in PFF and S-LEC
is based on the similarity between the collected data; more data are similar
then less data is sent. Otherwise, the transmission ratio using on-node stage
is fixed and only dependent on the Lagrange degree. Thus, the transmission
ratio at each sensor can be calculated as follows: Tr = (d + 1) × P , where
P is the total number of periods before the sensor loses its available energy.
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Therefore, as energy consumption is highly related to data transmission ratio,
on-node stage proposed in our technique can be considered as an energy-
efficient method that allows the sensor node to reduce its energy consumption
and extend its lifetime.
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Fig. 7 Number of readings periodically sent to the CH.

6.1.4 Processing Time

In this section, we discuss the complexity of the on-node stage as well as that
of PFF and S-LEC. Indeed, the complexity is an important metric that must
be considered in WSN due, in one hand, to the limited sensor resources and,
another hand, it can affect the data delivery delay to the sink node. In our
technique, the complexity of on-node stage is dependent on equation 4 that
is used to select a set of readings in order to find the Lagrange coefficients.
Therefore, the complexity of on-node stage is a constant and it is computed as
O(d+ 1), where d is the Lagrange degree. However, in PFF and S-LEC, each
reading should be compared to all other collected readings in the same period
in order to find its similar ones. Thus, The complexity can be considered
as O(F ), where F is the total number of readings collected in each period.
Furthermore, Fig. 8 shows the processing time needed to apply each of the
three compared techniques. The processing time is a good indicator to the
complexity of any technique. Similar to Fig. 7, we fixed the Lagrange degree
in Fig. 8(a) and varied period size while in Fig. 8(b) we varied d and fixed
period slots. The obtained results show that on-node stage accelerates time
processing at the sensor from 3 to 5 times compared to PFF and from 4 to
8 compared to S-LEC. We can also observe that the processing time of on-
node stage is almost fixed in all cases while that required for PFF and S-LEC
increases with the increasing of period size.

6.2 CH Study: Results and Analysis

This section presents and analyzes the results obtained at the CH nodes while
respecting to the following metrics:
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Fig. 8 Processing time of each sensor at the end of the simulation.

6.2.1 Periodic Number of Candidates

The in-network stage allows CH to find all similar coefficient set candidates for
a later redundancy elimination before sending to the final destination (sink).
Fig. 9 shows the average number of candidates found by the CH at each period.
We studied the candidate number in terms of three variables: Lagrange degree
(d), rejected level (α) and period size (F ). As shown in the figure, we varied
d from 2 to 8 and F from 50 to 500 slots while α takes the values 0.05, 0.025
and 0.01. The obtained results reflect a huge amount of redundancy among
the neighbouring nodes where the similarity differs from condition to another.
Subsequently, we can notice that the light condition varies slowly followed by
humidity than temperature conditions. Hence, light condition supports more
similarity between data generated between neighbouring sensor nodes than
the other conditions.

Furthermore, the following observations can be noticed:

– by varying the Lagrange degree, the number of candidates still almost
fix. This is because the similarity between data sets is dependent on the
dynamic of the condition and not the degree of Lagrange.

– by decreasing the α value, the number of candidates increases. This is be-
cause when the rejection level decreases the similarity constraint becomes
more flexible thus, more data sets will be similar. For instance, by decreas-
ing α from 0.05 to 0.01 the candidate’s number increases by approximately
3 times.

– by increasing the period size from 50 to 500, the candidate’s number de-
creases. Indeed, more the period size increases more the difference between
data sets increases thus, the number of candidates decreases.
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Fig. 9 Periodic number of candidates obtained by applying in-network stage.

6.2.2 Illustrative Example of Neighboring Correlation

Fig. 10 shows an illustrative example to which sensor nodes are correlated
based on the K-S test. We take the sensor node 1 and we present its correlation
with neighbouring nodes for temperature, humidity and light conditions. The
results show that the temperature sensor in node 1 has correlation with the set
of temperature sensors [2, 13, 24, 26, 27, 30, 31, 33, 43] while the humidity and
light sensors in node 1 have correlation with [13, 24, 26, 27, 28, 29, 30, 31, 33]
and [2, 3, 15, 21, 22, 23, 26, 32, 33, 35, 36, 41, 43, 46] respectively. Thus, we can
deduce the following: 1) the sensors in the same node do not have the same
number of correlated sensors; the light sensor has more correlations than tem-
perature and humidity sensors. 2) the node is more correlated to its nearest
nodes than the other nodes.

6.2.3 Energy Consumption

In our simulation, we used the energy model in [30,31] in order to evaluate the
performance of the in-network stage of our mechanism. This model considers
that energy consumption is highly dependent on the data transmission and
receiving while negligent the other factors (sensing and processing). The energy
consumed, during each period, by a CH for receiving data from N sensors is
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Fig. 10 Example of neighboring correlation between sensor nodes, period size= 100 slots,
d = 6, α = 0.025.

only dependent on the amount of data and can be calculated as follows:

ERX = N × (d+ 1)× 64× Eelec (7)

where (d+1) is the size of coefficient set sent from each sensor, 64 indicates
the bit representation of each value, and Eelec is the energy consumption of a
CH in its electronic circuitry (usually Eelec = 50nJ/bit).

