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Abstract—The ever-increasing demand for security in portable
energy-constrained environments that lack a coherent security
architecture has resulted in the need to provide energy-effi-
cient algorithm-agile cryptographic hardware. Domain-specific
reconfigurability is utilized to provide the required flexibility,
without incurring the high overhead costs associated with generic
reprogrammable logic. The resulting implementation is capable
of performing an entire suite of cryptographic primitives over the
integers modulo , binary Galois Fields and nonsupersingular
elliptic curves over GF(2 ), with fully programmable moduli,
field polynomials and curve parameters ranging in size from 8
to 1024 bits. The resulting processor consumes a maximum of
75 mW when operating at a clock rate of 50 MHz and a 2-V
supply voltage. In ultralow-power mode (3 MHz at 0.7 V) the
processor consumes at most 525W. Measured performance and
energy efficiency indicate a comparable level of performance to
previously reported dedicated hardware implementations, while
providing all of the flexibility of a software-based implementation.
In addition, the processor is two to three orders of magnitude more
energy efficient than optimized software and reprogrammable
logic-based implementations.

I. INTRODUCTION

T HE FIELD of cryptographic algorithms can be divided
into two basic types, symmetric and asymmetric, which

have distinctly different properties. Symmetric, or secret-key,
algorithms require two parties to share some secret piece of in-
formation (i.e., the key) that is then used to encrypt/decrypt mes-
sages between them. The existence of a shared piece of secret
information enables secret-key algorithms to be very computa-
tionally efficient. Hence, symmetric algorithms are used to en-
crypt the bulk of the messages being passed. Asymmetric, or
public-key, algorithms on the other hand rely on the presumed
existence of hard number-theoretic problems that enable two
sets of keys to be created: public (encryption) and private (de-
cryption). Public keys are stored in the open so that anyone can
encrypt a message. However, because of the number-theoretic
properties of the algorithms used, only the intended recipient
who generated the public–private key pair can decode the mes-
sage correctly. Hence, no secret needs to be shared by the com-
municating parties. Unfortunately, the underlying mathematics
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which enables this asymmetry requires a great deal more com-
putation than symmetric-key algorithms. For example, a single
public-key operation can consume as much time and energy as
encrypting tens of megabits using a secret-key cipher. Thus,
public-key algorithms are used primarily for establishing se-
cret keys throughout the network in a secure manner, as well as
for user authentication and identification. The work described
within this paper addresses the implementation of public-key
cryptographic algorithms only.

In the past, several standards for implementing various asym-
metric techniques have been proposed, leading to a multitude of
incompatible systems that are based upon different underlying
mathematical problems and algorithms. For example, the IEEE
1363 Standard Specification for Public Key Cryptography [1]
recognizes three distinct families of problems upon which to im-
plement asymmetric techniques: integer factorization (IF), dis-
crete logarithms (DL), and elliptic curves (EC).

As a result, system developers have had to utilize software-
based techniques in order to achieve the algorithm agility re-
quired to maintain compatibility. Unfortunately, software-based
approaches lead to slow implementations that are very energy
inefficient. Hence, these approaches are not well suited to the
migration to portable battery-operated nomadic computing ter-
minals. Hardware-based implementations, on the other hand,
while being very energy and computationally efficient, are very
inflexible and capable of supporting only a limited subset of
asymmetric cryptography. A compromise between these two
extremes is achieved by taking advantage of the fact that the
range of operations is small enough that domain-specific recon-
figurable hardware can be developed that is capable of imple-
menting the various asymmetric algorithms without incurring
the overhead associated with generic reconfigurable logic de-
vices. Furthermore, this is done in an energy-efficient manner
that enables operation in the portable energy-constrained envi-
ronments where this algorithm agility is required most of all.
The resulting implementation is known as the domain-specific
reconfigurable cryptographic processor (DSRCP).

In conventional reconfigurable applications such as field-pro-
grammable gate arrays (FPGAs), the architectural goals of
the device are to provide a large number of small yet pow-
erful programmable logic cells, embedded within a flexible
programmable interconnect. Unfortunately, the overhead asso-
ciated with making such a general purpose computing device
ultimately limits its energy efficiency and hence its utility in
energy-constrained environments. Kusse [2] quantifies this
overhead by breaking down the energy consumption of a
conventional FPGA (Xilinx XC4003A [3]) into its architectural
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TABLE I
DSRCP INSTRUCTIONSET

components. The analysis reveals that only 5% of the total
energy is used to perform useful computation, while approxi-
mately 65% is dissipated in the programmable interconnect.

