
An Energy-Efficient, Scalable and Collision-Free MAC layer
Protocol for Wireless Sensor Networks

Gaurav Jolly and Mohamed Younis
Dept. of Computer Science and Elec. Eng.
University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

jolly1@umbc.edu and younis@cs.umbc.edu

Abstract: Wide range of applications such as disaster management, military and security have fueled the interest in sensor
networks during the past few years. Sensors are typically capable of wireless communication and are significantly
constrained in the amount of available resources such as energy, storage and computation. Such constraints make the design
and operation of sensor networks considerably different from contemporary wireless networks, and necessitate the
development of resource conscious protocols and management techniques. In this paper we present an energy efficient,
scalable and collision free MAC layer protocol for sensor networks. The approach promotes time-based arbitration of
medium access to limit signal interference among the transmission of sensors. Transmission and reception time slots are
prescheduled to allow sensors to turn their radio circuitry off when not engaged. In addition, energy consumption due to
active to sleep mode transitions is minimized through the assignment of contiguous transmission/reception slots to each
sensor. Scalability of the approach is supported through grouping of sensors into clusters. We describe an optimization
algorithm for energy conscious scheduling of time slots that prevents intra-cluster collisions and eliminates packet drop due
to buffer size limitations. In addition, we also propose an arbitration scheme that prevents collisions among the transmission
of sensors in different clusters. The impact of our approach on the network performance is qualified through simulation.

Keywords: Wireless sensor network, energy aware communication, MAC layer protocols, TDMA slots scheduling

1 Introduction

Recent advances in miniaturization and low-power design have led to active research in large-scale, highly distributed systems of small-
size, wireless unattended sensors [1][2][3][4][5][6]. A sensor network consists of minute devices that are capable of probing the
environment and reporting the collected data, typically using a radio, to the command center. Sensor networks can serve
many civil and military applications such as disaster management, combat field surveillance and security. In such
applications, the sensors are usually powered using small batteries and replacing sensor’s battery is not possible or not
practical. Such energy constraints limit sensors’ lifetime and thus make efficient design and management of sensor networks
a real challenge. Therefore, a lot of the research related to sensor networks has focused on energy-awareness and
minimization [1][7][8]. In this paper we concentrate on the minimization of energy consumption at the MAC layer through
time-based arbitration of the sensor’s medium access.

Medium access is a major consumer of sensor energy, especially for long-range transmission and when the radio receiver is
kept on all the time. Energy consumed for radio transmission is directly proportional to distance squared and can significantly
magnify in a noisy environment. Energy-aware routing typically pursues multi-hop paths in order to optimize the
transmission energy [9][10]. On the other hand, time-based medium access control (MAC) saves transmission energy by
limiting the potential for collisions and minimizes the energy consumed in the receiver by turning the radio off when it is idle
[11][12]. Generally, an efficient MAC layer protocol for sensor networks should have the following attributes:
• The protocol should be scalable since most applications of sensor networks involve a large set of sensor nodes.
• Collisions among the transmissions of various nodes should be avoided. Collisions lead to packet drop and thus reduce

throughput and cause energy wastage.
• Energy consumed by the radio circuit in idle mode is almost equal to that consumed in active state. Consequently, idle

mode of operation and transmission overhearing among sensors should be minimized.
• To limit energy consumption during idle time, the sensors are typically switched to a sleep mode when not in use.

However, active to sleep transitions and vice-versa consume considerable amount of energy. Therefore, an efficient
protocol should minimize such transitions [8].

• The protocol should not be contention-based. Control packets overhead and active sensing of the medium, typically
performed by contention-based protocols, are inefficient in terms of energy consumption.

• Packet drop due to limited buffer capacity should be prevented.
• The protocol should adapt to changes in the network topology and all sensors should have a fair chance of transmitting.

1

Unlike contention-based protocols, a Time-Division-Multiple-Access (TDMA) based MAC allows communication traffic to
flow according to a preset schedule. Time-based MAC can minimize the energy consumption since the nodes can turn off
their transmitters or receivers, unless they are expecting to receive or transmit a packet. It has been shown that turning off the
radio receiver significantly reduces energy consumption and extends the life of wireless sensor networks [12][13]. In
addition, collision among nodes can be avoided since each node has its own assigned time slots. However these advantages
of time-based MAC are due to the deterministic operation, which requires communication time slots to be scheduled for both
transmitting and receiving.

Scheduling time slots can be NP-hard especially when considering the fact that there can be large number of possible ways of
scheduling the order of transmission of sensors for a particular flow of packets. Message flow constraints and sensor’s
capabilities limitations such as buffer size further complicates the problem. In addition, implementation of a TDMA scheme
requires that the nodes be synchronized with each other. Since majority of nodes are in sleep mode, many nodes will have to
be switched on in order to receive a synchronization message. The energy efficiency of TDMA schemes will diminish if
nodes require to be synchronized very frequently. Moreover, a static TDMA scheme cannot be used in sensor networks since
in most sensor applications topology changes are very frequent.

In this paper, we present an energy efficient and scalable TDMA-based MAC layer protocol for sensor networks. The
proposed scheme handles dynamic changes in the network topology and limits the control packet overhead. In the backend, a
slot’ scheduling heuristic is proposed for assigning optimized time slots to communicating sensors. The search heuristic
minimizes the sensor’s transition between idle and active modes while meeting message flow and buffering constraints. The
proposed protocol limits the need for frequent clock synchronization messages by including a reference time in topology
management related control traffic. Protocols developed for contemporary wireless devices do not address most of the issues
stated above and hence cannot be applied to sensor networks. In addition, as discussed in section 1.2, MAC protocols for
sensor networks presented in the literature address only a subset of these issues. We are not aware of any other approach that
comprehensively tackles all the listed efficiency attributes.

In the balance of this section we describe our system model and discuss related work. Section 2 describes our proposed
energy-aware MAC layer protocol for sensor networks. Detailed algorithms for scheduling time slots are described in section
3. Description of the simulation environment and analysis of the experimental results can be found in section 4. Finally
section 5 concludes the paper.

1.1 System Model

Command Node

Sensor nodes

Gateway Node
Fig. 1: Architecture of unattended sensor network

The system architecture for the sensor network is
depicted in Fig. 1. In the architecture sensor nodes
are grouped into clusters controlled by a single
command node. Every cluster has a gateway node
that manages sensors in the cluster. Clustering the
sensor network can be either performed by the
command node or collaboratively among the
gateways and is beyond the scope of this paper
[14][15]. Sensors are only capable of radio-based
short-haul communication and are responsible for
probing the environment to detect a target/event. In
this paper, we assume that sensor and gateway nodes
are stationary and all sensors in a cluster are within
the communication range of the gateway of that
cluster. The on-board clocks of the gateway nodes are assumed to be synchronized, e.g. via the use of GPS.

The gateway node interfaces the command node with the sensor network via long-haul communication links. Sensors receive
commands from and send readings to their gateway node, which processes these readings and transmits the fused information
to the command node. The command node performs system-level fusion of collected reports for overall situation awareness.
Unlike sensors the gateways are significantly less energy constrained. Hence the gateway is assigned the responsibility of
organizing the sensors and routing generated data. Sensor organization refers to activating a subset of available sensors in the
cluster to probe the environment based on the application and the sensor’s capabilities. The gateway sets multi-hop routes
based upon the current state of the network and sends route updates to the sensors. Route formation will designate some
sensors to act as relays. The sensors then adjust their transmit power based upon their next hop neighbor.

2

Radios are assumed to have the ability to operate in four distinct modes transmit, receive, idle and sleep. The energy
consumed in idle mode is almost equivalent to that in receive mode [16]. The energy consumed by the radio is:

Eradio = Ntx [Ptx (Ton-tx+Tst) +PoutTon-tx] +Nrx [Prx (Ton-rx+Tst)] …… (1)

Where Ntx/rx is the average number of times per second, the transmitter/receiver is used. Tst is the transition time from sleep to
active mode. Ton-tx/rx is the on time of the transmitter/receiver. Pout is the output transmission power. Ptx/rx is the power
consumed by the transmitter/receiver [8][17]. It is worth noting that most of these capabilities are available on some of the
advanced sensors, e.g. the SenTech Acoustic Ballistic Module [18].
1.2 Related Work
Contemporary MAC layer protocols designed for wireless devices such as MACAW [19] and IEEE 802.11 [20] are not
suitable for sensor networks. These schemes will consume considerable amount of energy since they require the sensors to
continuously probe the medium. In addition, these schemes require nodes to transmit control packets in order to avoid
collisions. The control packet sizes will be comparable to the size of data packets, which are small in most sensor
applications. On the other hand, Bluetooth [21] uses a TDMA based scheme but assumes that all slave nodes are within
transmission range of the master node. This is in contrast to energy-efficient multi-hop mode of transmission employed in
sensor networks.

Power management of the radio has gained significant importance in sensor networks since the radio is a major consumer of
sensor’s energy. It has been shown that the energy consumed in transmitting one bit is several thousand times more than the
energy consumed in executing one instruction [22]. Several methods have been suggested to reduce the energy consumption
of the RF circuitry. One such technique is to power off the sensor when it is idle, by transitioning from active to sleep mode
[22]. However time taken to make a transition from sleep to active mode consumes a considerable amount of energy. With
small packet sizes the energy consumed due to transitions becomes even more prominent and dominates the active mode’s
energy consumption [23]. A circuit-level approach to reduce such startup time in the radio circuitry was suggested in [24].

