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An Energy-Efficient Multiobjective Scheduling
Model for Monitoring in Internet of Things

Basma Mostafa, Abderrahim Benslimane , Senior Member, IEEE,
Mohamed Saleh, Sally Kassem, and Miklos Molnar

Abstract—To ensure robustness in wireless networks, moni-
toring the network state, performance and functioning of the
nodes and links is crucial, especially for critical applications.
This paper targets Internet of Things (IoT) networks. In the
IoT, devices (things) are vulnerable due to security risks from the
Internet. Moreover, they are resource-constrained and connected
via lossy links. This paper addresses the optimized scheduling
of the monitoring role between the embedded devices in IoT
networks. The objective is to minimize energy consumption and
communication overhead of monitoring, for each node. Several
subsets of the potential monitoring nodes are generated by solving
a minimal vertex cover (VC) problem with constraint generation.
Assuming periodical functioning, VCs are optimally assigned to
time periods in order to distribute the monitoring role through-
out the entire network. The assignment of VCs to periods is
modeled as a multiobjective generalized assignment problem. To
further optimize the energy consumption of the monitors, they
are sequenced across time periods to minimize the state transi-
tions of nodes. This part of the problem is modeled as a traveling
salesman path problem. The proposed model is tested on ran-
domly generated instances and the experimental results illustrate
its effectiveness to optimize the scheduled monitoring for fault
tolerance in IoT networks.

Index Terms—Energy-efficient monitoring, generalized assign-
ment problem (GAP), Internet of Things (IoT), robustness,
scheduling, traveling salesman path (TSP) problem, vertex
cover (VC).

I. INTRODUCTION AND MOTIVATION

T
HE Internet of Things (IoT) is a persistently grow-
ing network that seamlessly interconnects a tremendous

number of heterogeneous, smart devices (things) with the
Internet. The connection does not require human-to-human
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or human-to-computer interaction. The IoT adopts novel pro-
cessing and communication architectures and technologies [2].
IoT systems can rely on wireless sensor networks (WSNs)
for data collection and their computational capabilities
may be enhanced by employing cloud and fog/edge
computing [3], [4]. As a result, numerous applications and ser-
vices have been created; including smart cities, smart homes,
smart grids, smart energy, smart agriculture, and environmental
and health care monitoring [5].

The availability of devices, the reliability of communi-
cation, the quality of service (QoS), and security are all
essential for the utilization of the IoT. Over time, the state
of devices and the overall network may depreciate. This is
due to the challenging and failure-prone nature of the IoT;
consisting of a huge number of heterogeneous and resource-
constrained things in terms of memory, energy, and computa-
tional capability. Furthermore, energy constraints impose hard
duty cycles to maximise longevity, which in turn causes unre-
liable connectivity [6]. In addition to unknown and dynamic
network topologies, and unreliable connectivity, this leads to
incomplete information about the current network state [39].
The situation is considered a form of entropy, where a sys-
tem deteriorates unless effort is invested in the development
of monitoring and correction mechanisms to maintain a fault-
tolerant system’s performance [7].

Fault tolerance can be tackled in the network deploy-
ment stage by guaranteeing full network coverage and
connectivity [8]. In the network layer, multipath routing has
a major role in fault tolerance. It utilizes the high density in
node deployment to incorporate redundancy in routing paths;
which in turn increases the chance of data delivery [9], [10].
Nevertheless, constant network monitoring and taking correc-
tive measures in case of failures is still necessary.

Consequently, the proliferation of IoT applications criti-
cally depends on effective monitoring methods and algorithms.
To be effective, such methods and algorithms should do the
following.

1) Ensure robustness and fault-tolerant operation of IoT
ecosystems from end to end.

2) Guarantee good operation of sensors.
3) Verify the correctness of the big data programming mod-

els and the availability of resources in the network, in
addition to.

4) Verify fog/edge and cloud datacenters, despite the
high risk of faulty and nondeterministic environmental
conditions.



Thus, addressing monitoring for fault tolerance and preven-
tion in complex IoT can significantly improve the functioning
of the network and will eventually pave way for the wide
deployment of IoT services. This problem is interesting for
both research and industrial domains, particularly for mission-
critical, time-sensitive applications. Examples of such applica-
tions are critical control and fault detection, health monitoring
and safety applications. Such applications require the avail-
ability, reliability, and the state of communicant objects to be
constantly checked for fast restoration in cases of unexpected
communication problems.

The literature is rich with researches on monitoring
WSNs [8], [11]–[14], but fewer researches tackled the prob-
lem of monitoring IoT networks. Obviously the large founda-
tion built for WSNs paves the way for successful monitoring
in the IoT. However, due to the intrinsic differences between
the two paradigms, providing a monitoring system customized
specifically for IoT networks and their standardized protocols
is worth investigating. Therefore, this paper is motivated by
the lack of research that has addressed monitoring IoT effi-
ciently, in terms of energy consumption and communication
overhead.