The DSRCP differs from conventional reconfigurable imple-
mentations in that its reconfigurability is limited to the subset
of functions, called a domain, required for asymmetric cryptog-
raphy as defined in IEEE 1363. This domain requires only a
small set of configurations for performing all of the required
operations over all possible problem families defined within
the standard. As a result, the reconfiguration overhead, particu-
larly that of the reprogrammable interconnect, is much smaller
in terms of performance, energy efficiency, and reconfiguration
time, making the DSRCP feasible for algorithm-agile asym-
metric cryptography in energy-constrained environments.

II. A RCHITECTURE

A. Instruction Set Architecture

The instruction set definition of the DSRCP is dictated by the
IEEE 1363 Public Key Cryptography Standard document [1]. A
list of the arithmetic functions required to implement the various

Fig. 1. Top-level system architecture.

primitives defined in the standard was tabulated in a functional
matrix, which was then used to define the instruction set archi-
tecture (ISA) of the processor (Table I). The ISA contains 24 in-
structions broken up into six types of operations: conventional
arithmetic, modular integer arithmetic, GF arithmetic, el-
liptic curve field arithmetic over GF , register manipulation,
and processor configuration.
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Fig. 2. Hierarchical instruction structure of the DSRCP.

B. Hardware Architecture

Fig. 1 shows a top-level block diagram of the DSRCP. The
processor consists of four main architectural blocks: the global
controller and microcode ROMs, the I/O interface, the shutdown
controller, and the reconfigurable datapath.

The global microcontroller is responsible for all high-level
control within the DSRCP. The controller utilizes a three-tiered
control approach that uses both hardwired and microsequenced
control functions. This multitiered approach is required as
various instructions within the DSRCP’s ISA are implemented
using other instructions, as illustrated by the MOD_MULT
instruction example shown in Fig. 2.

The microcode approach is used due to its simplicity and ex-
tensibility, as modifications and enhancements of the ISA can
be accomplished with minimal design effort by modifying the
microcode ROM. The drawback of using this approach is the
additional latency that is incurred by accessing the ROMs se-
quentially, which can end up consuming a significant portion of
the processor’s cycle time. This performance issue is addressed
by pipelining the instruction decoding/sequencing at the output
of the first-level microcode ROM, as shown in Fig. 2.

The DSRCP features a shutdown controller that is respon-
sible for disabling unused portions of the datapath in order to
minimize any unnecessary switched capacitance. The shutdown
strategy is dictated by the current width of the datapath, as set
by the last invocation of the SET_LENGTH instruction and en-
ables the datapath to be shut down in 32 32-b increments.

Operands used within the processor can vary in size from
8 to 1024 bits (1025 bits in the case of field polynomials for
GF ), requiring the use of a flexible I/O interface that al-
lows the user to transfer data to/from the processor in a very
efficient manner. Ultimately, the I/O interface width is dictated
by the physical implementation of the processor, which makes a
32-b interface the most economical width. The choice of a 32-b
interface maps well to existing systems, as well as allowing for
relatively fast operand transfer onto and off of the processor, re-
quiring at most 32 cycles to transfer the largest possible operand.
The additional bit required for GF field polynomials is
input as part of the REG_LOAD instruction word.

The primary component of the DSRCP is the reconfigurable
datapath, whose architecture is shown in Fig. 3. The datapath
consists of four major functional blocks: an eight-word register
file, a fast adder unit, a comparator unit, and the main reconfig-
urable logic unit.

The register file size is chosen to be eight words as that is the
minimum number required to implement all of the functions of

Fig. 3. Reconfigurable datapath architecture block diagram.

the datapath. The limiting case for this architecture is that of el-
liptic curve point multiplication in which registers R2 and R3
are used to store the point that is going to be multiplied by the
value stored in Exp register, R4 and R5 are used to store the
result, R0 and R1 are used to store an intermediate point used
during the computation, R6 is used to store the curve parameter
, and R7 is used as a dummy register in order to provide re-

silience to timing attacks. The number of read and write ports
within the register file is dictated by the requirement to be able
to perform single-cycle two-operand instructions that generate
a writeback value. In certain cases, two write ports could have
proven useful (e.g., elliptic curve point transfers), but the infre-
quency of the operation did not merit the additional overhead
that it would have introduced.

