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Abstract— We present an efficient programmable architecture
for compute-intensive embedded applications. The processor
architecture uses instruction registers to reduce the cost of
delivering instructions, and a hierarchical and distributed data
register organization to deliver data. Instruction registers capture
instruction reuse and locality in inexpensive storage structures
that are located near to the functional units. The data register
organization captures reuse and locality in different levels of
the hierarchy to reduce the cost of delivering data. Exposed
communication resources eliminate pipeline registers and control
logic, and allow the compiler to schedule efficient instruction and
data movement. The architecture keeps a significant fraction of
instruction and data bandwidth local to the functional units,
which reduces the cost of supplying instructions and data to
large numbers of functional units. This architecture achieves an
energy efficiency that is 23× greater than an embedded RISC
processor.

Index Terms— energy-efficient embedded processor architec-
ture, instruction registers, hierarchical and distributed register
organization

I. INTRODUCTION

EMBEDDED applications such as baseband modem pro-

cessing, digital video compression, and high-definition tele-

vision display processing exhibit demanding performance and

efficiency requirements that continue to increase as more so-

phisticated communication standards, compression methods, and

algorithms are developed. For example, signal processing for

a 14.4 Mbps channel in a 3G mobile phone receiver requires

35 – 40 GOPS, whereas a 100 Mbps OFDM channel is esti-

mated to require 210 – 290 GOPS [14]. Commercial embedded

processors achieve efficiencies of 4 GOPS/W (250 pJ/op) in a

90 nm CMOS technology [4]. Although more efficient than mo-

bile general purpose processors, which achieve efficiencies of

0.04 GOPS/W (25 nJ/op) [2], the performance and efficiency of

embedded processors are inadequate for computationally in-

tensive applications. Consequently, embedded systems use sig-

nificant amounts of application-specific fixed-function logic to

perform computationally demanding tasks, where efficiencies of

200 GOPS/W (5 pJ/op) can be realized in a comparable 90 nm

technology [6]. However, the effort required to implement and

verify special-purpose logic increases with the scale and complex-

ity of the system, and the design and verification of a complex

system-on-chip can require hundreds of engineer-years [10] and

incur non-recurring engineering costs in excess of $20M – $40M.

These high implementation costs deter the development of more

sophisticated systems.
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Fig. 1. The Architecture of an Ensemble Processor. Instructions are issued
from software-managed instruction registers in the distributed instruction
register files (IRFs). The instruction management unit (IMU) coordinates
the loading and issuing of instructions. Operands are supplied from the
small operand register files (ORFs) and address register files (ARFs) that are
distributed among the functional units. Indexed register files (XRFs) provide
an intermediate storage between the ORFs and Ensemble Memory. The data
management unit (DMU) executes load and store instructions, and coordinates
the movement of data between registers and the local Ensemble Memory.

Energy consumption in modern processors is dominated by

the supplying of instructions and data to functional units. Be-

cause interconnect benefits less than logic from advances in

semiconductor technologies, driving interconnect accounts for an

increasing fraction of the energy consumed in integrated circuits.

Interconnect, which dominates the memories and buses used to

store and transfer instructions and data, can account for more

than 70% of the energy expended in a processor. Programmable

architectures for compute-intensive embedded applications re-

quire many functional units to achieve performance requirements.

While advances in semiconductor technology have made it pos-

sible to integrate large numbers of functional units in a system,

the lack of efficient mechanisms for delivering instructions and

data to the functional units has prevented programmable systems

from satisfying both performance and efficiency requirements.

This paper introduces an efficient programmable architecture for

compute-intensive embedded applications. The processor used in

this architecture achieves energy efficiencies that are 23× greater

than an embedded RISC processor, and which approach within

1.5× of ASIC efficiency on computationally intensive tasks.

The following section describes the architecture of an efficient

embedded processor, focusing on efficient data and instruction

supply organizations. An evaluation of the architecture follows.

Finally, we address related work and conclude.
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Fig. 2. Embedded System Architecture. The system is composed of a
distributed collection of Ensemble Processors. Clusters of four neighboring
Ensemble Processors are grouped into an Ensemble. The processors within
an Ensemble share a local software-controlled memory and an interface to
the global on-chip interconnection network. The Ensemble Processors keep
instructions and data close to the distributed functional units. Distributed
memory tiles capture large working sets. The Ensemble Memory is used to
stage instruction and data transfers, and allows moderate working sets to be
captured within an Ensemble. Communication resources include a global on-
chip network for transferring instructions and data and low-latency point-to-
point links between neighboring Ensemble Processors.

