
An Energy Efficient FPGA Accelerator for Monte

Carlo Option Pricing with the Heston Model

Christian de Schryver, Ivan Shcherbakov,

Frank Kienle, Norbert Wehn

Microelectronic Systems Design Research Group

University of Kaiserslautern

Erwin-Schroedinger-Str., 67663 Kaiserslautern, Germany

{schryver, shcherbakov, kienle, wehn}@eit.uni-kl.de

Henning Marxen, Anton Kostiuk, Ralf Korn

Stochastic Control and Financial Mathematics Group

University of Kaiserslautern

Erwin-Schroedinger-Str., 67663 Kaiserslautern, Germany

{marxen, kostiuk, korn}@mathematik.uni-kl.de

Abstract—Today, pricing of derivates (particularly options)
in financial institutions is a challenge. Besides the increasing
complexity of the products, obtaining fair prices requires more
realistic (and therefore complex) models of the underlying asset
behavior. Not only due to the increasing costs, energy efficient
and accurate pricing of these models becomes more and more
important. In this paper we present - to the best of our
knowledge - the first FPGA based accelerator for option pricing
with the state-of-the-art Heston model. It is based on advanced
Monte Carlo simulations. Compared to an 8-core Intel Xeon
Server running at 3.07GHz, our hybrid FPGA-CPU-system saves
89% of the energy and provides around twice the speed. The same
system reduces the energy consumption per simulation to around
40% of a fully-loaded Nvidia Tesla C2050 GPU. For a three-
Virtex-5 chip only accelerator, we expect to achieve the same
simulation speed as a Nvidia Tesla C2050 GPU, by consuming
less than 3% of the energy at the same time.

Index Terms—Financial Mathematics, Option Pricing, Hard-
ware Accelerator, Heston Model, Monte Carlo, FPGA

I. INTRODUCTION

Nowadays, financial products have reached an impressive

level of complexity and are expected to further increase

their intricacy in the future. This has been made possible by

the continuous advancements of the underlying mathematical

models. As a consequence, the computational effort needed

to accurately price modern products has grown significantly

over time. This not only leads to higher computation times in

general, but also to an immense increase in energy costs [1].

In many cases, product pricing relies on solving partial

differential equations. In general, this is a non-trivial task

that very often requires compute-intense stochastic simulation

methods. These methods are mainly implemented on CPU and

recently GPU clusters, and are usually examined in the context

of the high performance computing (HPC) domain.

However, HPC is currently facing an immense energy

problem. Therefore also financial institutes are forced towards

alternative computing architectures like FPGAs, that provide

high-end computational capabilities at a very low power con-

sumption. At the same time, not only in automated trading

systems tight timing constraints apply that require prices to

be computed as fast as possible [2]. It is a challenge for the

financial institutes to perform their HPC pricing under energy

and time constraints at the same time. Efficient hardware

acceleration is key to overcome this issue.

A very common (but usually non-trivial) pricing task is

pricing derivatives such as options. Developing hardware ac-

celerators for option pricing has been a very active research

area for many years now. In the FPGA community, most of

the publications up to now rely on the Black-Scholes model.

However, the Black-Scholes model is known in the financial

mathematics community to no longer reflect the real behavior

of stock prices in most markets [3]. More accurate but also

more complex is the Heston model that is widely accepted in

the financial domain nowadays [4].

In this paper, we present an FPGA based hardware accel-

erator for option pricing with the Heston model. We focus

on pricing European barrier options using the Monte Carlo

method. We use a single precision FPGA implementation

together with double precision statistics computation on a host

PC (like Jin, Luk and Thomas [5]). This hybrid approach

allows us to benefit most from both architectures: Compute

intensive computation kernels with low-level arithmetic can

be accelerated efficiently on the FPGA, complicated arithmetic

only used in small amounts of the overall time stay on the host

CPU.

We have set up a comprehensive benchmark set [6] that

we apply to our implementation in order to ensure the correct

functionality. Additionally, we give detailed numbers for speed

and energy consumption. For a Xilinx Virtex-5 device, we

provide synthesis results. We show that our accelerated system

saves about 89% of energy compared to a fully loaded 8-

core server, by achieving twice the speed at the same time.