The monitoring system operations allow continuous mainte-
nance of the network state and the availability of components.
The system needs to consider the resulting overhead on the
network and minimize it. The ability to monitor a network in
real-time with energy-efficient and dynamic algorithms helps
in the early detection/prevention of faults. At the same time,
the network is left unconstrained during normal operation. This
objective is challenging, since network monitoring causes high
energy losses due to the need for devices to be awake most
of the time to maintain a correct network state [15]. On the
other hand, the design of WSNs, and low power and lossy
networks (LLNs), is ordinarily constrained by life span con-
cerns. A prevalent approach toward expanding the life span of
such networks is by using sleep scheduling. In sleep schedul-
ing, nodes enter sleep state frequently, and intermittently wake
up to check for action in the network [16], [17]. For critical
and time-sensitive IoT applications, monitoring needs to be
continuous regardless of the lack of activity in the network.
Therefore, while employing monitoring with sleep schedul-
ing, it is required to guarantee that each link in the network is
always monitored by at least one monitoring node throughout
the network lifetime. Ignoring the monitoring overhead may
lead to increased congestion in the network at critical times,
or battery drainage. These situations violate the requirements
of mission-critical, time-sensitive IoT applications.

This paper investigates the optimized scheduling of the
monitoring role of nodes in IoT networks. The problem is
represented through a mathematical model. The developed
model corresponds to a multiobjective optimization of the
energy consumption and the overall communication overhead
of monitoring the network. The proposed model is decom-
posed into a three-phase framework. The first phase requires
generating multiple subsets of the nodes that cover the entire
graph. These subsets are generated by solving a vertex cover
problem (VCP) iteratively; while incorporating a constraint
generation algorithm. Furthermore, an optimized scheduling of

the vertex covers (VCs) is proposed. The scheduling aims to
minimize the energy and communication costs incurred while
monitoring the network. QoS-aware monitoring is targeted,
where constraints are used to include/eliminate the nodes that
can/cannot withstand the energy requirements of monitoring.
The scheduling is addressed in the second and third phases of
the computation, which are modeled as a multiobjective gen-
eralized assignment problem (GAP) and a traveling salesman
path (TSP) problem, respectively. To verify the effectiveness
of the proposed model, a branch-and-bound (BB) algorithm is
used for the first and second phases and a dynamic program-
ming algorithm is used for the third phase. This contribution
is a step toward achieving optimized monitoring for improved
robustness and fault tolerance. The monitoring process is per-
formed with minimal energy consumption and communication
overhead while providing load balancing. This is important for
mission-critical IoT applications.

The rest of this paper is organized as follows. Section II dis-
cusses literature related to network monitoring in the IoT and
WSNs. Section III is a description of the problem statement.
Section IV presents the modeling of the monitoring optimiza-
tion. Section V presents the mathematical formulation of the
proposed framework, followed by implementation and analy-
sis in Sections VI and VII, respectively. The conclusions and
future research are presented in Section VIII.

II. RELATED WORK

Several applications of the IoT are known for area, object,
and health monitoring [18]–[20]. This research targets moni-
toring the IoT network itself (hereinafter referred to as network
monitoring). Algorithms are developed for ensuring a reliable
and fault-tolerant operation of the network. Fault tolerance
can be addressed in each of the network (routing) layer, trans-
port layer or application layer [8]. Focusing on the network
layer, the objective is to provide stable, reliable, and scalable
end-to-end connectivity.

Extensive work had been proposed in the literature to
address the problem of network monitoring for fault toler-
ance in WSNs [11]–[14], [21]. Swain et al. [11] proposed
a clustering framework for fault diagnosis to balance the
load and minimize the energy consumption. The authors
used a statistical mechanism for fault detection and neu-
ral networks for fault classification. Panda and Khilar [12]
proposed a statistical-based, distributed fault diagnosis algo-
rithm. Coordination between neighboring nodes was used in
the fault diagnosis to minimize the communication overhead.
Khan et al. [13], on the other hand, proposed a fault detection
strategy for WSNs based on a fuzzy inference system.

Most of the proposed techniques are considered to be
either active or passive monitoring [8], [22]. Active monitor-
ing injects probes into the network to infer the network’s
performance from the measured parameters (such as delays
and packet losses). Alternatively, passive monitoring observes
the traffic that normally passes through the network and infers
the network’s performance from it. Examples of active and
passive monitoring for WSNs are found in [14] and [21],
respectively.



Given that the design of WSN, and LLNs is always con-
strained by life span concerns, prolonging the lifetime of
the nodes has become a problem of paramount importance.
The problem is called in the literature the maximum lifetime
problem (MLP). Cardei et al. [23] proved that MLP is NP-
complete. Since monitoring uses the energy of the nodes, this
additional activity should be minimized to prolong the network
lifetime as much as possible.

Lifetime maximization can be reached by using the high
redundancy feature in node deployment, specifically, by col-
lecting the nodes into subsets known as covers. Each target
must be monitored by at least one sensor in the cover.
Extending the network lifetime can be achieved by scheduling
between these covers, where the monitoring role is alternated
between different subsets. The sensors that are not currently
monitoring switch to a sleep state, where the energy consump-
tion is minimal. The total energy consumption of a node must
be at most equal to its initial energy. Several propositions
were formulated in the literature to address MLP and problem
variations [5], [17], [24], [25].

Although the literature is rich with many researches on mon-
itoring in WSNs [8], [11]–[14], [48], most of the researches
proposed for WSNs are based on the assumptions that the
network does not have a central controlling node, and that
nodes are not associated with a unique global address [26].
On the other hand, IoT networks always include a central con-
trol device, known as the border router (BR), which connects
IPv6 over LoWPANs (6LoWPAN) networks with the Internet.
The BR is assumed to be always accessible [29], [30], there-
fore it is capable of performing a crucial role in monitoring.
Moreover, nodes are globally identified by an IP address
which facilitates active monitoring when checking the avail-
ability of networks’ components, where communication has
not been established for long times. The full integration with
the Internet infrastructure and cloud services further enhances
the computation capabilities of IoT networks, which could also
be beneficial for monitoring.

