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Abstract—Developing wearable sensing technologies and un-
obtrusive devices is paving the way to the design of compelling
applications for the next generation of systems for a smart IoT
node for Human Machine Interaction (HMI). In this paper we
present a smart sensor node for IoT and HMI based on a
programmable Parallel Ultra-Low-Power (PULP) platform. We
tested the system on a hand gesture recognition application, which
is a preferred way of interaction in HMI design. A wearable
armband with 8 EMG sensors is controlled by our IoT node,
running a machine learning algorithm in real-time, recognizing up
to 11 gestures with a power envelope of 11.84 mW. As a result, the
proposed approach is capable to 35 hours of continuous operation
and 1000 hours in standby. The resulting platform minimizes
effectively the power required to run the software application
and thus, it allows more power budget for high-quality AFE.

Keywords—Embedded systems, ultra-low power, multi-core,
PULP, EMG.

I. INTRODUCTION

The global Human-Machine Interface (HMI) market is

expected to generate revenues of more than 8 billion USD

over the next 5 years. This trend is driven by the increasing

adoption of devices for industrial automation [1], wearable

health tracking [2] and, more in general, the growing plethora

of IoT ecosystems.

Hand gesture is probably the most natural and direct method

used by humans to interact with objects and it has compelling

and straightforward applications in many scenarios, including

industrial control, healthcare, gaming and rehabilitation.

Decoding human intentions expressed by hand gestures is

usually based on two main approaches: (i) visual recognition

of hand gestures using computer vision techniques [3]; (ii)

recognition based on the analysis of the electrical activity of the

muscles involved in the gestures [4]. The former solution relies

on the image processing of gesture captured by video cameras.

Based on machine learning algorithms, it can recognize a

large number of gestures [3], but it requires an external

infrastructure such as fixed cameras, mounting attachments,

and power supply, and it is very sensitive to environmental

factors, such as variations of the intensity of lighting or line

of sight interruption.

The alternative approach is based on decoding ElectroMioG-

raphy (EMG) signal by leveraging techniques ranging from

direct control [5] to pattern recognition [6], to deep learning

[7] and synergies [8], with the objective of mapping muscle

contractions onto the corresponding hand gesture.

Such systems require accurate sensory interfaces and high

computational capabilities to be implemented on systems with

a reduced form factor, due to the intrinsically noisy nature

of the EMG signal and on the computationally demanding

algorithms required to make sense of the biosignals [9]. Some

attempts have been made at a commercial level, such as

the MYO [10], an armband that acquires EMG data from 8

differential channels and sends the data collected on EMG to

a PC that processes them with pattern recognition techniques,

to recognize up to 5 gestures. Such approach requires a con-

tinuous link between the sensor armband and the PC/gateway

platform, since traditional wearable platforms are not suitable

for computationally intensive tasks, such as pattern recognition

algorithms.

In an effort to move towards fully portable solutions, an

approach which is gaining traction in the last year is to use

an offline bench-top system for the algorithm training and to

implement the classification of the EMG signal directly on

the wearable node. However, designing wearable integrated

systems for acquisition and processing of EMG signals, which

are capable of executing full pattern recognition algorithms in

real-time at high energy efficiency is still an open challenge.

Some systems, like the work presented in [11] or [12], rely on

high-end ARM CORTEX A8 processors, which can sustain

the high computational load but require significant energy,

guaranteeing only 0.5 h of operation with a 100 mAh battery.

More efficient solutions, such as [13] and [14] are based on

dedicated industrial IoT microcontrollers (i.e. ARM CORTEX

M4) and provide up to 10 hours with a 100 mAh LiPo battery.

The lesson learned from this analysis is that the development

of HMI wearable devices pose two significant challenges for

the digital processing part: (i) the power envelope of the digital

platforms must be minimized to allow high-quality signal

acquisition via an Analog-Front-End (AFE) and (ii) approaches

based on data streaming, which offloads the signal processing

on external platforms, do not scale well because of limited

bandwidth and high energy-per-transmitted bit of wireless

interfaces, even though energy-efficient protocols are used (e.g.