Compared to a state-of-the-art Nvidia Tesla C2050 graphics

card, it provides only around 35% of the speed, but still saves

60% of energy. A chip only estimation shows that three FPGAs

with our accelerator can achieve the same speed as the Tesla

GPU, consuming less than 3% of the energy.

The contributions of our work in summary are:

• We present the first hardware accelerator for option

pricing with the state-of-the-art Heston model.

• We give precise measured numbers for throughput and

energy consumption and compare our implementation

with CPU and GPU designs, based on a standardized

2011 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-4551-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ReConFig.2011.11

468

Heston benchmark set.

• We show our validation strategy that we use to ensure

the quality of our design.

II. RELATED WORK

To the best of our knowledge, no hardware accelerator for

option pricing with the Heston model has been published

until now. However, a lot of FPGA architectures that rely on

the Black-Scholes model have been presented over the last

years. Luk, Thomas et al. have carried out comprehensive

research activities on a large variety of suitable architectures

for different algorithms like Monte Carlo methods, explicit

finite difference methods or quadrature methods. They recently

have introduced convenient metrics to evaluate their work

[5], where they give numbers for single precision floating or

fixed point implementations. They suggest to use Monte Carlo

methods only if no other solvers are available. However, we

are targeting to price more complex option types in the future

(see Section III), therefore we implement the Monte Carlo

method in our design. Again for the Black-Scholes model, by

using a hybrid FPGA-CPU cluster Weston et al. have shown

in 2010 that they can achieve a speedup of more than 31x
compared to a CPU-only implementation [7]. Their loaded

hybrid system consumes 6% less power than the CPU-only

system under consideration, that means it saves 97% of energy

per simulation.

A more generally applicable methodology for automatic

generation of financial Monte Carlo simulations has been

presented by Thomas et al. in 2007 [8]. In their work they

have already considered a non-constant volatility, in particular

for the GARCH model where the current volatility depends on

the simulation history [9]. We have manually implemented our

presented hardware architecture in a similar manner, adding

additional hardware to cope with the correlated stochastic

processes for price and volatility in the Heston model.

However, we could not find any publications that show

hardware accelerators for pricing the Heston model. Recently,

the Heston model has been ported to GPUs [10], and available

papers show the massive potentials of GPU acceleration com-

pared to CPU only simulations. Zhang and Oosterlee have

investigated several workload splits between CPU and GPU

in 2010 [11] to acclerate Heston pricing. For the practical

showcase of European options they have shown that they

achieve the highest speedup if most of the basic arithmetic

operations on the high numbers of paths are performed directly

on the GPU. This avoids the bottleneck of limited bandwidth

between CPU and GPU, and is directly applicable to Monte

Carlo simulations. Bernemann et al. from the German bank

WestLB have recently investigated that for Monte Carlo based

Heston pricers they achieve up to 340 GFlops on a Nvidia

Tesla 1060 GPU card, compared to the maximum of about 11

GFlops on an Intel Xeon E5620@2.4GHz CPU [12].

Option pricing with the Heston model is more complex

and therefore requires much more computational effort than

with the Black-Scholes model. However, none of the GPU

papers has investigated energy aspects that are becoming more

and more important in the HPC domain. By considering the

status quo for FPGA based Black-Scholes and GPU based

Heston acceleration, we expect a very high benefit for energy

efficiency and speed from using FPGA based accelerators

for pricing the Heston model. We show that this holds in

Section VI.

The next section briefly summarizes the mathematical back-

ground of option pricing and the Heston model.

III. OPTION PRICING WITH THE HESTON MODEL

An option is a contract between two parties for a future

transaction on an asset on a reference price, the strike price.

The buyer of the option gains the right, but not the obligation,

to exercise the transaction. For a European option the buyer

can only exercise the transaction at maturity time T . Depend-

ing on whether he would gain or loose money at maturity, he

will exercise the option or let it expire. This transaction can

be reflected in a monetary payoff.

In this paper we focus on the pricing of European barrier

options, that are popular exotic options and intensively traded

“over the counter”. Exotic options is a term describing all kinds

of options but the simplest onces.

The payoff of barrier options depends on whether an under-

lying asset has hit one or two prespecified barrier(s) until the

maturity date. For example, a single barrier up-and-out option

is active only if the price of the underlying asset remains below

the barrier during the option’s lifetime. In the case of a single

barrier up-and-out call option, the payoff will be the exceeding

of the strike price by the asset price at the maturity. But this

only holds if the barrier has not been hit, otherwise the payoff

will be zero. It will also be zero if the asset price at maturity

is below the strike. The strike and the barrier are fixed in the

option contract when the option is bought.