Despite these favorable characteristics, ensuring a reli-
able, fault-tolerant communication for IoT networks remains
a challenging task for the following reasons.

1) The IoT is enabled by resource-constrained and het-
erogeneous things that are connected to the insecure
Internet.

2) The utilized protocols need to be optimized to minimize
the overhead on the constrained things.

3) Things are globally accessible which imposes a huge
security risk from the Internet.

4) The communication is unreliable as they are connected
through lossy links [26].

5) Furthermore, there are challenges imposed due to node
mobility and the dynamic and uncertain environmental
conditions.

To enable the IoT, the Internet Engineering Task
Force (IETF) working group has defined IPv6 over
LoWPANs [29]. It was promised to provide end-to-end con-
nectivity, ubiquity, and scalability. However, due to the
resource-constrained nature of the nodes, crucial IP protocols
that are usually incorporated for network monitoring cannot

be supported by such nodes. Therefore, extra effort has to
be spent to address optimized network monitoring for IoT
networks. Several recent works were proposed to answer to
the security requirements of the IoT [26]–[28]. For instance,
Raza et al. [26] developed an intrusion detection system to
catch routing attacks in the IoT. Giuliano et al. [27] proposed
a key renewal algorithm for the secure access of devices.

Additionally, The IETF working group standardized the
routing protocol for LLNs (RPL). It is considered to be the
de facto routing protocol for IP-connected IoT [29], [30]. It
was developed as a response to the routing requirements of
LLNs [31]. Multipath routing as well as local and global
routing structure repair mechanisms were proposed to handle
unreliable connectivity in IP-connected IoT. Multipath routing
utilizes the high density in node deployment to incorporate
redundancy in routing paths. It contributes to fault tolerance
as it facilitates the recovery of the routing structure in case of
link failures which increases the chance of data delivery and
provides load balancing [8]–[10].

RPL repair mechanisms are considered to be reactive to
node or link failures. Consequently, delays in communications
and nodes unreachability are expected for some time (possi-
bly for several minutes) [32]. Such delays are unacceptable for
critical, time-sensitive IoT applications. Thus, network moni-
toring is a requirement. It is imperative, and yet challenging, to
develop monitoring systems compatible with these standards
and adapted to the mentioned challenges and characteristics.
This led to development of a monitor placement algorithm
that works in tandem with RPL in [1]. The algorithm is mod-
eled as a classical minimum VCP that works in tandem with
IPv6 routing protocol for LLNs (RPL) The VCP works on
the destination oriented directed acyclic graphs (DODAG)
constructed by RPL. A polynomial-time algorithm that con-
verts the DODAG into a nice-tree decomposition with unity
treewidth was developed in [1]. This strategy yielded a sig-
nificant reduction in the complexity of solving the originally
NP-hard VCP on generic graphs to be only polynomial-time
solvable on DODAGs. In this paper, an energy-efficient mon-
itoring algorithm is proposed to maintain reliable network
structure, while minimizing the overhead monitoring imposes
on the network.

III. PROBLEM STATEMENT

The problem addressed is the efficient, full monitor cover-
age in RPL-based 6LoWPAN networks for a predetermined
lifetime, considering minimum energy consumption and com-
munication overhead. In RPL, the BR is responsible for the
DODAG construction, which starts by broadcasting a DODAG
information object (DIO) [30]. The DIO contains the con-
figuration of the DODAG. The objective of this paper is to
continuously test the availability and correct functioning of
neighboring nodes by monitoring the status of the entire set
of links present in the network.

Monitoring can be performed inside RPL by including
a header in the DIO for metrics and constraints objects. This
header is called DAG metric container object. Node energy
and link reliability are examples of the metrics/constraints that



could be included in the DAG metric container object [33].
When the DIO traverses the DAG, each node augments a sub-
object to the message, which expresses its value to the metric
used. The monitored nodes will unicast their responses of the
DIOs to their monitors. Monitors are the nodes responsible
for gathering the monitoring data and reporting back to the
BR, through multihop communication. The BR then sends this
information to the networks operations center (NOC), where
data analysis is performed.

It is assumed that a link can only be monitored by its
extremities (i.e., endpoints). Also, each node has several activ-
ities independent from monitoring; therefore, the monitoring
activity cannot consume more than a specified limited power
(fraction of a node’s battery). The intrinsic energy limitations
of the resource-constrained things in IoT networks need to
be taken into consideration. This is because a monitor cannot
continuously monitor its neighbors without running out of the
battery reserved for monitoring.

As mentioned in Section I, sleep scheduling is usually
incorporated in WSNs and LLNs to reduce average power
consumption and maximize longevity. This is often achieved
by duty cycling between active and sleep states of the nodes.
Hence, in order to achieve continuous monitoring, it is imper-
ative to alternate the monitoring duty between several sets of
nodes, while ensuring that each set is capable of covering
the entire network. It should be noted that the active/sleep
alternation addressed in this context is the turn on/off of the
monitoring activity of the node, regardless of the other activi-
ties a node may perform (sensing, transmitting of sensed data,
etc.). To realize this alternation, the monitoring function is
periodical across the planning horizon. The planning hori-
zon is the predetermined lifetime specified by the NOC in
which all edges are being monitored. The NOC is responsi-
ble for planning the optimized periodic monitor scheduling.
Therefore, the optimization is external from the resource-
constrained things. At any time interval, the active node set is
known from the DODAG.