The fast adder unit is capable of adding/subtracting two-bit
( ) operands in three cycles using the hybrid
carry–bypass and carry–select technique described in [4] and
optimized for a bitsliced implementation (Fig. 4).

The comparator unit performs single-cycle magnitude
comparisons between two-bit operands, as well as computing
the XOR of the two operands (i.e., GF addition). The
comparator generates two flags,and , that can be decoded
into all possible magnitude relations.

The reconfigurable logic unit consists of six local registers
(Pc, Ps, A, B, Exp, and N) and a reconfigurable logic block that
is capable of implementing all of the required datapath oper-
ations. The Pc and Ps registers are used primarily in modular
operations to store the carry–save format partial product and in
Galois Field operations as two separate temporary values. A and
B store the input operands used in all modular and Galois Field
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Fig. 4. Modified bitsliced carry–bypass adder [4].

operations. The Exp register is used for storing either the expo-
nent value in the case of exponentiation operations or the mul-
tiplier value in the case of elliptic curve point multiplication.
The N register also serves a dual purpose; for modular opera-
tions it is used as the modulus value, and in Galois Field opera-
tions, it stores the field polynomial in a binary vector form (e.g.,

is stored as [10000101]). In all relevant operations,
it is assumed that both the Exp and N registers are preloaded
with their required values.

Using local memory within the datapath eliminates the need
to continually access the register file every cycle, eliminating
the associated overhead of repeated register file accesses and
minimizing the amount of reprogrammable interconnect by ef-
fectively isolating the reconfigurable logic from the rest of the
processor. In addition, several operations requires four register
reads and two writes in any given cycle, requiring additional
read and write ports to be added to the register file. This would
in turn increase the size of the register file, as well as its de-
coding complexity, thereby offsetting any advantage that might
be gained by going to a unified memory model that eliminates
the local memory.

The datapath utilizes three separate busses for distributing
data between the various functional units: the two operand
busses ( and ) and the writeback bus ( ). Not all
registers and busses are interconnected, as analysis dictated that
not all connections were required. The unnecessary connections
are removed in order to minimize the capacitive load on the
busses. is also used as a secondary writeback bus to enable
values within the datapath to be transferred between the local
registers.

III. A LGORITHM IMPLEMENTATION

The DSRCP performs a variety of algorithms ranging
from modular integer arithmetic to elliptic curve arithmetic
over GF . All operations are universal in that they can be
performed using any valid -bit modulus ( ),
GF field polynomial and nonsupersingular elliptic curve
over GF . Given the wide range of functionality, some

explanation regarding how the various algorithms are imple-
mented is warranted.

A. Modular Arithmetic

The various complex modular arithmetic operations (mul-
tiplication, reduction, inversion, and exponentiation) are
implemented using microcode, while simple operations (ad-
dition and subtraction) are implemented directly in hardware
using the wide adder and comparator units. Multiplication is
performed using Montgomery multiplication [5], which com-
putes the value MONTMULT mod .
An additional Montgomery multiplication with a correction
factor of mod is then performed to undo the division by

inherent in Montgomery’s method. The correction factor
is assumed to be preloaded into the register file and is then
specified via a third source operand ( ) in the instruction
word. Modular reduction is performed using a similar technique
with Montgomery reduction at its core.

Modular inverses are computed using the extended binary eu-
clidean algorithm [6]. This technique requires special architec-
tural considerations, such as the ability to right shift the output
of the adder unit, and explicit access to the LSB of R1, R2, and
R3 in order to check the looping conditions of the algorithm.

Modular exponentiation is performed using a standard
square-and-multiply algorithm [7] with an exponent scanning
window of size two. The algorithm (Fig. 5) precomputes
and stores the values { }
in {R0, R1, R2, R3}, respectively. During each iteration, the
current value is squared twice and then the exponent is scanned
two bits at a time. Scanning is done nondestructively so
exponent values need not be reloaded prior to each operation.
The value read corresponds to the register that is used during
the subsequent multiplication (e.g., if “01” is read, then R1 is
used).

