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Deep learning has become the most mainstream technology in artificial intelligence (AI) because it can be comparable to human
performance in complex tasks. However, in the era of big data, the ever-increasing data volume and model scale makes deep
learning require mighty computing power and acceptable energy costs. For electrical chips, including most deep learning
accelerators, transistor performance limitations make it challenging to meet computing’s energy efficiency requirements. Silicon
photonic devices are expected to replace transistors and become the mainstream components in computing architecture due to
their advantages, such as low energy consumption, large bandwidth, and high speed. Therefore, we propose a silicon photonic-
assisted deep learning accelerator for big data. The accelerator uses microring resonators (MRs) to form a photonic
multiplication array. It combines photonic-specific wavelength division multiplexing (WDM) technology to achieve multiple
parallel calculations of input feature maps and convolution kernels at the speed of light, providing the promise of energy
efficiency and calculation speed improvement. The proposed accelerator achieves at least a 75x improvement in computational
efficiency compared to the traditional electrical design.

1. Introduction

In a modern society driven by big data, artificial intelligence
(AI) has brought great convenience to human life. As an
indispensable part of solving complex problems in the field
of AI, deep learning has been used in many applications,
e.g., image and speech recognition, machine translation,
self-driving, Internet of Things (IoTs), 5th generation (5G)
mobile networks, and edge computing [1–13]. Deep learning
can use effective learning and training methods to discover
the inherent rules in the data model, thus helping machines
to perform advanced reasoning tasks like human beings. In
deep learning, convolutional neural networks (CNNs) are
considered the most representative framework due to its
advantages: the simple structure, few parameters, noticeable
extraction features, and high recognition rate [14, 15]. Due
to the enormous amount of data, the efficient inference of
CNNs has high computing requirements. Therefore, the
development of the hardware inference accelerator, which

can provide strong computing power, is the key to meet the
needs of CNNs.

At present, hardware accelerators that perform CNN
operation mainly include GPUs, ASICs [16], FPGAs [17],
TPU [18], and the emerging near data processing accelerator
ISAAC [19]. However, current accelerators rely on a large
degree of data movement. The energy consumption of elec-
trical wire-based data movement is even greater than the
energy consumed by the computing itself. Due to the widen-
ing gap between abundant data and limited power budget,
these electric-based accelerators’ energy crisis is still unpre-
dictable. Limited by the transmittance rate of the electrical
line, the calculation speed and throughput of these accelera-
tors may not be able to keep up with the increase in power,
resulting in limited throughput per second per watt.

Recently, silicon photonic technology has emerged as a
promising solution to address the issues above [20–25]. Firstly,
a certain transistor-based circuit’s power consumption has a

positive correlation with f 3 (f is the clock frequency). The
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photonic circuit only consumes the power proportional to f ,
so that the photonic circuit can provide ultralow energy con-
sumption [26]. Secondly, light has a very low transmission
delay on a chip, typically 0.14ps for 10 microns, which is 1–
2 orders of magnitude faster than the transistor-based circuit
[27]. Finally, the photonic circuit is insulated and has strong
antielectromagnetic interference performance.

Furthermore, benefitting from the peaceful development
of photonic integration technology and manufacturing plat-
form, various mature active and passive building blocks have
been demonstrated experimentally, such as modulators, pho-
todetectors, splitters, wavelength multiplexers, and filters
[28–31]. Based on these photonic devices, photonic comput-
ing elements such as photonic adders, differentiators, inte-
grators, and multipliers can be realized [32–35]. Once the
photonic devices can be successfully applied to the CNN
accelerator’s design, it is expected to improve energy effi-
ciency in deep learning significantly. In addition, by utilizing
optical multichannel multiplexing technologies, such as
wavelength division multiplexing (WDM) [36–38], we can
easily use the speed of light to achieve massively parallel com-
puting to improve the inference speed of CNNs significantly.

Thus, we propose a silicon photonic-assisted CNN accel-
erator for deep learning. We first use the mature microring
resonators (MRs) as the basic unit to design a photonic
matrix-vector multiplier (PMVM) to perform the most com-
plex convolution operation on CNNs. Then, we introduce an
analytical model to identify the number of MRs used, power
consumption, area, and execution time in each layer of the
CNNs. At last, we introduce our PMVM-based photonic-
assisted CNN accelerator architecture and its workflow. The
simulation results show that our accelerator can increase
the CNN’s inference speed by at least 75 times under the
same energy consumption than the current electricity-based
accelerators.

The rest of the paper is organized as follows. Section 2
briefly discusses the related works. Section 3 discusses the
proposed PMVM and accelerator architectures, followed by
Section 4 presenting the performance evaluation of the sili-
con photonic-assisted accelerator. Section 5 concludes this
paper.