Usually, the cost of monitoring a network includes a monitor
deployment cost and an operational cost [34]. The deploy-
ment cost is the hardware cost of deploying monitoring nodes.
For the problem in hand, the operational cost is the net-
work overhead resulting from the communications between the
monitoring devices and the BR. The monitors are ultimately
transmitting the gathered information about the monitored
nodes to the root of the DODAG. The transmission is done
through multihop communication. Consequently, the longer
the path to the root in number of hops, the higher is the cost.
Moreover, the monitoring activity consumes a percentage from
the battery reserved for monitoring. This paper aims to min-
imize the monitoring costs in terms of communication and
energy costs.

As mentioned above, in sleep scheduling, a node assumes
different states: active state, sleep state, or transient state (from
active to sleep and vice versa). The energy consumption dur-
ing the transient state can be high [35], and numerous state
transitions for the nodes consume extra energy [Fig. 1(a)].
Consequently, the energy consumption of the monitors could
further be minimized if the time periods, where a node is

(b)

(a)

Fig. 1. Energy model. (a) Before active time periods merged and (b) After
active time periods merged [10].

Fig. 2. Phases of the monitoring optimization.

actively monitoring are merged together [Fig. 1(b)]. To that
end, it is required to find the optimal sequencing between
the sets of monitors across the time periods in a way that
minimizes the state transitions of nodes. The modeling and
mathematical formulation of the monitoring optimization are
discussed in the following section.

IV. MODELING OF MONITORING OPTIMIZATION

The IoT network could be represented by its logical
graph constructed by the routing protocol RPL, namely the
DODAG [18], [19]. Consider an active DODAG D = (V, E),

where V represents all the vertices, V = {vk, k = 1, 2, . . . , q}

and E is the set of edges. For monitoring a time horizon
T = {Tj, j = 1, . . . , n}, the duty is cycled between several
sets of nodes; each node has a reserved battery for moni-
toring (Reserved_batteryk). The monitoring activity for one
period consumes energy (Em). During the lifetime of moni-
toring, communication and transition costs are incurred. The
communication cost is the cost of transferring the monitoring
data to the BR. Transition cost is the cost of alternating from
one set of monitors to another. The objective is to minimize
the overall monitoring costs while ensuring monitor coverage
of the entire DODAG throughout the planning horizon.

Scheduling between several sets of monitors for minimum
energy consumption is an NP-hard problem. This remains true
even in the very special case, where, the Reserved_batteryk

for monitoring is sufficiently large such that, one set of
monitors can cover the entire planning horizon. Finding the
minimum set of vertices to cover an entire graph is also
NP-hard [36], [37].



Fig. 3. Assignment of VCs i to periods j.

To the best of our knowledge, the exact solution to the
defined problem is not known. In this paper, a three-phase
decomposition of the problem (Fig. 2) is proposed. The
three proposed phases are modeled using well-known opti-
mization problems in the literature. Although these problems
are NP-hard in nature, approximation algorithms to solve
them are available in the literature (see [36]–[39]). Moreover,
decomposing the original problem allows a finer reduction
of the search space and, hence, reduction in the solution’s
complexity.

The first phase (Phase I) of the proposed decomposition
is responsible for creating multiple sets of monitoring nodes.
Each set satisfies the coverage requirements of the network.
Phase I can be modeled as a VCP [40]. The objective is to
find the minimal sets of vertices that cover all the edges in the
graph. The graph used in this paper, is the DODAG constructed
by RPL [29], [30]. Only minimal VC sets are interesting for
monitoring. If a node set is not minimal for the VCP then it
contains a subset which is minimal and can cover all the edges
with less cost.

As described in Section III, several monitoring sets (VCs)
are required to achieve monitor scheduling while minimiz-
ing and balancing the energy consumption of the monitors.
For this purpose, an algorithm (Algorithm 1) is developed to
get multiple solutions of the same VCP, after incrementally
adding new constraints to reduce the search space. Reducing
the search space through incrementally adding new constraints
is known as the constraint generation approach [41].

The output of Phase I is several sets of VCs. The work-
ing schedule of the VCs across the planning horizon is still
required. Given a planning horizon (defined by the NOC),
divided into several time periods, the purpose of Phase II is
to optimally assign (a subset of) the VCs to each of the time
periods with the following objectives.

1) The total energy consumed for monitoring is minimized.
2) The communication cost across all VCs is minimized.
Phase II is modeled as a GAP [42]. GAP is a special type of

optimization problems, where agents are assigned to perform
multiple tasks (Fig. 3). For the problem in hand, agents are
the VC sets (or a subset of them) that should be assigned to
time periods.

The last phase, Phase III, is sequencing the VCs with
the objective of minimizing nodes’ state transitions from
one period to the next. The sequence generated determines

Model 1: Minimum VCP

Decision Variables

Let vk =

{

1, if vk is chosen in a Vertex Cover
0, if vk is not chosen in a Vertex Cover

(2)

Model Equations

Minimize

q
∑

k=1

vk (3)

Subject to vi + vj ≥ 1 ∀
(

vi, vj

)

∈ E (4)

vk ∈ {0, 1} ∀ vk ∈ V (5)

the number of times a node’s state is being changed from
asleep to awake and vice versa. Phase III is modeled as
a TSP problem [43]. We are interested in finding the mini-
mum weighted Hamiltonian path (HP) (in terms of nodes state
transitions) from an arbitrary starting point. A HP is a path
that visits each vertex exactly once without the need to return
to the starting vertex [47]. The vertices in this case are the
selected VCs from Phase II. The starting vertex of the HP is
completely arbitrary. The edges represent the transition costs.
The result (the path) gives the optimal sequence (scheduling)
of the selected VCs.