However, the energy consumption of a CH for transmitting N coefficient
sets to the sink node, which is at distance ’dist’ is:

ETX = Eelec ×N × (d+ 1)× 64 + βamp ×N × (d+ 1)× 64× dist2 (8)

where βamp represents the energy consumption in RF amplifiers for prop-
agation loss (usually βamp = 100pJ/bit).

Fig. 11 shows the energy consumption in CH by applying in-network stage
and PFF while varying the tested parameters to different values. Obviously,
the energy consumed in CH is dependent on the amount of data received from
sensors (eq. 7) and the number of coefficient sets after eliminating redundant
sets (Fig. 9). The results show that in-network stage can efficiently reduce the
amount of data transmitted to the sink compared to PFF. Subsequently, our
stage conserves the energy of CH by at least 45% and up to 90%. In addition,
we can also observe that the energy consumption in CH decreases with the
increasing Lagrange degree d or decreasing value of α.

6.2.4 Processing Time

This section discusses the complexity of the in-network stage proposed in our
technique at the CH level, compared to that required in PFF. At each period,
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Fig. 11 Energy consumption in CH.

the complexity of our stage can be computed based on two steps: first, the
CH has to reconstruct raw data for each sensor based on its coefficient set;
Second, it has to apply K-S test in order to find the maximum difference
between every pair of data sensors. Therefore, the complexity of the in-network
stage is considered as O(F × N2), where N is the number of total sensors.
On the other hand, e.g. using PFF, the CH has to calculate the similarity
between every pair of sets. Unfortunately, such calculation requires to check
the similarity between every reading in the first set and all readings in the
second one which requires O(F 2), where F is the total number of readings in
each set. In addition, checking all pair of data will require O(N2) thus, the
PFF has O(F 2 ×N2) as complexity.

Fig. 12 shows the processing time required at the CH when applying in-
network stage and PFF. As shown in the figure, we varied the value of variables
(d, α and period size) like those used in Fig. 11. As expected, our stage out-
performs PFF in terms of execution time in all cases. In addition, the results
show that in-network stage reduces up to 61%, 54% and 48% of the execution
time at the CH for temperature, humidity and light respectively, compared
to PFF. We can also notice the following observations: 1) the processing time
using our stage is almost fix independently of the monitored condition. This is
because K-S test compares sets of equal size (e.g. F ), unlike PFF that assumes
a similarity threshold between the collected data. 2) the processing time of our
stage increases with the increasing value of Lagrange degree. This is due to
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the number of readings taken when computing the Lagrange function that
increases when d increase. 3) the processing time in our stage is almost fix
when varying α level. 4) our stage and PFF require more execution time when
the period size increases. This is due to the computation process that requires
more processing when increasing the number of readings in the sets.
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Fig. 12 Processing time at CH.

6.3 Further Discussion

In this section, we give further consideration to our proposed technique with
studying the feasibility of applying it under which conditions and circum-
stances of the application.

First, the data accuracy is preserved in our technique depending on the cho-
sen value of Lagrange degree d. Therefore, for the critical applications where
a high level of accuracy is needed, like in military and healthcare applications,
the value of d can be increased. Otherwise, i.e. for low critical applications like
weather monitoring, Lagrange degree can be decreased.

Second, the data latency in our technique is dependent on the period size
and the Lagrange degree. Therefore, for the real-time applications where a fast
decision is necessary to take, like in disaster applications, the values of such
parameters should be decreased in order to decrease the execution time of our
technique.
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Finally, for applications where the energy of the network is the most im-
portant factor to save, like in hostile and remote zones, our technique must
decrease the values of Lagrange degree d or increase the false rejection proba-
bility α at the CH node.

7 Conclusion and Perspectives

As the number of connected devices will continue to rise every day, the IoT will
take more attention from both industries and governments. Thus, data reduc-
tion and prediction algorithms will remain at the heart of data management in
IoT. In this paper, we proposed a novel big data prediction and statistic mech-
anism dedicated to large-scale sensor networks. Our mechanism is based on
the cluster-based network and it works in two stages: on-node prediction and
in-network aggregation stages. In the first stage, we focus on reducing data
transmitted by sensors using the Lagrange interpolation polynomial model.
The second stage focuses on reducing data generated by neighbouring nodes
using a statistical test called Kolmogorov-Smirnov. Through simulation on
real sensor data, we demonstrate that the proposed mechanism is better than
existing techniques in terms of network energy consumption and network life-
time.

Many enhancements can be done on our mechanism in future work. First,
we plan to apply our mechanism in real-world scenarios by conducting exper-
imentations in environment and healthcare applications. Second, we seek to
improve the computational algorithm at the CH level in order to reduce the
data latency of our mechanism, especially in a dense network. Third, we want
to add a scheduling strategy in order to put sensors generating redundant data
in sleep/active mode. Thus, the energy of the sensor will be more minimized
and the network lifetime will be more enhanced.
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