A number of MAC layer protocols have been proposed for wireless sensor networks in recent years. A contention based
MAC protocol that provides node level fairness while minimizing energy is proposed in [7]. However, this protocol does not
address the issue of turning off the radio when the sensor is not operational and it does not eliminate collisions. Another
contention-based protocol has been proposed in [25]. In this protocol energy conservation is achieved by utilizing the sleep
mode operation of the radio. However, this approach sacrifices per hop fairness and latency. Moreover, if there are multiple
sensors that want to transmit to the same node they contend for the medium using a RTS/CTS mechanism. This will consume
considerable energy compared to TDMA protocols, where nodes are assigned slots independent of each other and do not
have to contend for the medium.

PAMAS [12] is a CSMA based protocol in which the nodes that are not actively transmitting or receiving should power
themselves off. The presented approach results in energy savings of up to 70%. However the protocol requires the nodes to
sense the medium to transmit and does not eliminate collisions completely. In addition the protocol requires the nodes to have
two separate channels (control and data), which will require two radios at each node increasing the cost, size and complexity
of the sensor design. Other than PAMAS, the bulk of CSMA based protocols found in the literature have not exploited the
potential of energy conservation through selective activation of the radio circuitry.

Energy saving through the use of time-based MAC in wireless devices has been explored in [13]. The idea is to schedule
when to activate the radio receiver so that it can be turned off while not expecting a message. Nodes that have data to
transmit make a reservation request to a base station, which responds with a traffic control message indicating medium access
schedule. Nodes that are not included in the traffic control message can turn off their radio receivers. The nodes that have
been assigned slots transmit in the order scheduled by the base station. A non-reservation based approach that considers the
routing paths has been pursued in [26]. However, no attention has been paid to the effect of the ordering of transmission slots
on the performance and lifetime of the sensor network. Our approach makes a comprehensive consideration of the different
energy conservation opportunities at the MAC layer.

To capture the advantages of a TDMA based scheme nodes should be synchronized. Typically, in sensor networks only the
sensors that are performing some function are active at any point of time. Thus, in order to receive a synchronization message
many sensors will have to switch on their radios. This will consume considerable amount of energy. Moreover, if the
frequency of synchronization messages is large, the energy resources of the sensors will further diminish. In [27], it has been
argued that conventional synchronization schemes like NTP will consume a lot of energy in passive listening and hence are
not suitable for sensor networks. It has been further concluded that no single scheme is suitable for sensor networks and the

3

networks should adapt the synchronization scheme based upon the application. Though they have described the
characteristics of what would be a good synchronization scheme for sensor networks, they have not explicitly proposed one.

2 Energy Efficient MAC Protocol
Based on the current application mission, the gateway selects a set of sensors to probe the environment. The selected sensors
gather data and forward their readings to the gateway for data fusion. The gateway sets the routes for data generated by every
probing sensor. In order to save energy multi-hop routing is pursued. The gateway designates some sensors to act as relays.
Relay sensors store and forward messages from a source node that is a sensor probing the environment, to the next hop or
finally the gateway. Some sensors can be both probing the environment and also relaying data from other sensors. Unselected
sensors can be set to low-energy sleep state. There are many energy aware approaches that the gateway can use for route
setup, e.g. [9]. Contingent upon these routes and the buffer size of the sensors, the gateway then calculates the order in which
transmission time slots are assigned to active sensors, both probing and relaying. In order to conserve energy, active sensors
should shut down their radio when they are not transmitting or receiving.

Every gateway takes charge of assigning transmission and reception slots to sensors in its cluster subject to flow constraints.
We pursue a slot’ scheduling mechanism that is inspired by the Tabu-search optimization methodology. The main goal of
such scheduling mechanism is to minimize the sensor transition between active and sleep mode while meeting flow
constraints and avoiding buffer overflow at all relay nodes. To avoid the potential of inter-cluster interference, the gateways
collaborate on the elimination of simultaneous transmission of sensors in neighboring clusters. The gateways designate one
of them to check that transmission slots within each cluster will not interfere with the neighboring clusters. Upon forming
collision free schedule of time slots, each gateway broadcasts the slot assignment to all sensors in its cluster. The protocol
uses predetermined set of operational phases in order to limit the control message traffic. Network clustering ensures
scalability for larger number of sensor nodes.

As stated, medium access arbitration follows a sequence of phases that are executed periodically during the lifetime of the
network. In this section we describe the different phases of the protocol and the clock synchronization scheme employed by
the MAC layer protocol. We will describe the detailed slot scheduling heuristic in the next section.

2.1 Protocol Phases
The proposed MAC protocol for sensor networks
consists of distinct phases that are periodically
executed in the sequence shown in Fig. 2. This
subsection summarizes the different phases of the
protocol. In the remainder of this paper, we will focus
only on medium access arbitration and the clock
synchronization parts of the protocol. More elaborate
discussion of the other phases can be found in [26].

 Data Phase: In this phase the nodes transmit the
collected sensor readings to the gateway through
their next hop neighbors.

 Reroute and Arbitration Phase: This phase consists
of two segments the reroute segment and the
arbitration segment. In the reroute segment each
gateway calculates new routes for the sensors in its
cluster based on mission objective, energy
depletion, etc. In the arbitration segment the
gateways assign time slots to active sensors in their
clusters and arbitrate among themselves to ensure
collision free transmission over the new routes.

 Broadcast Phase: This phase is periodically
executed by the gateways to inform the sensors of
the new routes, assigned slots and other instructions for the sensor that are applicable until next rerouting cycle.

Reroute Segment: Each gateway
calculates routes based upon
information gathered

Data Phase: Sensors transmit gathered
information to the gateways along the
routes assigned by the gateway

Arbitration Segment: Gateways calculate
routes, communicate among themselves and
allocate slots in such that there are no collisions

Broadcast and Synchronization Phases:
Gateways transmit synchronization, routing
and other information to the sensors.

A
fte

r p
re

de
fin

ed

nu
m

be
r o

f D
at

a
ph

as
es

?

?

Reroute Segment: Each gateway
calculates routes based upon
information gathered

Data Phase: Sensors transmit gathered
information to the gateways along the
routes assigned by the gateway

Arbitration Segment: Gateways calculate
routes, communicate among themselves and
allocate slots in such that there are no collisions

Broadcast and Synchronization Phases:
Gateways transmit synchronization, routing
and other information to the sensors.

A
fte

r p
re

de
fin

ed

nu
m

be
r o

f D
at

a
ph

as
es

?

?

Fig. 2: Description of protocol control and data transmission phases

 Synchronization Phase: In this phase the gateways synchronize the clock of sensor nodes by broadcasting synchronization
messages.

4

2.2 Synchronization Mechanism
Time-based access to the communication medium requires the clocks of communicating nodes to be synchronized. Clock
drifts can cause some nodes to unexpectedly compete for the medium increasing the potential for collisions among the
transmission of the nodes in the network. Maintaining synchrony among the nodes requires periodic enforcement in order to
readjust the nodes clocks to a reference value. The frequency of such adjustment depends on many factors such as the
resolution of the time schedule and the clock drift rate. While high-resolution TDMA slots enable good utilization of the
medium enhancing network throughput and message response time, the implementation of such a very precise schedule
requires either using expensive clock crystals in the design of sensor nodes or performing very frequent resynchronization.
Since sensors used in many applications are typically unattended and disposable, the incorporation of high quality and
expensive clock oscillators is not desirable. On the other hand, frequent resynchronization can become a performance burden
as we explain below. Therefore the handling of clock synchronization of sensor networks has to be subject to a system-level
trade-off.

In our model, we assume that the gateways are equipped with GPS receivers and will thus maintain synchronized clocks. The
gateways will utilize their high precision clocks to synchronize the sensors in their cluster. Such sensor synchronization takes
the form of broadcast messages containing the gateway’s reference clock reading. Upon receiving a synchronization message
each sensor in the cluster will reset its own value to the gateway clock. For highly precise time-based network operation, the
gateway has to account for message propagation delay in the clock adjustment. While in typical distributed systems
synchronization messages are sent periodically, they can be energy inefficient for sensors networks. Since many of the
sensors in a cluster are in sleep mode at any particular instant of time, these sensors will have to make a transition to active
mode to get the clock adjustment. Active mode transition requires the sensor to be on for duration equals to twice the startup
transient time plus the time required for listening to the synchronization message. With, typical startup time of approximately
470 µsec [8], the energy consumed in transitions can relatively be a significant portion and will often diminish the energy
saving achieved by the sleep mode.

Our approach takes advantage of the flow of routing traffic from the gateway and includes the synchronization information in
the update messages of the broadcast phase. Since all the sensors have to switch on to receive route and schedule update, the
overhead that the sensors would have incurred in switching on to listen to synchronization messages will be eliminated.
However, the frequency of route updates for some networks may be insufficient to maintain the desired level of clock
synchronization. Therefore, we exploit the trade-off between the guard-time and the frequency of resynchronization. The
guard time is a precautionary measure used to tolerate the difference in clock readings of communicating nodes. Increasing
the guard time will require a sensor node to be activated earlier than its reception slot in order to tolerate a clock drift. We
propose two procedures to handle the variations in synchronization requirements.

In the first procedure, the guard time is increased to account for a low frequency reroute phase. The size of the guard time
depends on the clock drift rate and how often the rerouting is performed. With a typical clock drift rate for the sensor clocks
of 1 µsec every second [22][25], this approach can be very effective. The energy consumption due to incrementing the guard
time by a few µ seconds will be negligible compared to that for a state transition time (470*2 µsec), unless many sensors are
active all time. The other factor for consideration is the accuracy required by the sensor application since an accumulative
clock drift can make the timing of events inaccurate. However, we believe that this is not an issue in many popular
applications. For example, the timing accuracy requirements for beam forming applications are about 100 µsec [27] and thus
this procedure can be beneficial.