V. MATHEMATICAL FORMULATION OF

MONITORING OPTIMIZATION

The three phases include the following sets.
1) Set V: Represents all the vertices in the DODAG, where

V = {vk, k = 1, 2, . . . , q}.
2) Set S: Represents all the VCs VC obtain-ed from

Phase I, where subset VC ⊂ V represents the subset
of monitoring nodes and S = {vci, i = 1, 2, . . . , m}.

3) Set T: Contains the disjoint time periods covering the
entire planning horizon; which the VCs are assigned to
monitor. T = {Tj, j = 1, . . . , n}.

A. Phase I: Generating Multiple Vertex Covers

Let D = (V, E) be the DODAG, where V is the set of ver-
tices and E is the set of edges. A subset VC ⊂ V is a minimal
VC of D if for every edge (u, v) ∈ E, either u ∈ VC or v ∈ VC

or both u, v ∈ VC and VC is irreducible, i.e., no vertex can be
removed from the VC without losing the coverage property.

Phase I computes set S which includes the m VCs such
that for each edge in the DODAG at least one of its endpoints
belongs to vci. Moreover, no VC in S should be a subset of
another such that

∀ vci ⊂ S, ∄∄∄ vcj ⊂ S|vci ⊂ vcj. (1)

Let the decision variables vk express whether the vertex vk

is in the VC or not. The objective is to minimize the total
number of vertices in the VC, subject to the constraint that at
least one vertex of the edge (vi, vj) is a member of the VC.
The problem is the binary optimization problem represented
by Model 1.



Algorithm 1: VCP With Constraint Generation
Input:

DODAG D,
Initial solution vci, initial matrix of constraints A,
vector of RHS b, and the initial value of the
objective function z.

Output:
Matrix of solutions M

Step 1 While (feasible minimal VC do exist) do
Step 1.1 M← vci

Step 1.2 A← A +vcT
i

Step 1.3 b← b + (zi − 1)

Step 1.4 i←i +1
Step 1.5 (vci, z) = VCP (A, b )

END While

Step 2 Return M
END

The binary integer program in Model 1 is solved to get the
minimum set of monitors, i.e., the minimum VC. In order to
obtain multiple VCs, Algorithm 1 is used to solve the VCP
iteratively. Each VC obtained using Algorithm 1 satisfies the
constraints of Model 1.

Algorithm 1 works as follows: construct a matrix M, where
all solutions of the VCP are stored, and a z vector which
contains the corresponding objective function value to each
solution in M. Initially, M contains the optimum solution
obtained after solving Model 1 using BB algorithm, and z

stores the minimum VC.
Then, the VCP is solved iteratively after adjusting the

integer program by adding previous solutions to the set of
constraints, thereby reducing the search space. The algorithm
terminates when no other feasible minimal VCs can be found.
In each iteration, a column representing the new solution,
which has a cardinality greater than or equal to the previ-
ous solution, is appended to matrix M and the corresponding
objective function value is added to the z vector, such that

vcT
i ∗ M < z. (6)

To illustrate, let the initial solution be vc1, and the correspond-
ing objective function value be z1. To obtain vc2, solve the
integer program Ax ≤ b after adding the following constraint
to the matrix of constraints (A) and the vector of RHS (b):

vcT
2 ∗ vc1 < z1. (7)

In this way, to solve for vc3 the following two constraints are
appended:

vcT
3 ∗ vc1 < z1 (8)

vcT
3 ∗ vc2 < z2. (9)

To solve for vcm the following (m − 1) constraints are
appended:

vcT
m ∗ vc1 < z1 (10)

...

vcT
m ∗ vcm−1 < zm−1. (11)

B. Phase II: Assigning Time Periods to Vertex Covers

In Phase II, the planning horizon is divided into several
periods. Then, a mathematical model is developed to optimally
associate the VCs to periods throughout the planning horizon.
The assignment does not define any ordering or sequencing of
the time periods. Given a planning horizon denoted by T =

{Tj, j = 1, . . . , n}, define a binary decision variable sij that
indicates whether a VC vci is assigned to monitor a period Tj

[refer to (14)].
Assumptions:

1) Any node can be selected as monitor.
2) A node may be a member of several VCs.
3) Some VCs may monitor one period, more than one

period, or none at all.
4) Each period is to be assigned exactly one VC.
5) The monitoring cost is defined in terms of the commu-

nication cost incurred by monitors and the energy loss
due to monitoring.

Any node vk may be a member of several VCs. The cur-
rent Consumed_energyk of node vk is calculated using (15).
Equation (15) states that: the current Consumed_energyk for
monitoring, depends on the number of times a VC set, includ-
ing vk, has been assigned to a period, multiplied by the energy
loss (Em) per each monitoring period. The energy loss is the
same for each active monitor and for each period. In (12),
a binary variable yki is defined, which indicates whether a ver-
tex vk is a member of VC vci or not. The variable yki is the
output of Phase I, and hence it is a parameter in Phase II. When
yki is multiplied by sij and summed over the VCs and the peri-
ods, the result is the number of times a vertex vk has been
assigned to monitor a period [refer to (15)].