Bluetooth Low Energy). In this work, we introduce BioWolf,

an integrated platform for computationally-intensive medical

IoT applications, which addresses all these challenges as it



provides an ULP compute platform that can process biosignals

in parallel and locally with a power budget lower than that

of the AFE. Our platform is based on Mr. Wolf [15], a pro-

grammable Parallel Ultra-Low-Power processor that combines

high versatility and compute efficiency higher than single-core

architectures such as those available in standard MCUs with

wireless connectivity. Hence, local end-to-end processing (i.e.,

with on-board classification) has also a lower power budget

than streaming and remote recognition (in addition to lower

latency and more robustness wrt wireless connectivity issues),

employing 2.4x and 7x less power than the AFE and direct

data streaming, respectively.

The PULP processor is coupled with a commercial Blue-

tooth Low Energy (BLE) SoC (Nordic nRF52832), which

enables communications and auxiliary support for the sys-

tem. The board also integrates an 8-channel Analog Front

End (AFE) for the analog-to-digital conversion of the input

signals. The system also includes an Energy Harvesting (EH)

subsystem that provides extended battery life and automated

battery recharging. All the components are assembled in a

20x40 mm form factored 4-layer Printed Circuit Board (PCB)

that aims to provide full portability and wearability. To validate

the system, we integrated it in an elastic armband, to enable a

hand gesture recognition device, based on Hyperdimensional

Computing [16], a novel pattern recognition framework. First,

we validate the electrical characteristic of the signal acqui-

sition, demonstrating the suitability of Biowolf for biosignal

processing, then we characterize the performance of the system

in terms of energy efficiency showing that, while running the

application, the device consumes only 11.84 mW, providing

up to 18 hs of operation with a battery life that is further

extended when energy is generated through the EH subsystem.

The full HMI recognition software runs on the wearable node

that employs less than 30% of the total power to acquire and

convert the EMG signals. Thus, the remaining power can be

employed on power-demanding high-quality AFEs, resulting

in an improvement of the overall performance of the system.

II. MATERIAL AND METHODS

A. Embedded Architecture

BioWolf is a highly-configurable platform for acquisition

and embedded processing of biopotentials featuring a Parallel

Ultra-Low-Power (PULP) SoC MCU for signal processing,

an ARM-based Nordic SoC MCU for Bluetooth Low Energy

(BLE) communications and system management, an Analog

Front End (AFE) for analog-to-digital conversion of biosignals

and a nano-power buck-boost regulator for energy harvesting.

A T.I. BQ27441 fuel gauge is also present allowing to regularly

check for battery status on a I2C interface. Fig. 1 shows a

block diagram of the complete system and Fig. 2 shows the

final PCB implementation.

Mr. Wolf, the Nordic SoC and the AFE are connected via

SPI bus. Three operating modes are available, as described

below.

Fig. 1. BioWolf System Architecture.

Fig. 2. BioWolf Board. Top side allocates Mr. Wolf, the AFE and part of
the power supply section. Bottom side is mostly dedicated to the nRF52832
SoC, fuel gauge, connectors and the analog power supply section.

• When data needs to be streamed out directly (eventually

after some basic processing such as simple filtering), Mr.

Wolf is put in sleep mode and the Nordic SoC acts as

master on the SPI bus, reading data from the AFE.

• When more computationally intensive processing is re-

quired, Mr. Wolf guarantees the best power efficiency to

the system and is therefore the one controlling the SPI

bus as the master, reading data from the AFE, processing

it and sending only the result of such processing to the

Nordic SoC for BLE transmission.

• When the system is not required to acquire and/or process

data, it can be put in a deep sleep mode to minimize power

consumption. Wake up is obtained by putting the device

in a NFC field, such as tapping on it with a NFC-enabled

smart-phone or tablet.