As the payoff can be derived from the price path of an asset,

the fair price for the option is deduced from that asset as well.

This shows the necessity for an underlying model to describe

the characteristics of the future asset price development.

The Black-Scholes model has been presented in 1973 and

led to a boom in option trading. However, in the model

a constant volatility is assumed that can not be observed

in real market behaviors. The Heston model generalizes the

Black-Scholes formula and has a stochastic volatility [3]. It

consists of two stochastic differential equations, that describe

the dynamics of the option’s underlying asset price S and its

volatility V :

dS(t) = rS(t)dt+
√

V (t)S(t)dW1(t) (1)

dV (t) = κ(θ − V (t))dt+ σ
√

V (t)dW2(t) (2)

Here, W1 and W2 are two Brownian motions with the

correlation ρ that model the randomness of the market. t is

the time, and the other parameters further specify the specific

behavior of the financial market [3].

In this setting, a fair price of an option can be calculated

as its discounted expected payoff. In general there are no

(semi-)closed form solutions (except when the the riskless

469

��

���

���

���

���

���

���

� ��� ��� ��	 ��
 �

�
�
�

��
�
��
�

���

������

�����

Fig. 1. Asset Price Process and its Discretized Version

interest rate r and the correlation ρ are zero) and therefore

numerical methods are needed to approximate the fair price

of a barrier option.

Our design is based on the Monte Carlo algorithm, that is

known to be very robust and applicable for a wide range of

problems [13]. It can be applied to price nearly all available

European exotic option types, for example barrier options and

path-dependent multi-asset options. On top of that, Monte

Carlo algorithms possess natural parallelism and flexibility

properties. Furthermore, we are going to enhance our acceler-

ator to multi level Monte Carlo processing in the future, that

allow significant speedups and better convergence behavior

than single level methods implemented so far [14].

For the Monte Carlo algorithm we simulate a large amount

of discrete approximations of stock prices and volatility paths

by using a specific discretization scheme, in our implementa-

tion the Euler-Maruyama scheme [13]. One asset price process

simulation and the discretized version can be seen in Figure 1.

The discretized process is simulated by iteratively computing

the discretization steps for both the asset price process and

the volatility process. At the maturity time the payoff of the

option for the simulated underlying asset price is calculated.

The discounted mean value of the payoffs is the approximation

for the option price. As the volatility process V is always

non-negative, its simulations is a challenging algorithmic

issue. Therefore in our implementation we combine the Euler-

Maruyama scheme with the full truncation technique [4] to

simulate the volatility. In addition, in the case of barrier option

pricing we check the “barrier hit” event for each simulated

path. But as we simulate only discrete approximations of the

price paths, we use the barrier correction technique [15] to

speedup the convergence of the Monte Carlo algorithm. These

account for the underrepresentation of hitting the barrier by

shifting the barrier on the discrete times. This is implied by

the arrows in Figure 1.

One can see that even within the Monte Carlo methods

there are many different algorithmic varieties that influence the

Option Type At-The-Money Double Barrier Knock-Out Option

Asset Price S0 V0 r κ θ σ ρ
Parameters 100 0.04 0 0.5 0.04 1 0

Option Lower Barrier Upper Barrier Strike
Parameters 90 110 100

Option Price 0.7487

TABLE I
BENCHMARK SET

speed of the algorithm. Together with all possible implementa-

tion decisions, a large design space exists for the accelerator in

total. An efficient implementation requires to take algorithmic

and hardware choices into account at the same time.

IV. VALIDATION AND QUALITY ASSURANCE

Besides thorough bit-by-bit testing of each component in

a hardware-in-the-loop setup, we have performed excessive

validation on the application level. We have recently developed

a standardized benchmark set for option pricing with the

Heston model [6], that summarizes several practically relevant

stress test scenarios provided from the financial mathematics

literature.

The benchmark consists of the parameters for the option

and the underlying asset price process. Furthermore the price

for the option is provided. Table I shows all numbers for an

exemplary option from the benchmark set.

Our benchmark set is freely available for download1, and we

strongly encourage authors to apply it to their future designs.