The second proposed procedure, which we call Optimized SYNC, tackles applications with stringent synchronization
requirements. In a scenario where the time lapse between two reroute phases can magnify the clock jitter to an intolerable
level, synchronization messages are unavoidable. In the proposed optimized SYNC procedure, only the active nodes are
periodically synchronized, while the inactive nodes are synchronized only in the reroute phase. Inactive sensors can apply a
reroute phase specific guard time turning on a little bit earlier than the next scheduled rerouting phase in order to
accommodate the worst-case clock jitter. We argue that this mechanism will yield significant energy savings compared to
periodically synchronizing all the nodes, especially when a small fraction of the deployed sensors are engaged at a given
time. We will compare the performance of the proposed procedures through simulation in section 4.

3 Time Slot Scheduling
The slot-scheduling mechanism presented in this section is part of the reroute and arbitration phase. The mechanism consists
of two parts comprising of intra-cluster and inter-cluster analysis and scheduling. Each gateway executes an intra-cluster
algorithm to calculate the transmission schedules for the sensors in its cluster. The goal of the intra-cluster algorithm is to
minimize the sensor transition between active and sleep mode while meeting flow constraints and avoiding buffer overflow at

5

all relay nodes. The inter-cluster analysis ensures that transmission slots within each cluster will not interfere with the
simultaneous use of slots at neighboring clusters. The partitioning of slot assignment into two parts allows scalability of the
approach to large networks. In this section we first address the intra-cluster slot assignment to sensors and discuss collision
avoidance among clusters in subsection 3.3.

Slot scheduling within a cluster for multi-hop traffic is a typical network flow problem. Therefore, depth first search (DFS)
and breadth first search (BFS) graph parsing techniques can be applied to assign transmission slots [26]. However as shown
in the balance of this section, DFS results in excessive wastage of energy due to a large number of transitions while BFS
leads to packet drop because of sensors’ buffer size limitation. To overcome the limitations of these contemporary
approaches, we propose an intra-cluster slot allocation algorithm that is inspired by the Tabu-search optimization technique.
The main objective of the optimization is to minimize the energy consumed by the radio circuit in idle mode and due to
unnecessary transition between active and sleep modes.

Tabu-search was introduced in [30][31] and subsequently has been successfully applied to many applications [32][33][34].
Tabu-search has become an accepted technique that in some cases surpassed conventional optimization techniques.
Analogous to other optimization techniques Tabu search employs an iterative procedure in order to find a better solution in
the neighborhood of the initial (current) solution. The local search procedure can be gradient-based, a random walk, etc. The
search process is concluded when a terminating condition, such as maximum numbers of iterations or limited enhancements
in the solution, is met. Unlike other techniques Tabu-search employs an evolving memory to prevent getting trapped in local
optima. This memory stores recently employed moves, and guides the search process by forbidding recently visited solutions.
In the balance of this section we formulate the intra-cluster slot assignment problem and then present our approach for
optimal slot assignment to communicating nodes in subsection 3.2.

3.1 Problem Formulation
The sensor network can be modeled as a set G = (V, E), where V is the set of sensors with |V| = N and E is the set of links. A
link is a set of two sensors. The two primary sources of energy wastage in TDMA based MAC are; the excessive idle time of
the sensors when the receiver is unnecessarily left on, and the time taken to make a transition from active (during transmit or
receive) to powered-down sleep state and vice versa. Therefore, we set our optimization objective to minimizing the
summation of energy consumed in idle mode and state transition across the sensor network. The following notation is used in
our formulation:
S : The set of sensing nodes with S ⊆ V
R : The set of relay nodes with R ⊆ V
P : The set of links that are used in the routes with P ⊆ E
C1 : Energy consumed in activating or deactivating a relay nodes
C2 : Energy consumed for being in idle state during one time slot
Bij : Number of packets stored in the buffer of sensor i during slot j
Bmax : Maximum number of packets a sensor can buffer
TSlots : Total number of slots in a periodic frame
Lkl : Link connecting sensor k to sensor l
Let the set Active = S ∪R. Since in each frame some of the nodes in the network will be in sleep state, it is usual to have
|Active| < N. We further define the following decision matrices:

T= (Tij) be a TSlots × |P| indication (schedule) matrix with Tij =

⎩
⎨
⎧

.,0
,,1

otherwise
jedgebyusedisislotif

Idle = (Idleij) be an |Active| × TSlots indication matrix with Idleij =
⎩
⎨
⎧

.,0
,,1

otherwise
idleisinodeif

A = (Aij) be an |Active| × TSlots indication matrix with Aij =
⎩
⎨
⎧

.,0
,,1

otherwise
jslotbeforeactivatedisinodeif

D = (Dij) be an |Active| × TSlots indication matrix with Dij =
⎩
⎨
⎧

.,0
,,1

otherwise
jslotafterddeactivateisinodeif

The algorithm calculates schedule T so as to:
Minimize:

[]∑ ∑
∈∀

=

=

++
Activei

TSLotsj

j
ijijij IdleCDAC

1
21)(…… (2)

6

Subject to:
{ } P,TSlots, 1 ,0 ≤≤∈ jiTij …… (3)

{ } TSlots,Active, 1 ,0 ≤∈∈ jiAij …… (4)

{ } TSlots,Active, 1 ,0 ≤∈∈ jiDij …… (5)

{ } TSlots,Active , 1 ,0 ≤∈∈ jiIdleij …… (6)

∑
=

=

≤≤
P

1

TSlots ,1
j

j
ij iT …… (7)

() P,TSlots
2
1

1

∈≤≥−−+∑
=

=

jiTDDAA ij

im

m
lmkmlmkm

 …… (8)

TSlots,Activemax ≤∈≤ jiBBij …… (9)

() kikjiTIdle jkij ∈∈∈∈Ω= P,,TSlots Active, …… (10)

() kikjiTA jkij ∈∈∈∈Ψ= P,,TSlots Active,1 …… (11)

() kikjiTD jkij ∈∈∈∈Ψ= P,,TSlots Active,2 …… (12)

In the formulation the objective function in (2) is to minimize the total energy consumed by the sensors due to idle time and
energy consumed due to transitions between active and sleep states. The constraints in (3), (4), (5) and (6) indicate that
entries in decision matrices are binary. The constraint (7) implies that in a particular cluster no more than one sensor can
transmit and only one sensor can receive in each slot. However in distinct clusters each gateway will run its own scheduling
algorithm and slots can be reused in different clusters after ensuring the absence of inter-cluster collision. In addition, we
implicitly constrain the number of slots in a frame to TSlots so that the frame size would not grow larger while optimizing the
number of transitions and idle slots.

Constraint (8) implies that two nodes k and l must be activated before slot i if they have to communicate during slot i. If both
nodes have been activated more than the number of times they have been deactivated from the beginning of the frame till slot
i, it will mean that they are in active state and can be assigned slot i. Constraint (9) indicates that the total number of packets
in the buffer for any sensor should be always less than the maximum buffer size. Equations (10), (11) and (12) derive the idle
state and transition indicators for a node from the current schedule T. Such derivation is intuitive and can simply be done by
parsing the schedule and generating the perspective idle slots and the transition patterns for each active sensor. If the
difference between two non-contiguous slots assigned to a particular node is greater than the sum of activation and
deactivation times, for going to and out of the sleep mode, the node can make a transition to sleep state, otherwise it remains
in idle state until next slot assigned to it. It is also worth noting that the functions Ω, Ψ1, and Ψ2 are not linear with respect to
the schedule T.

While the information captured in matrices A and D can be combined in only one matrix with the use of tri-state indicators,
we have found that sticking to Boolean values simplifies the implementation. Given the non-linearity of the optimization
problem and the large number of variables, analytical solution is not attainable and search heuristics should be pursued. We
show that proposed search algorithm is a good match to such slots scheduling problem. We partition the routing tree into sub-
trees and optimize the schedule within each sub-tree. The process is then repeated for scheduling each sub-tree. Like Tabu-
search methodology local optima is stored in the memory after every intermediate step. The property of storing local optima
as the search progress expedites the convergence. The detailed search process is explained in the next subsection.

3.2 Search Heuristic
We will use Fig. 3 to illustrate our approach for slot scheduling. Fig. 3a represents a sample sensor network topology. It
consists of two clusters. Each cluster has its own gateway that is responsible for sensor organization, route setup and
assigning transmission slots to the sensors in its cluster. The gateway will establish a multi-hop route, assign a transmission
slot for every active sensor to send the collected data and designate time slots for relay sensor to forward the data to the
gateway. Sensors, which are not engaged by the gateway in probing the environment, switch to low-power sleep mode. In
Fig. 3a, nodes A, B, C, D, F, H and I are sensing nodes that generate their own packets, while nodes E, G and J are relays.
Node C generates its own data and also relays the data forwarded by its leaf nodes. We will use cluster #1 to illustrate our
slot scheduling approach. The gateway of cluster #2 follows a similar methodology.

7

G1 G2
J

E

D B

A

H

I

C
N

Q

P

G
F

M
L

K

O

E

D B

AC
F

H

I

J

Cluster 1

Cluster 2

Tree 1 Tree 2

G

GGFCGGGCCBAEDTransmit

GatewayGatewayGGGatewayGatewayGatewayGGCCGEReceive

13121110987654321Slot No.