Biosignals are acquired by a multichannel commercial AFE

from TI (ADS1298). The AFE is the de-facto standard used in

biopotential acquisition platforms and presents a very favorable

trade-off between performance and power consumption, since

its 3 V single supply does not require step-up DC/DC con-

version of the battery voltage, without significantly affecting

noise performance. The board supports simultaneous sampling

of up to 8 differential channels at frequencies up to 32 kbps

with a gain of the input programmable gain amplifier (PGA)

from 1 to 12 and a maximum resolution of 24-bits. The system

is compatible both with dry and wet electrodes.

Mr. Wolf is a multi-core programmable SoC implemented

in CMOS 40nm technology that combines a tiny (12 Kgates)



RISC-V processor (zero-risky) [17], namely the Fabric Con-

troller (FC), with a cluster of eight RISC-V processors

equipped with flexible and powerful DSP extensions available

on the RI5CY processor [17]. The cluster is coupled with a

single-cycle latency multi-banked L1 memory (64 kB) allow-

ing fast data transfer among the cores, and with an ’off the

cluster’ 512 kB of memory (L2) with 15 cycles latency. A

dedicated DMA controller allows reducing the latency and

computational power associated with data transfer. It also

features two floating-point units (FPU) that are shared among

the cores. Mr. Wolf can achieve very fine-grained parallelism

and high energy efficiency in parallel workloads through a

dedicated hardware block (HW Sync) that provides fast event

management, parallel thread dispatching and synchronization.

The SoC contains a full set of peripherals, including a Quad

SPI (QSPI), I2C and UART, with data transfers also managed

by a multi-channel I/O DMA to reduce the load on the system.

In run mode, the SoC is powered by an internal DC/DC

converter that can be programmed to deliver from 0.8 V to

1.1 V. In sleep mode, a low-dropout (LDO) regulator powers

a real-time clock (32 kHz crystal oscillator) that controls a

programmed wake-up and, optionally, part of the L2 memory,

allowing retention of application state for fast wake-up. In deep

sleep mode, the power consumption of the MCU is about 108

µW that can be further reduced to 72 µW when no retention

is required.

Data communication (and basic processing if needed) is

performed by the nRF52832 SoC from Nordic. The MCU,

based on an ARM Cortex-M4 (up to 64 MHz clock frequency)

provides flexible Bluetooth 5 (BLE) communication at a low-

power budget. This MCU also serves as a device manager

of the board. It allows choosing the operation mode (sleep,

raw data streaming, data acquisition and processing), including

programming Mr. Wolf accordingly and setting power on/down

of the analog section. It also detects battery status from the fuel

gauge.

Power supply, battery management, and energy harvest-

ing are managed by a Texas Instruments BQ25570. The IC

implements a Maximum Power Point Tracking (MPPT) that

adapts the input impedance of the solar cells maximizing the

energy conversion in all the lighting conditions with up to

90% of efficiency. This energy is then used to recharge a

small factor 65 mAh LiPo battery. The Energy Subsystem (EH)

also provides a high efficient buck converter that delivers a

stable voltage output of 1.8 V to supply the digital portions of

the board. An additional output is available, connected to the

battery voltage when its voltage level is higher than 3 V. This

is used to power the analog portions of the board, in particular,

the AFE which requires a minimum supply voltage of 2.7 V.

B. Hyperdimensional Computing

To demonstrate the performance of our system architecture,

we propose as a case study the classification of hand gestures

from EMG signal through HD Computing algorithm, a brain-

inspired approach that computes with points in the HD space

(hypervectors) as an alternative to numbers [16].

Fig. 3. Implementation on BioWolf of the HD computing algorithm.