Note that multiplication by R0 is essentially a null operation
(NOP) due to Montgomery multiplication’s implicit division by

. The use of NOPs provides protection from timing attacks[8],
and simple power analysis [9] as a multiplication is always per-
formed, thereby eliminating any variation in execution based
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Fig. 5. Modular exponentiation algorithm implementation pseudocode.

on the exponent’s value. The expense of this immunity is that
conventional performance optimizations, such as skipping over
strings of zeros in the exponent, cannot be exploited to speed
up the operation. The loss in efficiency, in terms of the number
of modular multiplications that must be performed due to this
fixed performance, assuming that the exponent is uniformly dis-
tributed, is only 9%.

The use of the length operand in the MOD_EXP instruction
enables the length of the exponent and the operands to be de-
coupled, leading to much more efficient exponentiation when
the exponent value is significantly shorter than the operands,
such as in public-key operations.

B. GF Arithmetic

GF addition is performed using theXOR function of the
comparator unit, and both GF multiplication and inversion
are implemented directly in hardware using the reconfigurable
datapath. GF exponentiation is implemented in the same
manner as modular exponentiation, with { }
being pre-computed and stored in {R0, R1, R2, R3}. NOPs are
once again exploited to provide immunity to timing attacks and
simple power analysis.

C. Elliptic Curve Arithmetic

The DSRCP performs affine-coordinate elliptic-curve oper-
ations on nonsupersingular elliptic curves over GF of the
form

(1)

where GF . The corresponding point addition and
doubling formulae, assuming that and are distinct points
on , are given by

(2)

(3)

Note that the ISA of the DSRCP enables it to also perform el-
liptic-curve operations over fields of prime characteristic using
an external sequencer and the appropriate formulae (e.g., [10]).

Point addition and doubling are implemented in microcode
using the above formulae, with curve points stored as register
pairs . Point addition features an additional
input in the form of a writeback enable bit which must be set
for the result to be written back to the destination register pair.
If the enable bit is not set, then the computation is performed
and the result is discarded, leaving the destination register pair
unaffected. This feature is used to provide immunity to timing
attacks and simple power analysis during elliptic-curve point
multiplication.

Point multiplication is performed using a repeated double-
and-add algorithm, with a window size of one. Larger window
sizes are not possible on the current DSRCP architecture due to
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Fig. 6. Shutdown circuitry used in the DSRCP.

TABLE II
DSRCP INSTRUCTIONMAPPING WITHIN THE CONTROL HIERARCHY

memory limitations of the register file (e.g., four precomputed
values would require eight additional registers). The issue of
timing attacks is once again addressed by using NOPs via the
writeback enable bit of the point addition operation. The over-
head associated with using NOPs is 33% relative to a conven-
tional implementation where NOPs are skipped, and 50% if a
signed radix-2 representation is used for the multiplier [7].

IV. I MPLEMENTATION

A. Controller and Microcode ROMs

The instruction set partitioning of the three-level control hi-
erarchy is shown in Table II. The first tier of control corre-
sponds to those instructions that are implemented directly in
hardware. The second tier of control represents the first level
of microcoded instructions that are composed of sequences of
first-tier instructions. Similarly, the third tier of control repre-
sents instructions that consist of sequences of both first- and
second-tier instructions.

Each microcode controller consists of a small ROM core, an
input selector which gates the appropriate values onto the corre-
sponding operand signals, and a control FSM that also serves as
the ROM address generator. The resulting controllers emulate
small microcontrollers. The microcode ROMs are implemented
using static ROMs which eliminate the need for any precharged
circuit techniques, making for a more robust implementation at
the cost of requiring complementary word-select lines and larger
bit cells due to the use of larger pMOS devices. However, given
the small size of the ROMs and their relatively low duty cycle,
the resulting energy and area overhead penalties are much less
than 0.1% of the total DSRCP area and energy consumption.

Fig. 7. Power consumption as a function of processor width.

B. Shutdown Controller

The shutdown controller is capable of shutting down the data-
path row by row, in 32-b increments using both clock and control
signal gating, which is performed using simpleAND structures
in the row drivers that are found along the inside edge of the two
halves of the datapath, as shown in Fig. 6. All clock gating sig-
nals are generated off the falling edge of the main clock to ensure
that edge-triggered signals generated from the main clock (e.g.,
register file clocks) are gated during the low phase of the clock
to eliminate any spurious glitches that may occur byANDing the
clock with a late-arriving enable signal while the clock is high.

The result of this shutdown strategy is a linear reduction in
power consumption as a function of the datapath width, as illus-
trated in Fig. 7.