II. ARCHITECTURE

This section describes the architecture of an efficient embedded

processor, which we refer to as an Ensemble Processor because

of where it appears in the system organization. Fig. 1 provides

a block diagram of the Ensemble Processor. Exposed instruction

and data storage resources are distributed among the functional

units. Communication resources are exposed through the sparse,

distributed switch that transfers results from the functional units

to distributed register files. The exposed architecture allows the

compiler to explicitly manage the movement of instructions and

data through the storage hierarchies to reduce movement. At the

system level, the compiler explicitly schedules computation and

instruction and data movement, which provides predictability as

well as significant control over how computation proceeds. Fig. 2

illustrates how an embedded system is built from a collection of

Ensemble Processors. Table I compares the access energies of the

instruction and data storage hierarchies with those of an embedded

RISC processor; the cache access energies include accessing the

tag and memory arrays. The following sections describe in detail

the data and instruction supply organizations.

A. Data Supply

The distributed and hierarchical data register organization exploits

reuse and locality in computations to satisfy most references

from the operand register files (ORFs) located at the inputs of

the functional units. These small (4-entry) register files capture

short-term data locality to keep a significant fraction of the data

bandwidth local to each functional unit. Placing the ORFs within

the functional units reduces the cost of transferring operands

and results between registers and functional units, particularly

when a result is consumed locally within the functional unit that

produced it. The ORFs are preceded by a switch that forwards

data produced in remote functional units to the local operand

registers. Exposing the distributed ORFs to the compiler allows it

to place data close to the functional units that consume them,

which reduces expensive data movements. Operands are read

from the ORFs in the same cycle in which the instruction that

consumes then executes, which reduces the effective pipeline

TABLE I

PROCESSOR CONFIGURATIONS AND DETAILS

Ensemble Processor
Technology TSMC CL013G (VDD=1.2V)
Clock Frequency 200 MHz
Average Power 28 mW

Multipliers 16-bit + 40-bit acc. 16.5 pJ/op
IRFs 64 128-bit registers 16 pJ/read 18 pJ/write
XRFs 32 32-bit registers 14 pJ/read 8.7 pJ/write
ORFs 8 32-bit registers 1.3 pJ/read 1.8 pJ/write
ARF 8 16-bit registers 1.1 pJ/read 1.6 pJ/write
Ensemble Memory 8KB 33 pJ/read 29 pJ/write

RISC Processor
Technology TSMC CL013G (VDD=1.2V)
Clock Frequency 200 MHz
Average Power 72 mW

Multiplier 16-bit + 40-bit acc. 16.5 pJ/op
Register File 40 32-bit registers 17 pJ/read 22 pJ/write
Instruction Cache 8KB (2-way) 107 pJ/read 121 pJ/write
Data Cache 8KB (2-way) 131 pJ/read 121 pJ/write

depth and eliminates pipeline registers. The pipeline register at

the output of the ALUs is exposed as a register in the local

ORF. This convention eliminates the need to allocate registers

for storing values that are consumed immediately after being

produced, which relieves register pressure in the ORFs. The value

of the result register is held when NOPs execute to simplify

scheduling.

The centralized collection of indexed register files (XRFs)

forms the second level of the register hierarchy. Their capacity

allows them to capture the next level of the working set, and

to exploit locality and reuse over longer intervals than can be

captured in the ORFs. Although more expensive to access than

the ORFs, the XRFs satisfy fewer operand references, and their

capacity improves efficiency by filtering memory references. If the

ORFs were not present in the data register hierarchy, the XRFs

would require additional ports to directly supply operands to the

functional units. The resulting register files would be less area

efficient and more expensive to access, and would require more

instruction bits for control.

Registers in the XRFs can be accessed indirectly through index

registers in the IDX units. The index registers can be configured to

update after each reference, which allows the XRFs to be operated

as software-managed vector or streaming register files. The DMU

can use the index registers to autonomously transfer blocks of data

between registers and the Ensemble Memory, which improves

the efficiency of moving data through the register hierarchy.

The index registers can be used to implement structures such

as circular buffers in the XRFs without requiring loop unrolling,

which increases pressure on the instruction registers.