GGFCGGGCCBAEDTransmit

GatewayGatewayGGGatewayGatewayGatewayGGCCGEReceive

13121110987654321Slot No.

GGFEDGGGCCCBATransmit

GatewayGatewayGGEGatewayGatewayGatewayGGGCCReceive

13121110987654321Slot No.

GGFEDGGGCCCBATransmit

GatewayGatewayGGEGatewayGatewayGatewayGGGCCReceive

13121110987654321Slot No.

a)

b)

c)

d)

Fig. 3: a) Initial topology represented as trees b) Cluster-1 after partitioning into distinct trees

 c) Node G is selected at level-2 of Tabu Search d) At level-3, slots of branch 1 (A, B and C) are
 exchanged with slots of branch 2 (D and E).

In Fig. 3a, the arrows indicate the direction of packet flow from the sensors to the gateways. It is clear from the figure that the
data routes within a cluster form a tree rooted at the gateway. Such a routing tree can be envisioned as a set of distinct smaller
trees (branches), each connected to the gateway with a dedicated link. For example, the data routes of cluster #1 can be
partitioned to smaller trees, as illustrated in Fig. 3b. The paths followed by packets in each of these sub-trees will be
independent of the other sub-trees. This partitioning of the routing tree will significantly reduce the complexity of the slot-
scheduling problem. By using this approach, the gateway can break the problem into smaller sets and deal with each sub-tree
independent of other sub-trees instead of simultaneously dealing with all the sensors in the cluster. In the following
discussion we will use the term tree to simply refer to a branch of the gateway node.

We use a modified version of BFS to generate an initial solution to our search heuristics. Slots are assigned such that nodes
get contiguous transmission and reception slots. To avoid packet drops, nodes are assigned contiguous reception slots that do
not exceed its buffer size. We illustrate this approach in Fig 3c. Let’s assume that the size of a node’s buffer is 3. After
applying our approach nodes D (the node with highest depth) and E are assigned slots 1 and 2 respectively. Node G is not
assigned the next transmission slot since it has not yet received all the packets destined to it. Therefore, nodes A and B that
have the highest depth among node G’s remaining branches are assigned slots 3 and 4, while node C is assigned slots 5, 6.

8

Node C is not assigned slot number 7
even though it has a packet to transmit
because the buffer of node G is full.
Instead, node G is assigned slots 7, 8
and 9 since it has consumed all its
buffering capacity. The modified
assignment of slots will prevent the
buffer overflow at node G since the
buffer will be flushed as soon it gets
filled up. Finally node C and F are
allocated slots 10 and 11 while node G
is allocated slots 12 and 13.

Once the initial solution is generated,
the slot’ scheduling algorithm is applied
to find the optimal slot assignment. The
search process examines different
combination of slot assignments until
either an optimum is reached or a
terminating condition is met. To
increase the efficiency of the search, a
divide and conquer scheme is
employed. The search is partitioned into
three distinct levels namely; Tree level,
Node Level and Branch level. Each
level maintains a list, called the memory
or Tabulist of that level, for storing the
recent combinations of slot schedules
that have already been tried so that they
are not exercised again. The
optimization process starts at the tree
level and considers some (or all) routing
trees in the cluster. This level ensures
that the slots assigned to trees are
optimized for minimal energy
consumption. As an example, for cluster
#1 in Fig. 3 search at this level can be
performed twice, once for tree#1 and
once for tree#2. The selection of a tree
for optimization is prioritized based
upon the ratio of energy consumed due
to transitions and idle time to the
number of slots required by the tree.
The tree with highest ratio (Tree #1 in
example 3) is selected for optimization
and is added to the Tabulist so that it is
not considered in future iterations. For
non-complex topology such as the one
in our illustrative example, it will make
sense to try all trees. However, for large
networks a subset can be picked in
order to limit the search complexity.

INITIAL SOLUTION()
1. slot_count = 0
2. For (i = 0; i < MaxTreeCount; i++)
3. slot_count = AssignSlots(RootNode, slot_count)
4. endFor

AssignSlots(Node, slotcount)
5. If(!(all children of the Node have been allocated slots))
6. slot_count=AssignSlots(Random child node not allocated slots, slot_count)
7. slot_count = slot_count + 1;
8. Node_slot[Node] = slot_count;
9. return slot_count

SEARCH HEURISTIC ()
10. Set best_solution = initial solution.
11. While (Tabulist1 < Max_Iterations)
12. Choose the tree with highest energy consumption to optimize;
13. If (tree is in Tabulist1)
14. Go to 2.
15. else
16. Add the tree to Tabulist1;
17. Set Iteration_Count_1=0;
18. While (Iteration_Count_1 < Max_Iterations_1 and |Tabulist2| < node_count)
19. Choose the node with highest energy consumption of the selected tree;
20. If (selected node is in Tabulist2)
21. Go to 9;
22. else
23. Add the node to Tabulist2;
24. Iteration_Count_1++; Iteration_Count_2=0;
25. While (!(No improvement For X iterations) and Iteration_Count_2 <

Max_Iteration_2)
26. Iteration_Count_2++;
27. Choose 2 random inbound branches of the selected node to swap;
28. If (selected branches are in Tabulist3)
29. Go to 16;
30. else
31. Swap branches and calculate energy;
32. If (energy > energy of best solution)
33. Update Tabulist3;
34. Go to step 29;
35. else if (energy < energy of best solution)
36. Update Tabulist3;
37. best solution=current solution; go to 16;
38. Undo the swap move; go to 16;
39. endWhile
40. Empty Tabulist3;
41. endWhile
42. Empty Tabulist2;
43. endWhile

Fig 4: The intra-cluster slot assignment algorithm.

All the nodes of the selected tree are passed to the next (Node) level. Similar to the tree counterpart, the node level is repeated
until either the optimum solution is found or the maximum number of iterations is completed. In each iteration the node
whose branches have the highest ratio of energy consumed due to transitions and idle time to the number of slots is selected
and passed to the third (branch) level for optimization. The selected node (Node G in the example) is then added to the

9

memory (Tabulist) of this level and is retained in memory for number of iterations equal to the size of the Tabulist. Any node
that is in the memory for the current iteration is assumed to be optimized and thus cannot be passed to the third level for
optimization. The implementation of the Tabulist is a circular queue. When a node leaves the Tabulist, it can again be
reconsidered for optimization at the branch level.

The branch level search strives to minimize the energy consumed by the currently considered node. Different combinations
of slot schedules are tried for this node by swapping the transmission slots allocated to the inbound branches and then
retaining the best allocation. For example slots assigned to nodes A, B and C are swapped with that of nodes D and E in Fig
3c to get a new schedule in Fig 3d. The resultant schedule reduces the number of transitions for node C. It also reduces the
idle time for node G. It is worth noting that the slots are swapped such that the resulting schedule does not result in buffer
overflow. After swapping, the energy consumed by the new solution is compared to the energy of the current (best) solution.
If new solution consumes less energy, it is saved as the current solution and the swap move is saved in the memory of this
level so that it is not repeated again until it is in the memory. This level is terminated either when all the swap moves are in
the memory or maximum numbers of iterations is reached. The algorithm is sketched in Fig. 4.

Table 1 shows a transmission schedule when applying our approach. For the sake of comparison we include the schedule
using BFS and DFS in tables 2 and 3 respectively. Comparing table 1 to tables 2 and 3 demonstrates the superiority of our
approach to BFS and DFS, both in terms of packet drop count and energy consumption due to both transitions and idle time.
More elaborate performance’s comparison will follow in section 4.

Table 1: Using proposed approach, there is no packet drop and a total of 13 transitions. Sensor G is in idle mode for one slot
(Tr = Transmit, Rec = Receive, Sl = Sleep)

Slot No. / Sensor ID 1 2 3 4 5 6 7 8 9 10 11 12 13

A ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl

B Sl ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl

C ↑ Rec Rec Tr Tr Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl

D Sl Sl Sl Sl Sl Sl Sl Sl ↑ Tr ↓ Sl Sl Sl Sl

E Sl Sl Sl Sl Sl Sl Sl Sl ↑ Rec Tr ↓ Sl Sl Sl

F Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl ↑ Tr ↓ Sl Sl

G Sl Sl ↑ Rec Rec Rec Tr Tr Tr Idle Rec Rec Tr Tr

Gateway - - - - - Rec Rec Rec - - - Rec Rec

Table 2: Using BFS, some packets will not reach the gateway (max. buffer size = 3). A total of 17 state transitions are
needed. Sensor G is idle for two slots. (Tr = Transmit, Rec = Receive, Sl = Sleep)

Slot No. / Sensor ID 1 2 3 4 5 6 7 8 9 10 11 12 13

A Sl Sl ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl

B Sl ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl

C Sl ↑ Rec Rec ↓ Sl Sl ↑ Tr Tr Tr ↓ Sl Sl Sl Sl Sl

D ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl

E ↑ Rec ↓ Sl Sl Sl ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl

F Sl Sl Sl ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl Sl

G Sl Sl Sl ↑ Rec Rec Rec Rec(Drop) Rec(Drop) Tr Tr Tr Idle Idle

Gateway - - - - - - - - Rec Rec Rec - -

10

Table 3: Using DFS, total of 15 transitions take place. Sensor D is idle for one slot while sensor G is idle for two slots. (Tr =
Transmit, Rec = Receive, Sl = Sleep)

Slot No. / Sensor ID 1 2 3 4 5 6 7 8 9 10 11 12 13

A Sl Sl Sl ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl Sl

B ↑ Tr ↓ Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl

C ↑ Rec Tr Idle Rec Tr ↓ Sl Sl Sl Sl ↑ Tr ↓ Sl Sl Sl

D Sl Sl Sl Sl Sl Sl ↑ Tr ↓ Sl Sl Sl Sl Sl Sl

E Sl Sl Sl Sl Sl Sl ↑ Rec Tr ↓ Sl Sl Sl Sl Sl

F Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl ↑ Tr ↓ Sl

G Sl ↑ Rec Tr Idle Rec Tr Idle Rec Tr Rec Tr Rec Tr

Gateway - - Rec - - Rec - - Rec - Rec - Rec

3.3 Inter-Cluster Collision Avoidance
Collisions will occur when a sensor can hear multiple transmissions in a particular time slot. Using our TDMA based scheme
collisions will not occur between sensors of the same cluster since only one sensor is scheduled to transmit in a particular
slot. However the operation of the different clusters are simultaneous and inter-cluster collisions cannot be ruled out. Inter-
cluster collisions may degrade the performance of the network and diminish the advantage of the distinct slot assignment
within each individual cluster. Although the inter-cluster collisions can be eliminated via partitioning the frequency band
among clusters and designating unique range for each cluster, dividing the frequency band leads to an increase in both the
sensor active time and energy consumption [8]. In addition, while adopting sequential operation of clusters will also prevent
inter-cluster collision, it can extend the TDMA frame size and cause unacceptable data latency for the application. Therefore,
an alternative scheme is thought.