Energy is lost due to communication between the mon-
itoring devices and the BR. This is because the monitors
are ultimately transmitting the gathered information about the
monitored nodes to the root of the DODAG. The energy
lost for communicating the monitoring data is not part of
the Reserved_batteryk for monitoring. On the other hand,
this energy loss affects the rest of the battery that is not
dedicated to monitoring. Accordingly, it is necessary to find
the shortest path, in terms of the number of hops to the
BR. The objectives in Phase II are twofold [refer to (16)–(18)].
At this stage, it is required to determine how all assign-
ments should be made while minimizing the total number
of hop counts traveled by all members of the VCs. This is
done while minimizing the total energy spent for all nodes.
Equation (12) denotes the number of hops traveled from each
monitoring node vk in vci to the root as hk, and (13) denotes
the total number of hops traveled by all vk in vci as Hi.
Constraint (19) indicates that each period must be monitored
by one VC. Constraint (20) ensures that the energy consumed
for monitoring never exceeds the (Reserved_batteryk).

C. Phase III: Sequencing Between Assigned Vertex Covers

The objective of Phase III is to minimize the nodes’ state
transitions from one VC to the next. If a node vk belongs
to more than one VC set vci, the model associates consec-
utive periods to the VC sets containing the repeated node.



Model 2: Genaralized Assignment Problem
Parameters:

yki =

{

1, if vk ∈ vci

0, otherwise
(12)

hk Number of hops travelled from each

vk in vci to the root of the DODAG

Hi Total number of hops travelled by all

vk in vci

=
∑

(

yki ∗ hk

)

∀ k ∈ V (13)

Em Energy loss per each monitoring

period assigned for vk

Reserved_batteryk Maximum battery allowed for

monitoring

Decision Variables:

Let sij =

{

1, if vci is assigned to period j
0, otherwise

(14)

Auxiliary Variables:

Consumed_energyk = Em ∗

⎛

⎝

m
∑

i=1

n
∑

j=1

yki ∗ sij

⎞

⎠ (15)

Objective Functions:

F1: Total energy loss

F1 =
∑

k∈V

Consumed_energyk (16)

F2 :Total number of hops across all periods

F2 =

m
∑

i=1

n
∑

j=1

(Hi) ∗ sij (17)

Model Equations:

Minimize F1 & F2 (18)

Subject to:

m
∑

i=1

sij = 1, ∀ j ∈ T (19)

Consumed_energyk ≤ Reserved_batteryk ∀ k ∈ V (20)

sij ∈ {0, 1} ∀ i, j (21)

Accordingly, the number of times a node needs to start up to
perform its assigned monitoring is minimized. This Phase is
modeled as TSP path. Details of the stocktickerTSP path are
shown in Model 3, where the Miller, Tucker, and Zemlin
mathematical formulation [38] is adopted. The decision vari-
ables and parameters are adjusted in Model 3 such as follows.

1) The cities here are the unique VC sets assigned to peri-
ods T = {Tj, j = 1, . . . , n}, i.e., the unique results from
the previous assignment model (Model 2).

Model 3: TSP Problem
Parameters

Let Cij =
∑

state Transitionsij (22)

Decision Variables

Let xij =

{

1, if vcj is chosen for monitoring after vci

0, otherwise
(23)

Model Equations

Minimize

n
∑

i=0

n
∑

j 
=i,j=1

Cijxij (24)

Subject to
n

∑

i=0,i 
=j

xij = 1 ∀ j (25)

n
∑

j=0,i 
=j

xij = 1 ∀ i (26)

ui − uj + (n − 1)xij ≤ n − 2

i, j = 2, . . . , n, i 
= j (27)

1 ≤ ui ≤ n − 1 i = 2, . . . , n (28)

2) Define a binary decision variable xij denoting whether
vcj is selected in the path after vci (23).

3) A feasible solution is a path (HP) that passes through
each set exactly once (25) and (26).

4) Number of state transitions of the members of the sets,
from active to sleep and vice versa (22).

5) The cost (distance) Cij of moving from one city (VC
set) to the next, from vci to vcj, is the total.

6) the objective is to find the least costly sequence of VCs
over the planning horizon (24).

7) Extra variables ui are required for subtour elimination,
in the constraints expressed in (27) and (28).

VI. IMPLEMENTATION AND ANALYSIS

A. Problem Resolution and Implementation

Solving the problem starts with Phase I by generating
a DODAG and outputs matrix M. Multiple solutions of the
VCP are stored in matrix M. Algorithm 1 runs until no more
feasible minimal VCs exist. However, for experimentation pur-
poses, it has been shown to suffice to loop any number of
times between the range [1.5|T|– 3|T|]. This range denotes the
required number of VCs (θ ). Analytical simulation is con-
ducted for networks of 50, 100, 150, and 200 nodes with
varying numbers of links. Table I shows the characteristics
of the corresponding DODAGs, a summary of the results of
the three phases for eight different DODAGs, as well as the
metrics used for evaluation. DODAGs are constructed such
that there is a root (BR) and each node has at least one path
toward it. The edges on the DODAGs are constructed by ran-
domly generating (x, y) positions of each node in a unit square
(units do not matter in the graph). The distance between every



TABLE I
SUMMARY OF EXPERIMENTAL RESULTS |T| = 10, Em = 2%, RESERVED_BATTERYk = 50%, INITIAL_BATTERYk = 100

Fig. 4. DODAG of a network with 100 nodes and 234 links. Node number 1
is the root.

two nodes is measured; if it is less than a certain threshold
parameter then the two nodes are connected.

By varying the threshold parameter, in the range [0 – 1], the
DODAG gets sparser or denser. Fig. 4 shows an example of
a DODAG with 100 nodes and a threshold of 0.09, which gives
234 links. Varying the density of the graph affects the number
of nodes required to monitor the entire DODAG. Fig. 5 depicts
the effect of varying the density of a DODAG, with 100 nodes,
on the percentage of monitors. It is evident that the more the
number of communication links between the nodes, the more
monitors are required.