In order to ensure the high quality of our implementation,

we have simulated all specified parameter sets from this

benchmark and observed that they converge to the given

results.

V. ARCHITECTURE

The main goal for FPGA based Heston model accelerators

is to minimize the energy consumption and to maximize the

performance at the same time. Thus, we have chosen the

following partitioning between the software part running on

the PC and the hardware part implemented in FPGA:

• The hardware accelerator generates random numbers,

simulates the paths including the barrier checking and

computes the final price for each path. These are the

kernels of the whole simulation algorithm that can be

executed in parallel.

• The final price for each path is transmitted to the PC

over an USB interface (based on FT2232H module; top

average measured throughput is 6 MB/s).

• The PC analyzes the statistics and computes the final

option price and variance.

For the Brownian motion inputs, the Heston model accelerator

utilizes our non-uniform random number generator presented

at ReConFig 2010 [16]. It allows an arbitrary output precision

at low hardware costs.

To provide the maximum flexibility, we have implemented a

configuration protocol that allows to dynamically reconfigure

1http://www.uni-kl.de/benchmarking

470

the accelerator parameters for the Monte Carlo simulation, the

asset, and the option at runtime. These functions are transpar-

ently available as a software communication framework used

in the host program.

We have implemented our hardware part on a Xilinx ML-

507 development board (based on XC5VFX70T FPGA). Our

accelerator can easily be ported to any other Xilinx FPGA

supported by the Xilinx floating point IPCore library.

The proposed architecture is strongly related to the auto-

matically generated simulator design from Thomas et al. [8].

The platform interface for the host connection is realized over

an FT2232H mini-module from FTDI right now, but can be

exchanged to different interfaces easily. Since this interface is

register mapped, instead of using a bus we directly connect

each accelerator to the related registers in the interface module.

The accelerator implementation consists of two main parts:

the data path and the control logic. The data path is maximally

pipelined. In contrast to the work from Thomas et al. [8] we

do not use strict C-slow retiming as described by Weaver et al.

[17], but also exploit the pipelined architecture by simulating

paths in parallel.

For simplicity reasons, we have used a packet concept

throughout the design:

• Each packet contains the current state of a path (price,

volatility, step number, etc.) and a validity flag. Instead

of having complex early termination strategies for paths

that have hit a barrier, we introduce dummy packets with

a cleared validity flag. This decreases the throughput to

some extent, but at the same time reduces the hardware

complexity.

• The data path is a pipeline that computes price and

volatility for the next step and performs the barrier check-

ing (see Section III). In every clock cycle, it consumes

one packet and produces another one.

• The pipeline latency with 32-bit single precision floating

point numbers is 60. This means that at every clock cycle

the pipeline outputs a packet that was sent to it 60 cycles

earlier.

• When a packet goes through the pipeline, its contents are

updated according to the chosen algorithm for solving the

Heston model from Section III.

The output of the data path is connected to a queue (FIFO

unit) with a size greater than the pipeline depth. This allows

building the data path from simple pipelined floating point

cores and does not require support for stall signals. In our

case we have exploited the maximum depth of a BRAM36

slice from the target Virtex-5 device for the queue. Figure 2

illustrates the relation between the data path, queue and the

control logic.

The random number generator provides one random number

in nearly every clock cycle. However, simulating the asset

price and its volatility for each path in parallel requires two

correlated random numbers in the Heston model. Therefore we

use antithetic paths [13], that employ the same number pair

for two different paths, with the inverted values in the second

one. So in average only one random number per clock cycle

Random Number Generator

Control
Logic

Data Path Queue

Interface to PC

Fig. 2. High-Level Architecture

Component Adders Multipliers Subtractors Sqrt

Heston Step Generator 4 6 2 1

Barrier Checker 1 1 1 0

TABLE II
FLOATING POINT COMPONENTS USED IN THE DATA PATH

is needed (that means we can start / continue one packet per

clock cycle).

The control logic decides whether to consume a pair of

random numbers, whether to send a packet to or to pop a

packet from the queue and whether to send a price value to

the PC. Both, the random number generator and the PC, can

stall the transaction using a push-pull handshaking system, so

they do not need to consider the state flow inside the control

logic.

A simple set of rules defines the behavior of the control

logic:

• If the amount of created packets is less than the queue

size, a new path is created.