A possible approach for preventing inter-cluster collisions is to ensure that the gateways in adjacent clusters assign different
slots to sensors that are close to the inter-cluster boundary and whose transmission ranges overlap. Such a precautionary
measure requires each gateway to be aware of the schedule of adjacent clusters. However, the knowledge of schedules of
neighboring clusters does not solve the problem. To form a collision free schedule, each gateway has to validate the
allocation of every slot in its cluster with the corresponding slot in neighboring clusters. For a large network, the number of
comparisons required can be large. Moreover, after the comparisons, the gateway will have to modify some slots to eliminate
collisions. Finding the appropriate slot reassignment can be NP-hard. Modification in the schedule may induce additional
collisions and the slots will have to be compared again and so on. Additionally, modifying the schedules might also negate
the energy efficiency achieved by our slot’ scheduling algorithm.

A closer look at the intra-cluster slot allocation scheme provides insight to a good approach to deal with this problem. It has
been shown in Fig. 3 that each cluster is composed of a number of disjoint trees rooted at the gateway. The schedules of these
trees are independent of each other. For example we can have two optimum slot schedules for cluster #1. Assigning slots 1
through 10 to tree #1 followed by slots 11 through 13 to tree #2 is one such solution. An alternate solution could be to
allocate slots 1 through 3 to tree #2 followed by slots 4 through 13 to tree #1. Energy consumption due to both these solutions
is identical. Thus, if the first solution leads to collision with an adjacent cluster and the second one does not lead to collisions,
we could employ the second solution without sacrificing the optimality of the slot schedule. Our scheme to avoid collisions
with sensors in adjacent clusters exploits this characteristic. The approach, which is detailed in the remainder of this
subsection, maintains the energy efficiency of the schedule computed by intra-cluster slot allocation algorithm and achieves a
quasi-optimal solution at reasonable complexity. Even with a bounded frame size only a few modifications are required to the
schedule. In addition, our proposed approach limits the number of comparisons performed.

The proposed scheme works as follows. After calculating the transmission schedules for sensors within their respective
clusters, the gateways elect one of the gateways as the head gateway. The head gateway is one of the gateways in the network
picked in a round robin fashion. A new head gateway is selected for each arbitration phase. The head gateway collects
transmission schedules from all the clusters and then scans through these schedules to detect potential inter-cluster collisions.
In case of a collision, the head gateway attempts to avoid this collision by replacing all the slots allocated to the affected tree
with those designated to a different tree in the same cluster. We call such a step a tree swap. As explained earlier, such a

11

swapping of slots does not affect the optimality of the intra-cluster schedule. However, it may not completely solve the issue
and may generate new transmission conflicts.

A conflict that remains unresolved through tree swapping can be handled in one of two mechanisms. In the first, all the
sensors in the affected tree are allocated slots at the end of the current transmission schedule. This mechanism will maintain
the optimality of the intra-cluster schedule and will be pursued only if the frame size would not get extended. Assuming F to
be the TDMA frame size, FC to be the length of the intra-cluster schedule and St is the number of slots required by the tree
causing the collision, it will be acceptable to re-allocate these St slots at the end of FC as long as F ≥ FC + St. If not possible,
the slots required by such tree will be satisfied using non-contiguous slots in the schedule possibly sacrificing the optimality
criteria for that particular tree. Clearly the first mechanism for handling unresolved conflicts is preferred. To limit the
potential for applying the second mechanism, we start consider trees in a decreasing order of their required slots so that trees
remaining unresolved through swapping at the end will have the smallest possible St and thus increasing the possibility of
successful collision prevention through the first scheme.

We illustrate the collision avoidance approach with the
example network shown in Fig. 5. The considered
network consists of three clusters. We assume that the
gateways have calculated the transmission schedules for
the trees in their cluster using our slot’ scheduling
algorithm detailed in the previous subsection. We also
assume that the gateways have transmitted these
schedules to the head gateway. The head gateway scans
these schedules to detect and eliminate the possibility of
collisions.

Schedule scanning consists of several steps. First, the
trees in each cluster are sorted in a decreasing order in
the number of time slots they require. The trees of
various clusters are then grouped based on their
positions in the sorted lists. Fig. 6a, shows the sorted
lists and the groups derived from them. Trees #1, #4
and #6 require the maximum number of slots in their
respective clusters and hence are grouped together.
Similarly, trees #2, #5 and #8 are grouped together into
group #2 while trees #3 and #7 fall into group #3. As
mentioned earlier, the wisdom of sorting the trees and
forming inter-cluster groups is to mitigate the impact of
the worst-case scenario when collisions can only be
avoided by allocating slots to some trees at the end of
the current intra-cluster transmission frame, hoping that
if needed only small trees are moved.

In the next step, the trees that fall in the same group are c
requires the least number of slots is replaced with anothe
application to the network of Fig. 5. The procedure starts w
of this group are picked in the decreasing order of slots req
are no other trees for comparison as shown in Fig. 6b. Tree
#6. Since no collisions are detected it is also retained w
compared with trees #1 and #6. Collisions are detected b
cannot remain with group #1. Tree #5, which requires the
compared with trees #1 and #6. Since there are no collisio
the next group (group #2). The maximum number of slots
been made free of collisions, trees in groups #2 and #3 ar
the trees retain their positions as shown in Fig 6f. Afte
eliminated, the slots are assigned to trees based upon their
11 slots, which is equal to the maximum required by any tr
8 Slots) and group #3 gets slots 20 through 22 slots (maxim
G2

G1

G3

Tree1

Tree2

Tree3

Tree4

Tree5

Tree7

Tree8

Tree6

1

4

2,3

5,6,7,8 1

3,4,5

7,8,9,10,11

6

2

2,3

1

3,4,5

1

2

4

2
1

1 3

4,5,6,7

2

3,4,5

5,6,7,8,9

1

3
2

1

Cluster 1

Cluster 2

Cluster 3

2,3

G2

G1

G3

Tree1

Tree2

Tree3

Tree4

Tree5

Tree7

Tree8

Tree6

1

4

2,3

5,6,7,8 1

3,4,5

7,8,9,10,11

6

2

2,3

1

3,4,5

1

2

4

2
1

1 3

4,5,6,7

2

3,4,5

5,6,7,8,9

1

3
2

1

Cluster 1

Cluster 2

Cluster 3

2,3

Fig. 5: An example topology for sensor networks
ompared for potential collisions. In case of a collision the tree that
r tree in its cluster. Figures 6b through 6f illustrate the approach
ith group #1 since it requires the maximum number of slots. Trees
uired. Tree #6 is selected first and is retained in group #1 as there
 #1 is selected next and its slots are checked for collision with tree
ith group #1 as shown in Fig. 6c. Tree #4 is selected next and

etween tree #4 and tree #1, as shown in fig 6d. Therefore tree #4
next largest number of slots in tree #4’s cluster, is then picked and
ns, tree #5replaces tree #4 of group #1. Tree #4 is then moved to

 required by group #2 thus becomes equal to 8. After group # 1 has
e scanned for collisions. Since no more collisions are detected all
r the scan is complete and all the potential collisions have been
 group. This is illustrated in Fig. 6g. Trees with group #1 get first
ee in this group. Similarly group #2 gets 12 through 19 (maximum
um 3 Slots).