To exploit all the capabilities of the hardware implemen-

tation, these hypervectors are considered as (pseudo)random

dense binary vectors composed of an equal number of ran-

domly placed 0s and 1s, which can be combined into new

hypervectors through well-defined algebraic operations such

as componentwise XOR (⊕) as multiplication, the compo-

nentwise majority function ([+]) as addition, and one-bit

circular rotation (ρ) as permutation. Features are extracted

from the raw signals and mapped (i.e. encoded) into the

HD space using Item Memory (IM) and Continuous Item

Memory (CIM) [18] matrices. The IM is composed of random

orthogonal (⊥) hypervectors (i.e., E1 ⊥ E2... ⊥ Ei) related

to the input channels. The CIM contains orthogonal endpoint

hypervectors, mapped through discretized values of the input

channels. Discretizing the features in K levels, we have K

hypervectors (V1..VK) where V1 and VK are related to the

minimum and maximum input values and the intermediate

levels are generated by a linear interpolation between these

two orthogonal endpoints [18]. The HD computing provides

two encoders, spatial and temporal. The first one captures the

spatial information contained in the signal with a component-

wise XOR between E and V resulting (at instant t):

St = [(E1 ⊕ V t

l(1)) + ...+ (Ei ⊕ V t

l(i))]. (1)

Sometimes the spatial information is not enough, and the tem-

poral information is required. This can be done by a temporal

encoder that extracts such information through permutation and

multiplication of n consecutive hypervectors generated by the

previous encoder. Thus, n spatial hypervectors form an n-gram

hypervector (T ), defined as:

T = St ⊕ ρSt+1 ⊕ ρ2St+2 ⊕ ...⊕ ρn−1St+n−1 (2)

where ρk stands for k times permutation. The HD comput-

ing is trained off-line, generating different n-grams for each

gesture and adding them to create a protorype hypervector

stored in the associative memory (AM). During inference, an

unseen feature is encoded into an n-gram (query) hypervector,

compared with all the prototype hypervectors in AM through

the Hamming distance. Thus, the label associated with the

minimum distance is assigned as the classification output. Fig.

3 summarizes the classification process introduced above.

C. Implementation and Optimization on BioWolf

Typically, binary hypervectors assume a very high dimen-

sion (i.e., 10k-D), and they can be manipulated using mul-

tiplication, addition, and permutation (MAP) operations after

compacting them into 32-bit unsigned integer, leading to a con-

spicuous gain in performance and memory requirements.This

representation requires bitwise operations (i.e. read/insert bits



Fig. 4. Solar Panel current charging output for different illumination
conditions. Indoor illumination is typically around 600 lux (magnified), while
in outdoors, the illumination is about 10k lux.

into a 32-bit word) and to count the number of 1s in a word

(the well-known popcount). The RI5CY processor allows ag-

gressive performance optimizations including bit manipulation

instructions (builtins). This allows bitwise operations in 1 clock

cycle [19], dramatically reducing the computational load on the

MCU. An other optimization derives from the exploiting of the

parallel programming models through an optimized version of

Open Multi-Processing (OpenMP).

III. EXPERIMENTAL RESULTS

A. Electrical characterization

We characterized the system at 1000 samples-per-second

(SPS) sampling frequency, that guarantees a bandwidth of 262

Hz, exceeding the needs of most target applications. Noise

is measured by shorting the inputs of the electrodes and

varies depending on the chosen PGA gain. We compare the

performance with IFCN standards for clinical recording of

EEG signals [20], which are generally considered as the most

stringent for bio-potential acquisition. With PGA gain equal

to 1, it is measured at 1.65 µVRMS in the 0.5-100 Hz band,

decreasing to 0.97 µVRMS (gain = 2), 0.49 µVRMS (gain =

4) and 0.41 µVRMS (gain = 12) with PGA gain equal to 12.

Common Mode Rejection Ratio for a 50 Hz, 2 Vpp signal

ranges from a minimum of 115 dB (G = 1) to 122 dB (gain

= 12). Channel isolation exceeds 100 dB. These values are in

line with IFCN standards for clinical recording of EEG signals.