There is a subtle feature of the shutdown control scheme, due
to the way Galois Field multiplication is performed within the
DSRCP, that warrants additional explanation. When performing
operations over the field GF , the field polynomial is an th
degree polynomial that is stored as an ( ) bit value. Hence,
enabling only the least significantbits of the datapath may re-
sult in errors, as the effects of the MSB may not be accounted
for if the MSB lies within a disabled portion of the datapath.
This condition occurs when is a multiple of 32, so the shut-
down controller detects this condition and enables an additional
32-b block. Given the operand sizes that are typically used when
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Fig. 8. Adder unit bitslice.

Fig. 9. Tree-based magnitude comparator topology used in the DSRCP.

this condition will occur (512–1024-b), the overhead associated
with enabling an additional datapath block is on the order of
3%–6% extra energy consumption.

C. I/O Interface

The processor’s floorplan is based on two banks of processing
elements (PEs), each with 16 rows of 32 processing elements, as
shown in Fig. 6. Each bank contains a set of 32-bit-wide verti-
cally routed input and output busses. Separate input and output
busses are used to enable static bus repeaters/latches to be in-
serted into the busses at the vertical midpoint of the two banks,
allowing the bus to be segmented in order to minimize the ca-
pacitive load seen by any given driver on the bus. This allows
minimum sized drivers to be used and eliminates unnecessary
charging/discharging of large portions of the bus capacitance by
near-end drivers. The serpentine distribution of PEs within the
datapath causes each row to be flipped in relation to those above
and below it. A single level of output muxes at the chip interface

is used to reverse the order of both the input and output busses
as required to provide a consistent 32-b interface at the pads.

D. Reconfigurable Datapath—Register File

The register file is implemented using TSPC-style registers
[11]. A more typical SRAM-based register file design was not
used due to the small number of registers required and the in-
creased robustness of using an edge-triggered memory element.
The drawback of this approach is an increase in both area and
energy consumption. The energy consumption penalty is neg-
ligible as the register file is accessed very infrequently due to
the local data storage in the reconfigurable logic unit. The area
penalty is more significant as the TSPC register is twice as large
as a simple 6T SRAM cell. Given that the register file repre-
sents 20% of the bitslice area, the area overhead is 10%, which
is deemed acceptable for this application.

The register outputs are driven onto the and source
operand busses via two 8-to-1 passgate multiplexors and their
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(a) (b)

Fig. 10. Multiplier architectures for (a) modular multiplication and (b) GF(2 ) multiplication.

Fig. 11. Extended binary euclidean algorithm used for GF(2 ) inversion operation.

inputs are all connected to the writeback bus. The eight regis-
ters feature individual clock and reset lines, with the clock lines
also serving as the writeback register select lines. As mentioned
before, the register file features architectural features to improve
the efficiency of the modular inversion operation by having R0
having a reset value of 1 and providing the LSBs of R0, R1, R2,
and R3 to the global control logic.

E. Reconfigurable Datapath—Wide Adder Unit

The design requirements for the DSRCP call for a wide adder
capable of performing 1024-b binary addition/subtraction in at
most three processor cycles, using an area-efficient bitsliced
implementation with a minimal amount of long interconnect.
The area and interconnect requirements precluded the use of
conventional structures such as carry–lookahead, hierarchical
carry–select, and carry–bypass/skip implementations. However,
the modified carry–bypass/skip adder proposed in [4] yields a
critical path of approximately 45 full adder delays for a 1024-b
operation, while mapping to a very efficient bitsliced implemen-
tation. The main difference between this adder and that of a con-
ventional implementation is the serialization of the group prop-

agation signal generation within the bitslices of the group. Dis-
tributing the propagation signal generation in this manner elimi-
nates the need to have a wide fan-inAND gate and allows each bit
within the group to determine whether the group carry-in will af-
fect its output. Hence, each block can generate its valid sum out-
puts oneXOR delay after the carry-in is valid. By matching de-
lays through proper group sizing, the carry-in becomes valid just
as the group propagate and generate signals are valid, leading to
the minimal overall adder delay.