12

Tree #7
(3 Slots)

Tree #8
(5 Slots)

Tree #6
(11

Slots)

Tree #5
(7 Slots)

Tree #4
(8 Slots)

Tree #3
(1 Slots)

Tree #2
(5 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group
#3 (3
Slots)

Group
#2 (7
Slots)

Group
#1 (11
Slots)

Group #
(Max
Slots)

Tree #7
(3 Slots)

Tree #8
(5 Slots)

Tree #6
(11

Slots)

Tree #5
(7 Slots)

Tree #4
(8 Slots)

Tree #3
(1 Slots)

Tree #2
(5 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group
#3 (3
Slots)

Group
#2 (7
Slots)

Group
#1 (11
Slots)

Group #
(Max
Slots)

Tree #7 3
Slots)

Tree #8
(5 Slots)

Tree #6
(11

Slots)

Tree #4
(8 Slots)

Tree #5
(7 Slots)

Tree #3
(3 Slots)

Tree #2
(5 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group
#3 (3
Slots)

Group
#2 (8
Slots)

Group
#1 (11
Slots)

Group #
(Max
Slots)

Tree #7 3
Slots)

Tree #8
(5 Slots)

Tree #6
(11

Slots)

Tree #4
(8 Slots)

Tree #5
(7 Slots)

Tree #3
(3 Slots)

Tree #2
(5 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group
#3 (3
Slots)

Group
#2 (8
Slots)

Group
#1 (11
Slots)

Group #
(Max
Slots)

Tree #6
(11 Slots)

Tree #
(Slot

Count)

Group #3
(3 Slots)

Group #2
(7 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

Tree #6
(11 Slots)

Tree #
(Slot

Count)

Group #3
(3 Slots)

Group #2
(7 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

Tree #6
(11 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group #3
(3 Slots)

Group #2
(7 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

Tree #6
(11 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group #3
(3 Slots)

Group #2
(7 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

Tree #6
(11 Slots)

Tree #4
(8 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group #3
(3 Slots)

Group #2
(7 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

Tree #6
(11 Slots)

Tree #4
(8 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group #3
(3 Slots)

Group #2
(7 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

Tree #6
(11 Slots)

Tree #4
(8 Slots)

Tree #5
(7 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group #3
(3 Slots)

Group #2
(8 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

Tree #6
(11 Slots)

Tree #4
(8 Slots)

Tree #5
(7 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group #3
(3 Slots)

Group #2
(8 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

a) b) c)

d)e)f)

T

V

T

21

TTVVVTTTTTTTTTTTTTTTTG3

VVTTTTTTTTVVVVTTTTTTTG2

TTVVVTTTTTVVTTTTTTTTTG1

222019181716151413121110987654321Slot No. /
Gateway-ID

T

V

T

21

TTVVVTTTTTTTTTTTTTTTTG3

VVTTTTTTTTVVVVTTTTTTTG2

TTVVVTTTTTVVTTTTTTTTTG1

222019181716151413121110987654321Slot No. /
Gateway-ID

g)

Fig. 6: Step by step procedure followed by head gateway to form collision free schedules (V=Vacant, T=Transmit).
In case a tree cannot find a collision free schedule in any of the available groups, it will be allocated slots at the end of current
schedule of its cluster. To illustrate the methodology to deal with this issue, let’s assume that the topology is different from
one shown in Fig. 7 and schedule of tree #3 collides with schedules of all the trees in cluster #3. Therefore it cannot be placed
in any of the groups #1, #2 and #3. In such a situation a new group is inserted at the end and tree #3 is added to that group.
This is illustrated in figures 7a and 7b. There might also be situations when the maximum frame size is reached and no new
groups can be added to the end of the schedule. In such a scenario remaining trees fill in the vacant slots allocated to its
cluster. As an example, let’s assume that the maximum frame size is 22 in the above scenario and no new groups can be
added to the end of the schedule. In this situation, Tree #3 is allocated slots in any of the vacant slots in its clusters schedule.
Thus, any of the vacant slots numbered 10, 11, 17, 18, 19, 21 and 22 as shown in Fig. 6g can be used by tree #3. It should be
noted that this scenario might also happen if the swapping of trees results in exceeding the frame boundary, e.g. when the size
of trees in the first group are dominantly larger than other trees in the their respective clusters.
Tree #8
(3 Slots)

Tree #3
(1 Slot)

Group
#3 (3
Slots)

Empty

Empty

Empty

Group
#4(n

Slots)

Tree #8
(5 Slots)

Tree #6
(11

Slots)

Tree #4
(8 Slots)

Tree #5
(7 Slots)

Tree #2
(5 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group
#2 (8
Slots)

Group
#1 (11
Slots)

Group #
(Max
Slots)

Tree #8
(3 Slots)

Tree #3
(1 Slot)

Group
#3 (3
Slots)

Empty

Empty

Empty

Group
#4(n

Slots)

Tree #8
(5 Slots)

Tree #6
(11

Slots)

Tree #4
(8 Slots)

Tree #5
(7 Slots)

Tree #2
(5 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group
#2 (8
Slots)

Group
#1 (11
Slots)

Group #
(Max
Slots)

Tree #8
(3 Slots)

Group #3
(3 Slots)

Tree #3
(3 Slot)

Group#4
(3 Slot)

Tree #8
(5 Slots)

Tree #6
(11 Slots)

Tree #4
(8 Slots)

Tree #5
(7 Slots)

Tree #2
(5 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group #2
(8 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

Tree #8
(3 Slots)

Group #3
(3 Slots)

Tree #3
(3 Slot)

Group#4
(3 Slot)

Tree #8
(5 Slots)

Tree #6
(11 Slots)

Tree #4
(8 Slots)

Tree #5
(7 Slots)

Tree #2
(5 Slots)

Tree #1
(9 Slots)

Tree #
(Slot

Count)

Group #2
(8 Slots)

Group #1
(11 Slots)

Group #
(Max
Slots)

a) b)

Fig. 7: Additional slots are added in case no collision free schedule can be found
13

The algorithm for computing collision free schedules is detailed in Fig. 8. The number of messages exchanged in the course
of executing the inter-cluster collision avoidance algorithm is linear in the number of gateways. Assuming m is the number of
clusters in the network and q is the maximum number of sensors in any tree, the “for” loop on line 1 of the “compare”
function is executed a maximum of m time. The complexity of the comparison of slots in line 2 is O(q2). Thus, the total
execution time complexity of the “compare” function is O(mq2). In the worst case all the trees in the cluster will collide with
the current tree, therefore the inner “while” loop will be executed in O(m) time. Similarly the worst case performance of the
outer “while” loop is O(nm), where n is the maximum number of trees in any cluster. The running time of outer and inner for
loops in FillVacantSlots is O(m) and O(n) respectively, while running time of inner while loop is O(nq). Therefore, the worst
case performance of the FillVacantSlots module is O(mn2q). Thus the overall complexity of the algorithm is O(nm3q2

+mn2q).

14

1. Initialize Done = 0;GatewayCount = 1; CurrentGroup = 1;Collision = 1;
2. Sorts the trees in descending order of number of slots required.
3. Sort the groups in the descending order of the number of slots required.
4. While(!Done)
5. While(Collision == 1)
6. Collision = COMPARE(GatewayCount, CurrentGroup, CurrentTree);
7. if(collision == 1)
8. if(No Tree is Available)
9. Insert Vacant Slots
10. Insert CurrentTree at the end of list of trees for the cluster
11. Collision = 0;
12. else
13. replace the position of tree with that of next non-colliding tree in the cluster
14. endWhile
15. GatewayCount++;
16. if(GatewayCount = MaxGatewayCount && CurrentGroup = MaxGroupCount)
17. Done = 1;
18. else if(GatewayCount == MaxGatewayCount)
19. GatewayCount = 0;
20. CurrentGroup++;
21. endWhile
22. if (Frame Size has exceeded)
23. FillVacantSlots(TreesExceedingFrame size,VacantSlotList)

COMPARE (GatewayCount, CurrentGroup, CurrentTree)
1. For(i = GatewayCount; i < MaxGatewayCount; i++)
2. Compare all slots in the Trees for Collision
3. if(collision)
4. return 1;
5. endFor
6. return 0;

FillVacantSlots(TreesExceedingFrame,VacantSlotList)
1. For(i = 0; i < MaxGatewayCount; i++)
2. For(j = 0;j < Gateway[i].TreeExceedingFrameCount; j++)
3. k=0,m=0;
4. While(k < Tree[j].SlotCount or m < VacantSlotList[i].size)
5. Check if use of slot at index m leads to collision.
6. if (no collision)
7. allocate vacant slot to current sensor
8. remove slot at index m from VacantSlotList[i]
9. k++;
10. else
11. m++;
12. endWhile
13. endFor
14. endFor

Fig. 8: Inter Cluster Collision Avoidance Algorithm.

4 Experimental Validation
The effectiveness of our approach is validated through simulation. This section describes the simulation environment,
performance metrics and experimental results.

4.1 Setup and Metrics
In the experiments varying number of nodes are randomly placed in a 1000×1000 meter square area. The gateway is
randomly positioned within this area. A free space propagation channel model is assumed [29] with the capacity set to
2Mbps. Packet lengths are 10 Kbit for data packets. For a node in the sensing state, packets are generated at a constant rate of
1 packet/sec [18]. The time taken in making a transition between the sleep and active states is assumed to be 470µsec. The
power consumed at the circuit level in transmission and reception of a packet is set to 81mW and 180mW respectively [8]. It
should be noted that though we have based out results on one particular radio model the other models exhibit similar
characteristics [22]. The energy consumed in the transition is obtained by multiplying the transition time by the average of
the power consumed by the radio circuit in active and sleep states [8]. In the implementation, a radio circuit in a sleep mode
is assumed not to consume any power. Energy consumption due to the radio amplifier in case of the transmission depends on
the distance and is optimized through the use of multi-hop routing. Routes are computed based upon Dijkstra’s shortest path
algorithm, such that each sensor will transmit the information to its closest distance neighbor. The probability of a sensor
being on in a particular frame was varied from 0.1 to 1. The set of sensing nodes changes every reroute phase. The clustering
was done such that each sensor falls in the cluster of a gateway that is nearest to the sensor. Clock drifts were assumed to be 1
µsec every second. A packet was assumed to be lost in case of a collision and is not retransmitted.