We also estimated the harvesting capabilities of the system

by measuring the current applied by the EH subsystem to

the battery in different illuminations. The installed solar panel

has the same footprint of the board (2 x 4 cm) aiming

to preserve wearability. Figure 4 summarizes the harvester

performances denoting, at the magnified frame, that under

indoor illumination (≈ 600 lux), generated current is quite low

(around 80 µA) but still enough to charge the system when

in standby (around 80 µA current consumption, as shown in

subsection III-C). This situation dramatically improves when

moving into brighter environments, where the solar panel can

deliver up to 2.5 mA.

Fig. 5. Average accuracy obtaining by HD computing, using the same data
collected by 10 subjects, increasing the number of gestures (from 1 to 11).

B. HDC performance

To demonstrate the performance of the system in terms of

classification accuracy, we involved in the experiment ten able-

bodied subjects (aged 26-42) without a previous history of

neurological or muscular disorders. All participants provided

written consent to participate in the experiments.

The algorithm is trained for each subject off-line and the

AM matrix stored in the L2 memory. The training can also be

executed on-chip in real time, but this is out from the scope of

this paper. The gestures tested in this work are open hand, fist,

index, 2-fingers pinch, ok, supination, pronation, number two,

number three, number four and rest position. Fig. 5 shows the

average accuracy results obtained by increasing the number of

gestures (from 2 to 11). The accuracy stands between 84.3%

and 99.4%, showing that this implementation is suitable for a

hand gesture controller [14].

Table I shows performance in execution time and energy

consumption obtained by executing the algorithm on different

configurations of the target architecture. A schematic block

diagram of the algorithm is shown in Fig. 3. The first kernel

(RMS) computes the envelope of the raw signals on a circular

buffer of dimension 60. It does not require bitwise operations.

Hence, the built-ins are not involved. This kernel can be

perfectly parallelized on eight cores as each core can extract

the envelope from 1 channel. In the MAP+ENCS kernel, the

cluster executes the component-wise XOR operation between

CIM and IM and the component-wise majority to create the

spatial hypervector. This is optimized through the built-ins,

obtaining 2.6× better performance. Moreover, the workload is

equally distributed among the cores of the cluster (each core

performs the encoding operations on a different portion of the

hypervector) showing a gain of 20.4× (7.7× wrt Mr. Wolf 1

core with built-ins).

In the last kernel (AM), the query hypervector in output from

the MAP+ENCS kernel is associated with one of the possible

gestures. Here, it is possible to optimize the performance of

the component-wise majority and the popcount (2.8×) used

for the Hamming distance through the built-ins. The small

quantity of work to distribute among multiple cores leads

to a saturation of the speed-up. The small gain obtained

in this kernel (9.5×) does not impact significantly on the



TABLE I
HD COMPUTING EXECUTION TIMES ON THE TARGET ARCHITECTURES,

WITH 10,000-D, N=1. (CYC, SU) STAND FOR (CYCLES, SPEED-UP). THE

TOTAL ENERGY/CLASS REPORTED, IS THE RESULT OF THE ADDITION OF

THE CONTRIBUTION OF THESE FUNCTIONS WITHOUT CONSIDERING THE

ENERGY DURING IDLE PERIODS.

Mr. Wolf 1 core Mr. Wolf 1 core built-ins Mr. Wolf 8 cores built-ins

Kernel cyc(k)a E(µJ)c cyc(k)a sub E(µJ)c cyc(k)a sub E(µJ)c

RMS 6.82 0.86 6.82 1.00 0.86 0.89 7.66 0.17
MAP+ENCS 569.10 71.91 215.35 2.64 27.21 27.94 20.36 5.55
AM 68.59 8.66 24.19 2.83 3.05 7.23 9.48 1.43