• If enough packets are active, the control logic checks if

a packet is available at the queue.

• If the queue contains a packet, its step number is checked.

If this was the last step, the final price is sent to PC and

a new packet is created. If not, the packet is resent to the

pipeline along with a new pair of random numbers.

The decomposition between the control logic and the data

path significantly reduces the validation effort:

• The pipeline can be tested separately from the control

logic in a separate testbench.

• The control logic can be tested separately by using a

dummy pipeline that only counts the steps and has no

floating point logic.

Our pipeline has a structure that is similar to the GARCH

example presented by Thomas et al. [8], but includes the

Heston specific modifications. Like their data path, our im-

plementation only requires a very low number of floating

point components. Table II shows the usage of floating point

units separately for the Heston step generator (that generates

successive values for price and volatility) and the subsequent

barrier checking.

The pipeline consists of pipelined floating point units

(adders, multipliers, subtractors and sqrt()) provided by Xilinx

as a part of the ISE suite. Due to space limitations, we can not

present all the details here. For the implementation, we have

used our VisualHDL methodology [18]. A THDL++ to VHDL

471

Fig. 3. VisualPipeline Plugin Editing the Heston Barrier Checker

compiler and a powerful IDE supporting code completion

and design visualization (VisualHDL) are available online2. In

this work, we have developed a special plugin that allows to

visually create and modify the pipeline, using a drag-and-drop

approach.

Figure 3 shows the Heston barrier checker in the visual

pipeline editor plugin. The inputs are visible at the very upper

part of the screenshot, the single output flag is located at the

bottom. The visual representation shows the structure of the

data flow at one glance and makes reviewing and modifying

the pipeline intuitively easy.

VI. RESULTS

We have synthesized our design for a Xilinx Virtex-5

XC5VFX70T device (as on the ML-507 evaluation board) with

the Xilinx ISE Design Suite 13.1. The results have been opti-

mized for speed. Table III shows the number and percentage

of resources used for two different corner scenarios: Using

no DSP slices in the dataflow at all (the one remaining is

occupied by the random number generator), and using the

maximum amount of DSP slices. These parameters can be

set for the floating point cores when being generated with the

Xilinx CoreGen tool. All given numbers are post place & route

and include the interface logic needed to communicate with the

host PC. Both configurations can run with clock frequencies

up to 100 MHz.

In total, three instances of our accelerator can be mapped

into a single XC5VFX70T device. This mapping is the refer-

ence for the following speed and energy results. The Virtex-5

is no longer state-of-the-art, and Xilinx is currently releasing

the Virtex-7 generation. However, for the Virtex-7 series no

evaluation kits are available at the moment. For this reason

we use the ML-507 kit in order to provide system level results

for speed and energy. On a Virtex-7 device that provides up to

2http://visualhdl.sysprogs.org

Minimum DSP Usage Maximum DSP Usage
Number Percentage Number Percentage

Slices 4,862 43% 2,497 22%
LUTs 11,382 25% 5,481 12%
Flip-Flops 13,530 30% 6,950 15%
LUT-FF pairs 15,041 33% 8,176 18%
DSP48E slices 1 1% 43 33%
BRAM36 slices 5 3% 5 3%
Max. frequency 102 MHz 100 MHz

TABLE III
SYNTHESIS RESULTS FOR ONE INSTANCE ON A VIRTEX-5

two millions of logic slices and over 5,000 DSP slices, several

hundred accelerators could be mapped. We therefore expect a

tremendous increase in speed and energy efficiency for the

Virtex-7 series.

The FPGA accelerated setup does not require high com-

putation capabilities of the host CPU, because only the final

pricing is calculated there. Therefore we have decided to use a

low-power laptop as host: a Fujitsu Siemens Lifebook E8410

with an Intel Core 2 Duo T7250@2.0 GHz and 2 GB RAM,

running Windows 7 Professional SP1 64 Bit. In the idle state,

the laptop itself then consumes around 20 W.

Table IV shows detailed runtimes and energy consumptions

for a simulation of 10 million paths, both without and with

FPGA acceleration. For the software only solution on the

laptop, we have observed that our test system constantly

consumes 44 W with the CPU fully loaded. Real time and

energy consumption for each run are therefore linearly related

to the number of simulated steps.