Throughout the entire set of experiments, it is assumed
that the planning horizon T is divided into ten time periods,

Fig. 5. Effect of varying the density of the DODAG on the percentage of
monitors.

and that the energy loss Em per monitoring period assigned
for vk is 2% of its total energy. Running Phase I with
DODAG number 3 in Table I, for example, (DODAG shown
in Fig. 4), outputs matrix M which includes 15 different VCs
(VC1, . . . , VC15). M is the input of the multiobjective GAP
in Phase II.

As mentioned in Section III, the model in Phase II a
multiobjective mathematical programming (MMP) problem.
There are several approaches to solving MMP problems in
the literature. This research adopts the ε-constraint method.
This is due to its several advantages over its rivals [44].
In the ε-constraint approach, only one objective function is
optimized, whereas the others are added to the constraints.
Pareto-efficient solutions are achieved by varying the right
hand side of the constrained objective functions.



Although it is widely used, the ε-constraint method has
its disadvantages. First of all, it is required to calculate the
range of every objective function used as a constraint. The
usual way is to build a payoff table. It includes the optimal
solution for each objective function optimized individually.
There is no guarantee that these optimal solutions are indeed
nondominated solutions [45]. Another weak point is that the
optimal solution is not guaranteed to be an efficient solution
if there are alternative optima. To overcome some of the lim-
itations of the ε-constraint approach, [augmented ε-constraint
method (AUGMECON)] [45] was developed.

AUGMECON guarantees the Pareto-efficiency of the solu-
tions by using lexicographic optimization1 of the objective
functions. Therefore, the AUGMECON method is imple-
mented in this paper. Through using AUGMECON method for
Phase II, the output is the scheduled assignment of the VCs
over the periods, which is represented by a binary decision
variable sij.

Input to Phase III is the unique VCs assigned to monitoring
in Phase II. Output of Phase III is the sequence that minimizes
the total number of state transitions of the nodes. The sequence
is generated using a dynamic programming implementation of
the TSP problem. Fig. 6 shows a comparison between the
sequencing of the VCs assigned in Phase II [Fig. 6(a)] on
DODAG number 3, and the sequence after solving the TSP
Path of Phase III [Fig. 6(b)]. The new sequence reduces the
total number of state transitions by 70%.

B. Performance Evaluation

The experiments were performed on a personal com-
puter with 8 gigabite RAM and an Intel Core i7 proces-
sor @2.20 gigahertz. Considering the problem formulations
presented in Section V, the metrics used for evaluation (shown
in Table I) are as follows.

1) Percentage of nodes selected as monitoring nodes.
2) Average residual energy among monitors.
3) Percentage of reduction in the nodes’ state transitions.
The originality of this paper is mainly in the proper mod-

eling of the defined problem. Modeling the monitor selection
problem as VCP in Phase I guarantees optimal monitor place-
ment to cover the entire set of links. Simultaneously, the
percentage of deployed monitors is relatively small, (52%–
66%, depending on the density of the network). Consequently,
it is possible to identify fine-grained performance link met-
rics, where monitors send passive probes in an end-to-end
approach. This leads to reducing the need for active probes;
thus less monitoring overhead. In addition, active probes can
be used when needed, to check the availability of network
parts, where communication has not been established for
long times. Moreover, the proposition in Phase II is able to
optimally assign monitors to periods with minimum energy
consumption, depending on the number of periods (|T |), the
energy loss per period (Em), and the reserved battery per
node (Reserved_batteryk). The values of the parameters used
for the test instances have been chosen arbitrarily. This is
because the main overriding objective of this paper is to

1Lexicographic optimization is the sequential optimization of multiple
objective functions; by optimizing one function and from the pool of
alternative optima sequentially optimize the next.

(a)

(b)

Fig. 6. Assignment of VCs. (a) Before TSP and (b) after TSP.

emphasize that energy-efficient solution methods for this dif-
ficult problem do exist. That being said, it can be seen that,
after setting the parameters to the values: (|T| = 10, Em =

2%, Reserved_batteryk = 50% and Initial_batteryk = 100%),
the average residual battery throughout the eight instances
depicted in Table I is in the range [86%–98%].

It is interesting to emphasize that when the battery dedicated
for monitoring is sufficiently large, fewer VCs are assigned to
periods and less monitor scheduling is required.

On the other hand, when the Reserved_batteryk is relatively
small, more VCs are required to monitor the same number of
periods and scheduling for minimal energy consumption is
critical. Fig. 7 shows the minimum, average, and maximum
remaining (residual) battery after monitoring for a network
of 50, 100, 150, and 200 nodes. For Em = 2%, the minimum
residual battery does not fall below 80% and the average resid-
ual battery is between the range [83%–90%]. Also, when the
model was tested without running Phase I, all the nodes were
assigned to monitoring.

Consequently, the nodes’ battery level dropped to the min-
imum level. Fig. 8, emphasizes the model’s capability of
monitoring a dense network of 200 nodes with increasing num-
ber of links, without depleting the nodes’ reserved battery for
monitoring. The figure shows that the density of the network
grows up to 2463 links and yet the average residual battery is
in the range [82%–98%].

The results after solving the TSP path, for the optimal
sequencing of the VCs across the time periods, are very
promising. The model is both effective and efficient in reduc-
ing the state transitions of nodes up to 80%. It is worth
mentioning that in some instances, like DODAG number 8 in
Table I, the solution from Phase II is already optimum with



Fig. 7. Residual battery after monitoring for different-sized networks.