The adder unit bitslice is shown in Fig. 8. The adder con-
sists of the aforementioned modified carry–bypass/skip adder
cell, a local register for storing intermediate results and mul-
tiplexors for both input operand selection and right shifting of
the result. Both the output of the adder (sum) and its registered
version (regSum) can be driven onto either the or write-
back busses. The B input selection muxes utilize a left-shifted
version of the Pc operand to simplify the conversion of the re-
dundant carry–save value stored in (Pc,Ps) into a nonredundant
binary form. Note that the A operand’s signal path includes a
tristate buffer which is required to eliminate the race condition
that results when the A operand is read from thebus and the
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Fig. 12. Basic GF(2 ) inversion architecture and resulting datapath cell.

Fig. 13. Reconfigurable logic bitslice.

adder’s nonregistered output is then driven onto the same bus.
The tristate buffer breaks the feedback path.

F. Reconfigurable Datapath—Wide Comparator Unit

The DSRCP controller utilizes the wide comparator unit out-
puts for determining branch conditions within a microcoded in-
struction’s execution. Hence, to eliminate branch delays the pro-
cessor requires that two 1024-b operands be compared within
a single processor cycle. This is accomplished using the fast
tree-based comparator circuit shown in Fig. 9 which is capable
of comparing two -bit operands in gate delays. The
comparator first encodes the inputs based on a bit-by-bit com-
parison of the two operands to form the signals op
op and op op . Once in this form, two adja-
cent encoded bit positions can be compared using the relations

and
, the outputs of which are passed to the next

level of the comparator tree. At each stage, the number of com-
parisons are halved, hence the tree has depth .

The comparator is partitioned into 32 32-b sections, or one
per row. The final stage of each of these 32 comparator blocks
utilizes an enable signal that either performs the aforementioned
comparison if the row is enabled, or outputs an equal signal in
the event that the row has been disabled to prevent any data re-
maining in the upper unused portions of the register from cor-
rupting the comparison.

G. Reconfigurable Datapath—Reconfigurable Logic Cell

The DSRCP is capable of performing a variety of algorithms
using both conventional and modular integer fields, as well as
binary Galois Fields. These operations are implemented using
a single computation unit that can be reconfigured on the fly to
perform the required operation. The possible configurations are
Montgomery multiplication/reduction, GF multiplication,
and GF inversion. All other operations are either handled by
other units (e.g., the fast adder and comparator), or implemented
in microcode.
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Fig. 14. DSRCP die photograph.

Montgomery multiplication utilizes the simple iterated
radix-2 implementation

(4)
where and is the th bit of operand B. A
redundant carry–save representation of the partial product ac-
cumulator (Pc,Ps) is exploited in order to minimize the cycle
time. This operation can be implemented using the basic com-
putational resources of Fig. 10(a): two full adders and twoAND

gates. Montgomery reduction of A can be performed by setting
(i.e., , , ). Similarly, re-

duction of (Pc, Ps) can be performed by setting .
Mastrovito’s thesis [12] serves as an extensive reference of

hardware architectures for performing GF multiplication.
Given our choice of a polynomial basis, the most efficient mul-
tiplier architecture is an MSB-first approach as it minimizes the
number of registers that are clocked in any given cycle. In addi-
tion, the MSB-first approach can be mapped to the existing hard-
ware of the Montgomery multiplier [Fig. 10(b)] by exploiting
the fact that a full adder’s sum output computes a three-input
addition. Hence, GF multiplication can be performed using
the iteration

(5)

where is bit of , which is used to modularly reduce
the partial product . The field polynomial is stored as
a binary vector in and the resulting approach is universal in
the sense that it can operate with any valid field polynomial over
GF for .

The limiting operation in affine-coordinate elliptic-curve
point operations is typically the inversion operation. In hard-
ware using a polynomial basis, the extended binary euclidean

Fig. 15. DSRCP bitslice layout.

algorithm [6] can be used to compute inverses in a very efficient
manner (Fig. 11). The basic algorithm is modified to perform
a multiplication concurrently with the inversion by initializing
the variable to be the multiplier value (if no multiplication
is required, the register can simply be initialized with the
value 1). This optimization provides significant savings during
elliptic-curve point operations as it eliminates one multiplica-
tion, reducing the total cycle count by approximately 18%. The
resulting algorithm combines two embedded loops into
a single parallel operation, which effectively halves the number
of cycles required as the dominant portion of time is spent in
this part of the algorithm. The net result of these optimizations
is a universal GF invert-and-multiply operation that takes
at most four multiplication times ( cycles) and on
average in order to invert (and multiply) an element
of GF .