For the FPGA accelerated solution, we have added the

FPGA board with an idle power consumption of 9 W to the

laptop and included it into our energy gauging. Here we have

observed that for 32 to 128 steps, the consumed power was

around 40 W during the simulations. For 256 and more steps,

it drastically fell to constant 35 W. The reason for this is that

for up to 128 steps, the interface bandwidth is the limiting

factor. Since the host CPU has to handle the transmission

tasks for the USB interface that is used to connect the FPGA

board, it is therefore producing the maximum possible load

for this scenario. For more steps, the average CPU load over

one simulation run decreases.

From Table IV we see that the FPGA accelerators speeds up

the computation 21 times in average, compared to the software

only simulation on the host laptop. At the same time, the

FPGA accelerated scenario only consumes 4% of the energy

per simulation.

Today, state-of-the-art financial product pricing is performed

at high-end CPU and GPU clusters. For a fair comparison

to real-world competitive architectures, we have therefore

implemented our model on a recent Nvidia Tesla C2050

graphics card.

The Tesla GPU is hosted by a FluiDyna TWS 1xC2050-

1xIQ-8 server workstation with an Intel Xeon CPU

W3550@3.07 GHz and 8 GB RAM running OpenSuSE Linux

11.4 64 bit with Kernel 2.6.37.6-0.5-default. The CPU pro-

vides four physical cores with hyperthreading. We refer to this

system as server. The idle power consumption for the server

472

Number of Laptop: Software Only on 2 Cores Laptop + FPGA with Three Instances Factor (Laptop / FPGA)
Time Steps Real Time Energy Energy/Step Real Time Energy Energy/Step Real Time Energy

32 56 s 2,442 J 76.31 J 4 s 172 J 5.38 J 13.88 14.20
64 116 s 5,104 J 79.75 J 8 s 344 J 5.38 J 14.50 14.84
128 230 s 10,120 J 79.06 J 9 s 401 J 3.14 J 24.64 25.22
256 465 s 20,438 J 79.84 J 18 s 630 J 2.46 J 25.81 32.44

1,024 1,852 s 81,466 J 79.56 J 72 s 2,532 J 2.47 J 25.60 32.18
4,096 7,344 s 323,114 J 78.89 J 287 s 10,057 J 2.46 J 25.56 32.13

average 78,90 J 3.55 J 21.66 25.17

TABLE IV
SPEED AND ENERGY RESULTS FOR LAPTOP-FPGA SETUP

Number of Server: Software Only on 8 Cores GPU Accelerated Factor (Server / GPU)
Time Steps Real Time Energy Energy/Step Real Time Energy Energy/Step Real Time Energy

32 5 s 930 J 29.06 J 0.95 s 295 J 9.22 J 5.25 3.15
64 10 s 1,860 J 29.06 J 1.88 s 582 J 9.09 J 5.33 3.20

128 21 s 3,953 J 30.88 J 3.74 s 1,158 J 9.05 J 5.69 3.41
256 41 s 7,673 J 29.97 J 7.43 s 2,305 J 9.00 J 5.55 3.33

1,024 166 s 30,923 J 30.20 J 29.68 s 9,201 J 8.99 J 5.60 3.36
4,096 660 s 122,760 J 29.97 J 118.46 s 36,722 J 8.97 J 5.57 3.34

average 29.86 J 9.05 J 5.50 3.30

TABLE V
SPEED AND ENERGY RESULTS FOR SERVER-GPU SETUP

has been measured to 87 W without the GPU, and to 148 W

on average with the Tesla card plugged in. Again, the GPU

has been removed for the software only measurements, where

the fully loaded system consumes 186 W in average. With the

fully loaded GPU and nearly no CPU load in our simulations,

the power consumption was around 310 W.

Table V shows the measurement results for two scenarios:

a software only run on the virtual eight cores of the server,

and the fully loaded GPU. We can see that the GPU achieves

a speedup of 5.5 in average, compared to the software only

simulation on the server. At the same time, the energy con-

sumption is reduced to around one third.

Furthermore, Table V reveals that, in contrast to the laptop-

FPGA setup, no interface limitations are observable. The

speedup and energy factors stay nearly constant over all step

sizes.