Fig. 8. Average residual battery after monitoring for a network of 200 nodes
and varying number of links.

respect to the number of state transitions. Therefore, the per-
centage reduction of state transitions after the TSP path is
sometimes zero.

VII. COMPLEXITY ANALYSIS

The proposed model’s time complexity depends on several
factors.

1) |V|: Size of the DODAG, in terms of the number
of nodes.

2) |M|: Number of VCs obtained from Phase I.
3) |T|: Number of periods in the planning horizon.
4) u: Number of unique VCs assigned to monitor the

periods (solution of Phase II).
Lemma 1: Phase I has a time complexity of O(2|V|.|V|2).

Proof: The integer programming solution for the VCP
includes a nested loop that runs in exactly (1/2)(|V| − 1).|V|.
This nested loop is analogous to the constraint in (3) in
Model 1. The constraint generation algorithm (Algorithm
1) has a constant running time of θ , where θ represents
the required number of generated VCs. As mentioned in
Section VI, it is noticed from the preliminary experimenta-
tion that it is sufficient to set θ in the range [1.5|T|– 3|T|].
The BB algorithm is used to solve the VCP. The complexity
of BB is lower bounded by the total number of nodes, which
is proportional to 2|V| [24]. Hence, Phase I has a total running
time of ((1/2)|V| − 1).(|V| + θ).2|V|, i.e., O(2|V|.|V|2).

As VCP is NP-hard, a lot of research has been conducted
to produce efficient approximation algorithms (see [36], [37]).
The work in [1] develops a polynomial-time algorithm that
converts the DODAG into a nice-tree decomposition with unity

treewidth. Using the algorithm proposed in [1] yields a signifi-
cant reduction in the complexity of solving VCP on DODAGs.
The problem becomes polynomial-time solvable, even though
it is run iteratively using a constraint generation algorithm.

It can be seen from Table I that the majority of compu-
tations is relatively centered in the multiobjective GAP in
Phase II. For example, DODAG number 4 with 100 nodes
and 347 links requires around 10 s to reach the optimal
solution for the VCP, and less than 1 s for the TSP Path,
and 600 s to reach the optimal solution for the multiob-
jective GAP. The problem of large running time exists for
instances having more than 200 nodes and 350 links. The
optimum solution is still reachable, albeit slowly. Fortunately,
there exist several approximation algorithms for GAP. For
instance, [39] presented a polynomial-time 2-approximation
algorithm for GAP.

Lemma 2: Phase II has a total time complexity of
O(2(|M|.|T|). (|V| + |M| + |T|)).

Proof: To prepare the coefficients for the communication
objective function F2 as represented in (17), the solution loops
|M| times. Moreover, a loop of |T| times is required to enforce
a period to be assigned once, which is represented in (19).
Also, to constraint the energy used for monitoring of each
node to be less than or equal to the Reserved_batteryk the
solution loops |V| times [represented in (20)]. The number
of variables in the GAP is |M|.|T|. Using the BB algorithm
for solving the GAP, which is bounded by the total number
of variables, gives an overall time complexity for Phase II of
O(2(|M|.|T|). (|V| + |M| + |T|)).

Lemma 3: Phase III has time complexity of O(2u.u2).

Proof: Although the TSP path is also NP-hard and
there are approximation algorithms proposed in the litera-
ture (see [6]), its running time in the proposed model is
relatively small. This is due to the fact that the input of
Phase III is only the unique VCs assigned to monitor the
periods (u) from Phase II. TSP path is solved using Held–
Karp dynamic programming algorithm [17]. There are at most
(2u.u) subproblems, each of which takes linear time (u) to
solve. Therefore, the time complexity of Phase III is O(2u.u2).

VIII. CONCLUSION

In this paper, a three-phase mathematical model was pro-
posed to address the optimized scheduling of the monitoring
role in IoT networks. In the first phase, multiple subsets of
the nodes that cover the entire graph are generated by solving
VCP iteratively; while incorporating a constraint generation
algorithm. The optimized scheduling of the VCs is handled
in Phases II and III. The multiple VCs are input to Phase II
which is modeled as a multiobjective GAP. The objectives
are to minimize the energy and communication costs incurred
while monitoring the network. Input to Phase III is the unique
VCs assigned to monitoring in Phase II. Phase III is a TSP
problem with the objective of further minimizing the energy
consumption by reducing nodes’ state transitions (from active
to sleep and vice versa).

The proposed solution is a proof of concept to emphasize
that energy-efficient solutions for monitoring IoT networks do
exist. The proposed model and solution method were tested
on a number of test instances of different sizes, ranging from



50 to 200 nodes, and from 123 to 2463 links. Experimental
results show that, for the sizes of the tested instances, the pro-
posed model was indeed effective and scalable in achieving the
monitoring objective, while providing load balancing between
monitors and minimizing the cost of monitoring in terms of
energy and communication costs, and the number of nodes’
state transitions.

Future work will be the development of heuristics and
approximation algorithms to reduce the complexity of Phase II,
since it was noticed to be the most time consuming phase.
Often in IoT, the underlying network can change dynami-
cally (nodes, links, topology, etc.), in order to handle these
changes, it will be interesting to develop incremental methods
and dynamic algorithms for the system control (including the
monitoring). To test the energy consumed for transmission of
monitoring probes by the nodes, a network simulator should be
used. Therefore, testing the proposed model on Cooja network
simulator is another possible future work.
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