Load and store instructions execute in the DMU, which co-

ordinates data movement between the register hierarchy and the

Ensemble Memory. The address generation unit (AGU) executes

basic arithmetic operations. Operands are supplied from address

registers in the local address register file (ARF). The AGU

datapath and registers are designed for address computations to

reduce the cost of executing memory operations. A subset of the

address registers can be configured to automatically update after

each use. The update actions, which include auto-increment with

wrap, improve efficiency by accelerating sequences of operations

that appear in address calculations, and by reducing the number
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of instructions that need to be issued to calculate the address

of a load or store. Load and store instructions can specify a

repeat count to produce the effect of issuing the instruction

to the DMU multiple times. A single instruction can produce

a sequence of loads or stores at different addresses by using

an address register with an update policy. This allows a single

instruction to initiate the transfer of block of data between the

XRFs and Ensemble Memory. The compiler converts complex

memory operations, such as vector moves, scatters, and gathers,

into sequences of repeated instructions that operate on address

registers with automatic update actions.

B. Instruction Supply

Instructions are issued from software-controlled instruction regis-

ters (IRs). The IRs capture reuse and locality within the kernels

that dominate embedded applications. The IRs are organized

as shallow (64-entry) instruction register files (IRFs) to keep

the cost of reading instructions low, and the register files are

distributed among the functional units to reduce the cost of

transferring instructions to control points. The exposed pipeline

allows instruction bits to be transferred directly to control points

without propagating through pipeline registers. When ILP is low,

NOPs are generated by clock-gating within the functional units

and control logic in the IMU inhibits the reading of inactive

IRFs. Because most instruction references are satisfied by IRs, the

Ensemble Memory can be used to stage instructions for all of the

processors within an Ensemble without degrading performance.

Instructions in the Ensemble Memory are stored as instruction

blocks, sequences of instructions that are loaded into the IRs as

a group. Instruction blocks may enclose multiple basic blocks

and may overlap. The IMU maintains an Instruction Presence

Vector (IPV), which records which IRs contain current instruc-

tions, to allow the loading of an instruction block to proceed

while instructions are issued from the IRs. The location of the

next instruction to be issued from the IRs is designated by the

Instruction Counter (IC), which is maintained in the IMU. The IC

functions as an abridged PC, which is implicitly defined by the IC

and the instruction block from which instructions are being issued.

Code may branch arbitrarily within the IRs. Programmable loop

counters are available to eliminate loop overhead code. Because

an instruction must reside in a register to be issued, branch targets

must be explicitly loaded before the branch instruction transfers

control.

Certain instructions are modified as they are loaded into the

IRs. Because the IRs define a unique address space within each

processor, instruction addresses must be translated from the En-

semble Memory address space to the IR address space. To allow

position-independent code to execute, branch instructions may

name IRs using relative, position-dependent addresses. Accord-

ingly, branch instructions in the Ensemble memory may specify

either absolute or relative IR positions. Relative positions are

resolved as instructions are loaded and their load positions bound.

Consequently, the address generator that calculates the targets of

relative branches, which would conventionally be located in the

instruction fetch stage, appears between the Ensemble Memory

and IRF. Because an instruction is usually executed multiple

times per load, this organization reduces activity in the logic that

generates branch targets.
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Fig. 3. Processor Energy – Harmonic Mean over Kernels. The RISC proces-
sor consumes 23× more energy. The data register organization reduces the
cost of supplying operands by 17×, and instruction registers reduce the cost
of supplying instructions by 49×. The address and index registers eliminate
overhead instructions, which improves datapath utilization and contributes
to the 3.6× increase in datapath efficiency because fewer instructions are
executed. The exposed pipeline eliminates pipeline registers, which reduces
the clock load, and pipeline control logic, such as the comparators that control
the bypass network in the RISC datapath.

III. EVALUATION

To illustrate how an Ensemble Processor achieves efficiency, we

compare its efficiency to that of an embedded RISC processor.

The RISC processor is derived from a synthesizable embedded

processor with a SPARC V8 compliant 32-bit integer unit [3]. The

integer pipeline, caches, and pipeline control logic were retained

and optimized for the comparison; all other components, such

as the MMU and TLB, and the associated control logic were

removed. Both processors implement equivalent 32-bit arithmetic

and logic instructions with identical latencies. For comparison,

we estimate that the RISC processor would achieve an efficiency

of 180 pJ/op when implemented in a 90 nm technology. Table I

summarizes the configurations used in the evaluation.