In order to compare our FPGA accelerator with the GPU

and server system, we have normalized the speedup and

energy factors to the fully loaded 8-core server. The ML-507

FPGA board with its power supply already consumes 9 W in

contrast to the 10 W with the FPGA loaded. The FPGA itself

needs significantly less power than the 10 W, so the overall

accelerator energy consumption can be significantly reduced

by using optimized boards and power supplies.

We therefore have estimated a FPGA chip only scenario, that

only considers the FPGA itself. To obtain a power estimation,

we used the Xilinx XPower Estimator [19] that gave an upper

bound of less than 3 W for our design. With the pricing

that is currently performed on the host CPU implemented on

the Virtex-5’s PowerPC core, the FPGA chip only scenario

highlights the enormous potential of energy saving.

The speedup factors are shown in Figure 4(a). We clearly

see that the employed Virtex-5 device can not outperform the

state-of-the-art Tesla C2050 with respect to speed. On the other

hand, even a Virtex-5 FPGA with three accelerator instances

achieves around 35% of the simulation speed of the Tesla

C2050.

However, with respect to energy, the FPGA clearly outper-

forms all other architectures. Although Figure 4(b) shows that

the laptop used in our FPGA accelerated setup consumes more

than 2.5 times of energy than the fully loaded 8-core server,

the combination of laptop and FPGA only consumes 12% of

the energy normalized to the server. Compared to the GPU, the

laptop-FPGA setup consumes only around 40% of the energy.

For both, speed and energy comparison, we have taken the

average factors from Table IV and Table V. With numbers of

steps higher than 128, the FPGA accelerated setup even profits

more.

The FPGA chip only estimation forecasts nearly incredible

0.8% of energy consumed per simulation, compared to the

server. At the same time, the speed is doubled. Extrapolated

to three FPGAs with three accelerator instances on each, we

achieve the same throughput as the Tesla 2050 GPU, but only

consume less than 3% of the energy. This clearly highlights

the enormous potential of FPGAs for energy efficient option

pricing.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present the first FPGA based implementa-

tion of an accelerator for option pricing based on the Heston

model. It is based on Monte Carlo simulations and single

precision floating point computations. We provide the mathe-

matical background of our work, give detailed insight into our

architecture and show our exhausting validation strategy used

to ensure the high quality of our design.

Based on detailed speed and energy measurements, we

clearly show that FPGAs can outperform state-of-the-art CPUs

and GPUs for this task with respect to energy. For this purpose,

we compare a combined setup of a dual-core laptop together

with a Xilinx ML-507 Virtex-5 board, an 8-core Intel Xeon

473

	
��������
�
����������

���
�������������

��������������

 !

"!

�!

#!

$!

%!

&!

(a) Average Speedup Factors

	
��������
�
����������

���
�������������

��������������

 !

 !�

"!

"!�

�!

�!�

�!

(b) Average Energy Factors

Fig. 4. Speedup and Energy Factors Compared to Fully Loaded 8-Core Server

server at full load and a Nvidia Tesla C2050 graphics card.

We show that the laptop-FPGA setup only consumes 12% of

the energy of the server, and about 40% of the energy of the

GPU. At the same time, the FPGA accelerated system provides

twice the simulation speed of the server, and around one third

of the simulation speed of the GPU.

Future work will include the enhancement to multi level

Monte Carlo methods that provide better asymptotical be-

havior. This is especially useful when fine precisions are

needed. In this context, we will move to double precision

computations. Besides improving the algorithm, we will go

for a multi asset option accelerator. In this case, the payoff

of the option – and therefore also the price – does not only

depend on the path of one asset but on two or more.

ACKNOWLEDGMENT

We gratefully acknowledge the partial financial support

from the Center of Mathematical and Computational Modeling

(CM)2 of the University of Kaiserslautern.

REFERENCES

[1] P. Warren, “City business races the Games for power,” The Guardian,
May 2008. [Online]. Available: http://www.guardian.co.uk/technology/
2008/may/29/energy.olympics2012

[2] I. Schmerken. (2011, Mar.) Deutsche Bank Shaves Trade Latency Down
to 1.25 Microseconds. www.advancedtrading.com. [Online]. Available:
http://www.advancedtrading.com/infrastructure/229300997

[3] S. L. Heston, “A Closed-Form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options,” Review of

Financial Studies, vol. 6, no. 2, p. 327, 1993.
[4] R. Lord, R. Koekkoek, and D. van Dijk, “A comparison of biased sim-

ulation schemes for stochastic volatility models,” Quantitative Finance,
vol. 10, no. 2, pp. 177–194, 2010.