Inversion is implemented using the same datapath cell used
in both Montgomery and GF multiplication by providing
a small degree of reconfigurability such that computational re-
sources can be reused to perform different parts of the algo-
rithm. The basic requirements are two two-input adders over
GF to perform each of the parallel operations and the two
summations in each branch of the final clause. Each itera-
tion of the inner loop requires one cycle as all opera-
tions are performed in parallel. An additional cycle is incurred
when the exit condition of the inner loop is satisfied (i.e.,
W X ), as it must be detected via an additional iteration
of the loop. The second part of the algorithm requires a single
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TABLE III
REPORTEDIMPLEMENTATIONS OFMODULAR EXPONENTIATION FUNCTIONS

Fig. 16. Performance of several DSRCP arithmetic instructions.

Fig. 17. Performance of various cryptographic primitives using the DSRCP at
50 MHz.

Fig. 18. Comparison of energy consumption per operation for software,
FPGA, and DSRCP.

cycle as well. The two datapath adders can be used as two-input
GF adders by zeroing one of their inputs and then utilizing
multiplexors to allow the adder inputs to be changed on the fly.
The corresponding architecture and its resulting mapping to the
datapath cell is shown in Fig. 12.

The final reconfigurable datapath cell is shown in Fig. 13 and
contains two reconfigurable full adders, twoAND gates, and six
local register cells with multiplexed inputs. The reconfigurable
adders are implemented using high-performance small-area
pass-transistor-based full-adder cells with multiplexed inputs.
The adder and register reconfiguration muxes are configured
through the use of eight control lines, three for the adder muxes
and five for the register muxes, that are exposed to the control
hardware, allowing for single-cycle reconfigurability.
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V. EXPERIMENTAL RESULTS AND EVALUATION

The processor is fabricated in a 0.25-m CMOS technology
with five levels of metallization. Fig. 14 depicts a micropho-
tograph of the processor whose core contains 880 000 devices
and measures 2.92.9 mm . The datapath consists of 1024
processing bitslices, each of which measures 30150 m
(Fig. 15). At 50 MHz, the processor operates at a supply
voltage of 2 V and consumes at most 75 mW of power. In
ultralow-power mode (3 MHz at V), the processor
consumes at most 525W.

Fig. 16 shows the performance of those DSRCP instructions
whose execution time is proportional to the size of the operands.
The results are normalized relative to the operand size in order
to better illustrate this proportionality. The performance of the
cryptographic primitives required for IF, DL, and EC-based
cryptography are shown in Fig. 17. Important performance
points are denoted and compared with other reported imple-
mentations in Table III. The DSRCP’s performance compares
favorably; although several solutions quote higher rates, they
represent dedicated solutions with no algorithm agility. For
those dedicated solutions that report their power consumption,
the energy consumption per operation of the DSRCP is found
to be at least a factor of two better.

Fig. 18 demonstrates the energy efficiency of the
DSRCP relative to software-based implementations on the
StrongARM SA-1100 [13] and previously reported pro-
grammable-logic-based implementations ([14], [15]) on Xilinx
XC4000 parts. The software-based energy consumption is mea-
sured using a StrongARM SA-1100 evaluation platform that is
executing hand-optimized assembly language implementations
of the various cryptographic primitives. The FPGA-based
energy consumption is estimated using the implementation
details provided in [14] and [15] and the power consumption
guidelines described in [16]. The DSRCP is approximately
two to three orders of magnitude more energy efficient than
both software and programmable-logic-based solutions, while
providing the same degree of flexibility and algorithm agility.

VI. CONCLUSION

Given a specific domain of functionality such as public-key
cryptography, it is possible to provide a limited degree of do-
main-specific reconfigurability to provide flexibility while min-
imizing the overhead that is typically associated with repro-
grammable logic. Domain specific integrated circuits (DSICs)
utilize interconnect-centric architectures to exploit locality in
order to minimize the interconnection overhead, which is the
dominant source of energy consumption in generic reconfig-
urable logic.

The resulting public-key cryptography DSIC provides a com-
parable level of performance and twice the energy efficiency
as previously reported dedicated hardware solutions, while pro-
viding all of the flexibility of a software-based implementation.
In addition, the processor is two to three orders of magnitude
more energy efficient than both optimized software and repro-
grammable-logic-based implementations.
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