Energy consumption was measured when executing the fol-

lowing seven kernels on gate-level netlists of the processors:

AES encryption, two-dimensional convolution filtering, DCT,

FIR filtering, CRC32 calculation, Huffman decoding, and Viterbi

decoding. The netlists were generated from RTL models of the

processors; the processors were synthesized, placed, and routed

using the same design flow. Results are presented for hand-coded

assembly. Similar efficiency trends are observed when the kernels

are compiled, with both processors exhibiting a 1.7× reduction in

average throughput and efficiency. Fig. 3 presents the harmonic

mean of the energy expended executing the kernels and explains

how the Ensemble Processor achieves an energy efficiency that is

23× greater than the RISC processor. Fig. 4 and Fig. 5 provide

addition details about the energy expended supplying data and

instruction. To provide context, an ASIC version of the FIR filter,

implemented in the same technology and using the same design

flow, is 1.5× more energy-efficient than the Ensemble Processor

and 72× more efficient than the RISC processor.

IV. RELATED WORK

Data parallel architectures such as Imagine [12] and SCALE [8]

amortize instruction issue and control overhead by issuing the

same instruction to multiple functional units. However, the effi-

ciency of data parallel architectures declines when applications

lack sufficient SIMD parallelism. The efficiencies of tiled archi-

tectures, such as RAW [15], are limited by the RISC processors

from which they are constructed; the additional ALUs increase
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Fig. 4. Data Supply Energy – Harmonic Mean over Kernels. The small,
inexpensive ORFs eliminate references to more expensive levels of the data
supply hierarchy, which results in the 15× reduction in register file energy.
The XRFs are able to capture indirect access patterns that would normally
require data be allocated in memory, which contributes to the 15× reduction
in memory array energy. The exposed pipeline achieves a 56× reduction in the
energy expended forwarding operands and results through pipeline registers.
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Fig. 5. Instruction Supply Energy – Harmonic Mean over Kernels. The
instruction cache dominates in the RISC processor. The instruction registers,
which are significantly less expensive to access, reduce the energy expended
fetching instructions by 58×. Placing the IRFs within the functional units
and exposing the pipeline eliminates the pipeline registers that are used to
distribute instruction bits to control points in the RISC processor, further
reducing the cost of delivering instructions to the functional units.

throughput, but efficiency is not improved beyond a conventional

embedded processor.

Unlike reactive mechanisms such as filter caches [7], instruction

registers are software-managed to reduce instruction movement,

and are distributed to reduce the cost of transferring instructions

to control points. Loop buffers [9], which are loaded on back-

wards branches, require an instruction cache to handle misses,

and cannot capture complicated control flow. Pre-loaded loop

caches [1] require a dynamic instruction cache to execute code

outside of the loop cache. Instruction register loads are scheduled

in parallel with execution to avoid stalls when instructions are

brought into the lowest level of the instruction storage hierarchy.

The instruction registers described in [5] are dissimilar as they

provide a limited form of code compression and cannot be

loaded while code executes. The register organization described in

this work differs from other hierarchical [16] and distributed [13]

organizations by distributing the register files at every level of

the hierarchy and by using small (4-entry) register files, each

associated with and located within a single functional unit, at

the lowest level. Like index registers, the vector pointer registers

described in [11] can be automatically updated when used to

access a register file. The register organization described in this

work differs because it allows the XRF registers to be directly

accessed, bypassing the index registers, when data are accessed

irregularly; this allows the XRF registers to hold working sets

that contain both scalar and vector operands.

V. CONCLUSION

This paper has described the architecture of an efficient processor

for compute-intensive embedded applications. Instruction regis-

ters, a distributed and hierarchical data register organization, and

exposed pipelines reduce the cost of supplying instructions and

data to functional units so that many programmable processors

can be integrated in a system. The architecture described in

this paper achieves energy efficiencies that are 23× greater than

embedded RISC processors, and can approach within 1.5× of

ASIC efficiency on computationally demanding tasks such as

FIR filtering. Leveraging custom circuit design techniques will

allow us to reduce or eliminate the energy efficiency advantages

ASIC implementations exhibit for many embedded tasks. We have

developed a compiler, and are implementing the programming

systems for mapping entire systems onto our architecture.
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