The following metrics are used to measure the performance of the proposed scheme:
 Energy Consumed by the sensors in idle mode and due to transitions: This measures energy consumed by sensors while

turning the radio circuitry on and staying idle. It also measures energy dissipated due to transitions between active and
sleep modes. This should be minimized to extend sensor lifetime.

 Throughput: It measures the number of packets reaching the gateway per time unit. Throughput is important because if
large numbers of packets are dropped, the gateway cannot form the correct vision for the activities in the covered area.

 Average delay per packet: It measures the average time a packet takes to reach the gateway from the instant it is
generated. Long delays will result in packets reaching the gateway when the information is of no use.

 Energy Consumed by the Gateway: The gateways have sufficient energy resources. However they do not have infinite
resources and this metric will be a good indicator of the capabilities a gateway should have.

 Energy Consumed by the Sensors due to collisions: This metric measures the amount of energy wastage by the sensors
due to collisions, which should be completely eliminated.

4.2 Experiment Results
Performance of the clock synchronization scheme: We conducted a set
of experiments to compare the synchronization schemes proposed in
section 2 with a scenario where all sensors were synchronized
periodically via explicit synchronization messages (we call this scheme
SYNC). Fig. 9 shows the results of theses experiments with time
between successive synchronization captured in terms of interleaving
data cycles. The results for the optimized SYNC, in which only active
sensors receive synchronization messages while the remaining sensors
are synchronized only in the reroute phase, show a reduction of up to
280% in comparison to SYNC. When the synchronization messages are
included in the reroute phase (SYNC in reroute) the energy
consumption related to synchronization is minimal. In addition, Fig. 9
indicates that a considerable reduction in energy consumption can be
achieved if the frequency of synchronization messages can be
decreased through better clock circuitry or a relaxed application delay
requirements.

Comparison between the time slot assignment algorithms: We ran a set o
slot’ scheduling algorithm (SLA) to DFS and BFS. The results are shown

15
0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5
Time Difference between two SYNC messages

En
er

gy

C
on

su
m

ed
/S

en
so

r(
Jo

ul
es

)

SYNC in ReRoute SYNC Optimized SYNC

Fig. 9: Performance of the clock synchronization
schemes under varying re-synch frequency
(captured in terms of the number of data cycles
between successive synchronization)
f experiments to compare the performance of our
 in figures 10 and 11. Fig. 10 displays the average

energy consumed by a sensor due to transitions. The result corroborates the practicality of our approach, since it combines
the advantages of the other two approaches. Moreover, for less number of sensors DFS performs better than BFS but for
larger number of sensors BFS gives superior results. This is expected since as the number of sensors increases the depth of
the tree increases in comparison to its breadth. Consequently the difference between slots assigned to sensors in DFS widens
extending the sensor’s active time. In the second experiment we varied the packet sizes and observed its effect on the energy
consumed by the system due to transitions. As the packet sizes were reduced the energy contributed due to transitions
increased manifold. Therefore, as shown in Fig. 11 for smaller packet sizes effect of transitions becomes more conspicuous
and the significance of our approach increases.

Performance impact for the inter-cluster arbitration scheme: To quantify the impact of the inter-cluster arbitration on
network performance metrics and the gateway’s and sensor’s energy, we have considered a multi-cluster setup. The reported
results in Fig. 12 are based on experiments that ran for a duration for which the gateways were able to perform five inter-
cluster arbitration cycles. As shown in Fig 12 the average energy consumed by each gateway in a 5 clusters setup is .018
joules. This is not significant considering the fact that gateways have abundant energy resources. The figure further shows
that the average energy consumed by the gateways increases with the increase in the number of gateways. This is expected
since the number of exchanged messages in the arbitration phase is proportional to the number of gateways. The energy
consumed by the network when number of gateways is increased from 4 to 6 does not show an increase due to the random
placement of gateways. Although the number of messages exchanged still grows when the gateways are increased from 4 to
6, the gateways are placed closer to each other in a 6 gateways scenario, reducing the energy consumed in transmissions. The
computation energy has been deemed negligible compared to communication energy and thus has not been considered in the

Fig. 13 investigates t

En e r g y c o n s u m e d v e r s u s th e p a c k e t s ize

0
0.5

1
1.5

2
2.5

3
3.5

4

100 1000 10000 100000

p a cke t siz e (b its)

en
er

gy
 c

on
su

m
ed

/s
en

so
r(m

J)

Fig. 11: Effect of packet size on transition energy

0

10

20

30

40

50

60

100 150 200 250 300

Number of Sensors

A
ve

ra
ge

 E
ne

rg
y

co
ns

um
ed

(m
J)

SLA Breadth Depth

Fig. 10: Effect of number of sensors on the average

energy consumed by a sensor in idle state

measurements [22].

he impact of collisions on consumed sensor’s energy with and without the arbitration. The results are

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

1 2 3 4 5 6
Number of Gateways

E
ne

rg
y(

Jo
ul

es
)

W/O Arbitration With Arbitration

Fig. 12: Average gateway energy consumed in
performing the inter-cluster medium arbitration

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of a sensor being in active state

E
ne

rg
y

C
on

su
m

ed
(J

ou
le

s)

W/O Arbitration(500m*500m)
W/O Arbitration(1000m*1000m)
With Arbitration(500m*500m)
With Arbitration(1000m*1000m)

Fig. 13: Average excess energy consumed by sensors
due to collisions

based on a setup of 3 clusters and 4000 sensors. Initially, increasing the number of active sensors increases the number of
collisions, leading to an increased energy wastage. However, such rise in collision related energy consumption ceases when
most sensors are on. The decrease is due to reduction in distances between communicating sensors, with an increase in sensor
density. The transmission energy decrease due to the shorter distance between nodes and their next hop neighbors. It should

16

be noted that the number of collision continues to rise with the increase in the number of active sensors. However, the energy
wastage due to these collisions stops rising due to the reduced sensor-sensor transmission energy. On the other hand, when
inter-cluster arbitration is employed, the collisions are completely eliminated. The figure also shows the energy consumed is
less when the deployment area is small. This is again because of the smaller transmission distances in the smaller region.

Since the inter-cluster arbitration scheme may insert vacant slots in the schedule, the average delay per packet can increase. If

creases. As

es. In

this delay is large the proposed scheme becomes ineffective. Therefore we have measured the delay with and without
arbitration for two scenarios. In the first scenario we kept the number of sensors constant (= 500) and the probability of a
sensor being on was taken as 1. As indicated in Fig. 14, as the number of gateways increases the delay experienced by the
packets in both schemes decreases. This happens because increasing the number of gateways decreases the number of sensors
per cluster and therefore the tree sizes decrease. Consequently the number of hops (tree depth) also decreases. As seen from
Fig. 14, on an average the delay is 0-10% more than that experienced by packets without arbitration and in the worst-case it is
27% more than those experienced when the arbitration scheme is not employed. One interesting fact to note is that,
increasing the number of gateways tends to mute the impact of the inter-cluster arbitration on the average packet delay. This
is because as the number of gateways increases the trees sizes decrease. Therefore even if some trees leads to extension in
frame size that extension is not much in comparison to the scenario when the arbitration scheme is not employed.

The second scenario fixes the number of gateways and studies the variation in delay as the number of sensors in
shown in Fig. 15 there is a sharp increase in delay for both schemes, as the number of sensors increases. For smaller number
of sensors both schemes perform almost identically. The gap between delays experienced by the packets in the two schemes
widens for larger number of sensors. For up to 400 sensors the delay experienced by the arbitration scheme is 0-1% more
than that experienced without employing the arbitration scheme. However in the case of 800 sensors the delay experienced by
arbitration scheme is 28% more. This is because the potential of collisions increase for large number of sensors and therefore,
the arbitration scheme inserts more vacant slots in order to avoid collisions. Figures 14 and 15 present the results of
experiments conducted when all the sensors were transmitting data. Therefore these figures also reflect the scalability of the
proposed scheme under heavy traffic conditions.

Fig. 16 captures the throughput achieved by both schem
among the sensors and that there is no packet drops due to an
always achieves 100% throughput. However the throughput
bounds. Such fluctuation is due to the variation in the number
active sensors at a particular time. When multiple sensors in
average a gain of 10% in throughput can be achieved using our

Fig. 17 shows the variation in the delay experienced by packets
the probability of the sensors being active. The experiment is b
show that as the probability of the sensor being in active state
number of slots in the schedule will increase to accommodate
resulting from the employment of the inter-cluster arbitration sc
probability for a sensor being active, the inter-cluster arbitratio
the delay. Even in the worst-case when all the sensors are on,
that experienced when arbitration is not employed. The resu
avoidance scheme can be achieved with minimal impact on pac

17
0

0.2

0.4

0.6

0.8

1

200 300 400 500 600 700 800

Number of Sensors

D
el

ay
(s

ec
)

W/O Arbitration With Arbitration

Fig. 15: Avg. delay per packet (with varying sensors)
0
1
2
3
4
5
6
7

1 2 3 4 5 6

Number of Gateways

D
el

ay
(s

ec
)

W/O Arbitration With Arbitration

Fig. 14: Avg. delay/packet (with varying gateways)
 these experiments we have assumed reliable communication

lled by changing

y reason other than collisions. The arbitration-based scheme
for the scheme without arbitration fluctuates between lower
of collisions, which depends upon the number and location of
 close proximity are active, the collision rate increases. On
inter-cluster collision avoidance technique.

 for different levels of network traffic contro
ased on 400 sensors partitioned among 3 clusters. The results
 increases the delay also increases. This is expected since the
 more data sources. It is worth noting that the delay increase
heme is not very large. At a low rate of data generation, small
n could successfully handle most collisions without extending
the average delay a packet experiences is only 8% more than
lts confirm that the advantages of the inter-cluster collision
ket delay.