TOTAL 644.48 81.44 246.37 2.62 31.13 36.06 17.87 7.17

a cycles per sample, b speed-up wrt Mr.Wolf 1 core, c 100MHz@0.8V

TABLE II
CURRENT CONSUMPTION OF THE BOARD COMPONENTS IN THE

DIFFERENT OPERATIONAL STATES

Operating Processing on Digital Analog Battery
Mode Mr. Wolf Section Section Drain

@1.8 V @1.8 V @2.7 V @3.7 V

Sleep 55 µA 10 µA 10 µA 50 µA

Streaming 55 µA 7.2 mA 2.4 mA 6.4 mA

Application 1.0 mA 0.7 mA 2.4 mA 3.2 mA

overall performance (17.9×) because of the dominance of the

MAP+ENCS kernel.

C. Power Consumption

To evaluate the performance of the architecture we set the

operating frequency of Mr. Wolf to its most efficient operative

point, 100 MHz at 0.8 V.

Table I shows results related to the energy consumed for

the classification of a new sample. The dominant part of the

entire processing derives from the MAP+ENCS kernel with

an energy consumption of 71.9 µJ. The optimized version

with the built-ins leads to a gain of 2.6×, which is further

improved exploiting the parallel computing on eight cores

(13.0×). The overall energy consumption of the single core

execution is 81.44 µJ, further reduced by the introduction of

built-ins (2.6×). Furthermore, splitting the workload among

the eight cores leads to a total energy consumption of 7.2 µJ

for a single classification.

While running the application, the total power consumption

of the system derives from the contribution of the active

blocks, namely, Mr. Wolf, the ADC, and the Nordic Soc, for

a total of 11.84 mW. The analog sections (mainly the AFE)

is responsible for 67% of the power consumption, whether the

digital section (mostly BLE transmission of computation re-

sults, data transfer between AFE and Mr. Wolf) employs 13%.

The remaining power consumption derives from Mr. Wolf

(SoC and cluster), and it is the result of the parallelization,

the optimizations, and several power-management techniques.

Data are acquired at a sampling frequency of 1 KHz, and a new

window of data is elaborated each 8 ms (8 samples overlap).

The cluster elaborates the entire processing chain in less than

1ms. During the processing, only the required cores of the

cluster are clocked up avoiding energy loss. When the MCU

is in idle, we power off the cluster and part of the SoC (sleep

mode) to minimize the power consumption. As a result, our

system delivers up to 18 h of autonomy with a 60 mAh battery,

which can be further extended up to 19 h and 35 h in indoor

(600 lux)/outdoor (10000 lux) scenarios, respectively, using

the energy harvester subsystem. These results are based on

the values summarized in Table II, where we also show the

current consumption of the system in streaming mode, with

up to 9 h of autonomy, and sleep/standby (up to 1000 h).

While it is difficult to compare wearable systems directly, it is

still noticeable that SoA systems for EMG gesture recognition

have a battery life ranging from 3 to 11h [21], [22], [13],

independently from the algorithm that is used. As explained

above, our architecture is capable of providing around 2x

more autonomy with a tiny 60 mAh battery, offering superior

performance and unintrusive form factor.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a complete system for wearable

sensing and processing of biosignals, suitable for HMI design

based on hand gesture recognition. The performance of the

proposed system, both in terms of execution time and of

energy efficiency, allows the design of a smart interface to

communicate with objects through the hands. By virtue of its

highly optimized and versatile architecture, which combines a

small solar harvester with an energy efficient and versatile chip.

Biowolf can run a pattern recognition algorithm, recognizing

up to 11 hand gestures, and ensure up to 18 h of continuous

operation that can be further extended up to 35 h with outdoor

illumination, outperforming the State-of-the-Art systems which

reach only 11 h of operation with a standard 100 mAh

LiPo battery. This demonstrates the capabilities of BioWolf,

throwing the pillars for the next generation of unobtrusive and

real-time embedded architecture for biosignal processing.
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