[5] Q. Jin, W. Luk, and D. B. Thomas, “On Comparing Financial Option
Price Solvers on FPGA,” in Field-Programmable Custom Computing

Machines (FCCM), 2011 IEEE 19th Annual International Symposium

on, May 2011, pp. 89 –92.
[6] C. de Schryver, M. Jung, N. Wehn, H. Marxen, A. Kostiuk, and

R. Korn, “Energy Efficient Acceleration and Evaluation of Financial
Computations Towards Real-Time Pricing,” in Knowledge-Based and

Intelligent Information and Engineering Systems, ser. Lecture Notes in
Computer Science, A. König, A. Dengel, K. Hinkelmann, K. Kise,
R. J. Howlett, and L. C. Jain, Eds., vol. 6884. Springer, Sep.

2011, pp. 177–186, proceedings of 15th International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems
(KES). [Online]. Available: http://www.uni-kl.de/benchmarking

[7] S. Weston, J.-T. Marin, J. Spooner, O. Pell, and O. Mencer, “Accelerating
the Computation of Portfolios of Tranched Credit Derivatives,” in High

Performance Computational Finance (WHPCF), 2010 IEEE Workshop

on, Nov. 2010, pp. 1 –8.

[8] D. B. Thomas, J. A. Bower, and W. Luk, “Automatic Generation and
Optimisation of Reconfigurable Financial Monte-Carlo Simulations,” in
Application -specific Systems, Architectures and Processors, 2007. ASAP.

IEEE International Conf. on, Jul. 2007, pp. 168 –173.

[9] X. Tian, K. Benkrid, and X. Gu, “High Performance Monte-Carlo Based
Option Pricing on FPGAs,” Engineering Letters, vol. 16, no. 3, pp. 434–
442, 2008.

[10] A. Bernemann, R. Schreyer, and K. Spanderen, “Pricing Structured
Equity Products on GPUs,” in High Performance Computational Finance

(WHPCF), 2010 IEEE Workshop on, Nov. 2010, pp. 1 –7.

[11] B. Zhang and C. W. Oosterlee, “Acceleration of Option Pricing Tech-
nique on Graphics Processing Units,” Delft University of Technology,
Tech. Rep. 10-03, Feb. 2010.

[12] A. Bernemann, R. Schreyer, and K. Spanderen. (2011, Feb.)
Accelerating Exotic Option Pricing and Model Calibration Using
GPUs. WestLB et al. Herzogstrasse 17 Düsseldorf 40217 Germany.
[Online]. Available: http://ssrn.com/abstract=1753596

[13] R. Korn, E. Korn, and G. Kroisandt, Monte Carlo Methods and Models

in Finance and Insurance. Boca Raton, FL: CRC Press., 2010.

[14] M. B. Giles, “Multilevel Monte Carlo path simulation,” Operations

Research-Baltimore, vol. 56, no. 3, pp. 607–617, 2008.

[15] M. Broadie, P. Glasserman, and S. Kou, “A continuity correction for
discrete barrier options.” Math. Finance, vol. 7, no. 4, pp. 325–349,
1997.

[16] C. de Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, and
R. Korn, “A New Hardware Efficient Inversion Based Random Number
Generator for Non-Uniform Distributions,” in Reconfigurable Computing

and FPGAs (ReConFig), 2010 International Conference on, Dec. 2010,
pp. 190–195.

[17] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-
Placement C-slow Retiming for the Xilinx Virtex FPGAs,” in
Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium

on Field Programmable Gate Arrays, ser. FPGA ’03. New
York, NY, USA: ACM, 2003, pp. 185–194. [Online]. Available:
http://doi.acm.org/10.1145/611817.611845

[18] I. Shcherbakov, C. Weis, and N. Wehn, “Bringing C++ Productivity
to VHDL World: from Language Definition to a Case Study,” in
Specification Design Languages, 2011. IC 2011. Forum on, Sep. 2011,
pp. 76 –82.

[19] Xilinx, “XPower Estimator (XPE),” Jul. 2011. [Online]. Available:
http://www.xilinx.com/products/technology/power/index.htm

474