Fi ize, on the
arb sche in a setup

Wireless sensor networks have been drawing increased attentio
po ted to last until their energy drains. Therefo

lustering. The approach

[1] I. F. Akyildiz et al., “Wireless sensor networks: a survey”, Co
t al., “Next Century Challenges: Scalable Coordi

[3] G. J. Pottie and W. J. Kaiser, “Wireless integrated network s
– 58, May 2000.

g. 18 depicts the impact of restricting the frame s
itration me. This experiment was conducted

consisting of 3 gateways and 800 sensors. The frame size was
assumed to be 1 second. The arbitration algorithm was able to
successfully include all the trees in the given frame size as
long as the probability of the sensor’s being on was less than
.8. At higher probabilities some of the slots could not be
included in the frame and had to be inserted into the vacant
slots generated by inter-cluster avoidance algorithm. However,
even in the worst-case only 12% of the schedules had to be
modified. At probabilities higher than .95 slots did not fit in to
the frame size even without applying the arbitration scheme.
These results demonstrate that the proposed algorithm is able
to produce efficient schedules across the network, with only a
slight decrease in performance under heavy load condition.

5 Conclusion

dis sable and expec
and has to be managed wisely in order to extend the life of the s
operation of sensor networks can conserve sensor’s energy since
not transmitting and receiving messages.

In this paper we have presented an energy efficient, scalable an
Scalability is achieved through network c
to limit signal interference among the transmission of sensors. T
within the cluster to achieve efficient utilization of the energy reso
sensor’s energy by minimizing the number of transition betwee
sensors are idle. Moreover, the slot assignment mechanism obse
packet drop. In addition, we have proposed an arbitration scheme
that belong to different clusters. The proposed MAC protocol
positive impact on energy consumption and other contemporary n

References

[2] D. Estrin, e
Annual International Conference on Mobile Computing an
1999.

 e With Arbitration Without Arbitration

0
0.5

1
1.5

2
2.5

3
3.5

0.1 0.35 0.6 0.85 1

Probability of a Sensor being in Active State

De
la

y/
P

ac
ke

t(s
ec

)

W/O Arbitration With Arbitration

Fig. 17: Relationship between average delay per packet
and the number of active sensors

0.75

0.8

0.85

0.9

0.95

1

0.1 0.35 0.6 0.85 1

Probability of a Sensor being in Active State

Th
ro

ug
hp

ut

W/O Arbitration With Arbitration

Fig. 16: Average throughput across the network

18
75

80

85

90

95

100

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Probability of a sensor being in active state

Pe
rc

en
ta

ge
 o

f s
en

so
rs

 w
ith

op
tim

um
 s

ch
ed

ul
e

in
 th

e
fr

am

Fig. 18: Impact of the inter-cluster collision avoidance
on the frame size
n in recent years. s are typically
re, energy is a very scarce resource for such sensor systems

 promotes time-based arbitration of medium access in order

mputer Networks, Vol. 38, pp. 393-422, March 2002.
nation in Sensor Networks,” in the Proceedings of the Fifth

gust

ensors,” Communications of the ACM, Vol. 43, No 5, pp. 51

Sensors in such system

ensors for the duration of a particular mission. Time based
it allows sensors to switch to low energy sleep mode while

d collision free MAC layer protocol for sensor networks.

ime slots are optimally assigned to communicating sensors
urces. The presented slot assignment mechanism conserves

n active and sleep modes and the duration in which active
rves the buffering limitation at sensor’s node and prevents
 that prevents collisions among the transmission of sensors

has been validated through simulation and shown to have
etwork performance metrics.

d Networks (MobiCOM '99), Seattle, Washington, Au

[4] K. Sohrabi, et al., "Protocols for self-organization of a wireless sensor network,” IEEE Personal Communications, Vol.
7, No. 5, pp. 16-27, October 2000.
R. Min[5] , et al., "Low Power Wireless Sensor Networks", in the Proceedings of International Conference on VLSI Design,

[6] ., "PicoRadio supports ad hoc ultra low power wireless networking," IEEE Computer, Vol. 33, pp. 42-

[7] ion control scheme for medium access in sensor networks,” in the Proceedings of the

[8] riven Algorithm and Protocol Design for Energy-Efficient Wireless Sensor Networks",

[9] ximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad Hoc Networks,”

[10] the Proceedings of the 19th

[11] aft

[14] lt-Tolerant Clustering of Wireless Sensor Networks,” in the Proceedings of the IEEE Wireless

[15] ireless Sensor Networks,” in the Proceedings of the International

[16] r Networks”, in the Proceedings of

[18] tech-acoustic.com/

Bangalore, India, January 2001.
J.M. Rabaey, et al
48, July 2000.
A. Woo and D. Culler, “A transmiss
7th ACM Mobile Computing and Communication (MobiCom 2001), Rome, Italy, July 2001.
E. Shih, et al., "Physical Layer D
in the Proceedings of the 7th ACM Mobile Computing and Communication (MobiCom 2001), Rome, Italy, July 2001.
C-K. Toh, “Ma
IEEE Communications Magazine, June 2001.
J.-H. Chang, L. Tassiulas, “Energy Conserving Routing in Wireless Ad-hoc Networks”, in
International Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2000), 2000.
C. Röhl, H. Woesner, and A. Wolisz, “A Short Look on Power Saving Mechanisms in the Wireless LAN Standard Dr
IEEE 802.11,” in the Proceedings of the 6th WINLAB Workshop on third generation Wireless Systems, New Brunswick,
New Jersey, March 1997.

[12] S. Singh and C.S. Raghavendra, “PAMAS: Power Aware Multi-Access protocol with Signaling for Ad Hoc Networks”,
ACM Computer Communications Review, July1998.

[13] P. Havinga, G. Smit, “Energy-efficient TDMA medium access control protocol scheduling,” in the Proceedings of the
Asian International Mobile Computing Conference (AMOC 2000), November 2000.
G. Gupta, M. Younis, “Fau
Communication and Networks Conference (WCNC 2003), New Orleans, Louisiana, March 2003.
G. Gupta, M. Younis, “Load-Balanced Clustering in W
Conference on Communication (ICC 2003), Anchorage, Alaska, May 2003.
M. Younis, M. Youssef, K. Arisha, “Energy-Aware Routing in Cluster-Based Senso
the 10th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS2002), Fort Worth, Texas, October 2002.

[17] National Semiconductor Corporation, LMX3162 Evaluation Notes and Datasheet, April 1999.
"Data sheet for the Acoustic Ballistic Module", SenTech Inc., http://www.sen

[20]

[19] V. Bhagwan, et al., “MACAW: A Media Access Protocol for Wireless LANs,” In the Proceedings of SIGCOMM
Conference, pages 212-225, 1994.
 http://grouper.ieee.org/groups/802/11/main.html

[21] Bluetooth. http://www.bluetooth.com
[22] V. Raghunatham, et al., “Energy-Aware Wireless Micro sensor Networks,” IEEE Signal processing magazine, pp. 40-50,

[23] ink Layer for Wireless Microsensor Networks", in the Proceedings of the Workshop
il 2001.

ulation and MAC for Asymmetric Microsensor Systems", in the Proceedings of

[25] emann, D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks” in the Proceedings of

[26] -Based MAC for Sensor Networks,” Proceedings of the IEEE

New Jersey. October 2002.

March 2002.
E. Shih, et al., "Energy-Efficient L
on VLSI 2001 (WVLSI '01), Orlando, Florida, Apr

[24] A. Wang, et al., "Energy-Efficient Mod
ISLPED 2001, Huntington Beach, CA. August 2001.
W. Ye, J. Heid
INFOCOM 2002, New York City, New York, June 2002.
K. Arisha, M. Youssef, M. Younis, “Energy-Aware TDMA
Workshop on Integrated Management of Power Aware Communications, Computing and Networking (IMPACCT
2002), New York City, New York, May 2002.

[27] J. Elson and K. Romer, “Wireless Sensor Networks a new regime of time synchronization” in Proceedings of the First
Workshop on Hot Topics In Networks (HotNets-I), Princeton,

[28] John R. Vig. Introduction to quartz frequency standards. Technical report SLCET-TR-92-1, Army Research Laboratory,
electronics and power sources directorate, October 1992. Available at http://www.ieee-
uffc.org/freqcontrol/quartz/vig/vigtoc.htm.

[29] J.B. Andresen, T.S. Rappaport, and S. Yoshida, “Propagation Measurements and Models for Wireless Communications
Channels,” IEEE Communications Magazine, Vol. 33, No. 1, January 1995.

19

[30] F. Glover “Tabu Search, Part I,” ORSA Journal on Computing 1, pp. 190-206, 1989.
F. Glover “Tabu Search, Part II,” ORSA Journal on Computing 2, pp. 4-32, 1990.
A Dell'Amico, A Trubian, "Applying Tabu

[31]
[32] Search to the Job-shop Scheduling Problem", Journal of Annals of Operation

[33] e Applied Mathematics and Combinatorial

ingle Machine Scheduling Problem",

Research, Vol. 41, 1993
A Hertz, "Finding a Feasible Course Schedule Using Tabu Search", Discret
Operations Research and Computer Science, Vol. 35, 1992.

[34] A M. Laguna, A J. W. Barnes, A F. Glover, "Tabu Search Methodology for a S
Journal of International Manufacturing, Vol. 2, pp. 63-74, 1991.

20