2. Related Work

In this section, we first describe CNNs’ structure and com-
puting process in deep learning. Then, we introduce photonic
devices that might be used. These related works can be used
as the guide for our research on the photonic-assisted accel-
erator design.

2.1. Convolutional Neural Network (CNN) Basics. CNN is
comprised of stacking multiple computation layers for fea-
ture extraction and classification. Compared to the fully
neural networks with simple training but limited scalability,
CNN has very deep convolutional (CONV), pooling
(POOL), and full connection (FC) layers. Therefore, it can
achieve high accuracy [14]. In each CONV layer, the input
maps are transformed into highly abstract representation fea-
ture maps and convolution with the kernel to generate output

feature maps. After nonlinearity and pooling, the output fea-
tures can be used as the input for the next layer. After multi-
CONV and POOL layers, the features are sent to the FC
layers and finally output the classification results. The CONV
layers take more than 90% of the calculation time [39].
Therefore, the design of an optimization accelerator for
CONV layers can significantly improve the entire CNN’s
performance. Figure 1 shows a CONV layer. It has M 3D
convolutional kernels with size S × R × C and N input maps
with sizeW ×H × C.M kernels performM times 3D convo-
lution on the input maps with a sliding stride of S and gener-
ate an E × F ×M output map. In each output map, the value
of the element (m, f , e) can be computed as

O m, f , eð Þ = σ 〠
C−1

c=0

〠
S−1

i=0

〠
R−1

j=0

K m½ � c½ � i½ � j½ � × I c½ � f ∗ S + i½ � e ∗ R + j½ �

 !

,

ð1Þ

where I, K , and O are the input, kernel, and output matrices,
respectively. σð⋅Þ is an activation function, such as ReLU and
sigmoid. The pseudocode to perform this normal convolu-
tion operation is shown in Figure 1. Note that in each layer,
all kernels share the same input data. Therefore, if the accel-
erator can support multiple kernels that simultaneously con-
volve with the same input data, the number of access buffers
is reduced. The cycle time can also be reduced, thereby
increasing the throughput. As shown in the pseudocode,
assuming the input map can be reused by Gm kernels simul-
taneously, the total convolution cycles can be saved by Gm

time. The size of Gm is determined by the accelerator. There-
fore, designing the corresponding accelerator architecture to
maximize this data reuse capability is the paper’s primary
motivation.

2.2. Silicon Photonic Devices. Microelectronic devices are the
basis of the current CNN accelerator. But with the reduction
of feature size, the ability of electronic information process-
ing has approached its limit. Silicon photonic devices offer
an exact route to solve the electrical processing bottleneck
due to its low loss, high speed, low energy consumption,
and compatibility with CMOS platforms. Among the various
silicon photonic devices, MRs are considered the most criti-
cal devices in photonic computing due to their excellent
wavelength selection characteristics, small size, high modula-
tion rate, low energy consumption, and high-quality factors
[40, 41]. Figure 2 shows two commonly used MR structures:
all-pass MR (Figure 2(a)) and 1 × 2 cross-MR (Figure 2(e)).
All-pass MRs include one straight waveguide and one MR,
assuming that the resonant wavelength of the MR is λmr

and the input signal wavelength is λin. When λin = λmr, the
input signal will be wholly coupled into the MR, so that the
signal power output from the through port is zero (transmit-
tance rate is 0). When λin ≠ λmr, the coupling ability between
the input waveguide and the MR will become weak, and
when it is weak enough, the signal will output from the
through port (transmittance rate is 1). When the MR’s reso-
nance wavelength is between λ1 and λ2, the transmittance
rate of the MR will be between 0 and 1.
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Therefore, we can use the resonance effect of MR to
adjust the output power to realize the photonic multiplica-
tion calculation. For instance, as shown in Figure 2(a),
assuming that the input optical signal power is A, the trans-
mittance of the MR is B (0 ≤ B ≤ 1). When the input optical
signal passes through the MR, part of the light (1 − B) will
be coupled to the MR, and the output optical power of the
through port is C = A × B. Usually, by adding a bias voltage
to the MR, the transmittance rate of MR (B) can be changed
under the thermooptic or electrooptic effect. According to
[34], each MR can store more than 16 levels of transmittance
rate (i.e., 4 bits). Therefore, for a 16-bit floating-point calcu-
lation [19], only 4 MRs are needed. Figure 2(e) shows the
structure of 1 × 2 cross-MR, which has the same working
principle as the all-pass MR. The output powers of the
through and drop can be controlled by controlling the
MR’s resonant wavelength, as shown in Figures 2(f)–2(h).
Since the multiplication operation of the above two struc-
tures can be realized in the optical domain, they have a high
processing speed, making them ideal choices for photonic
multiplication units.

3. Silicon Photonic-Assisted CNN Accelerator
Architecture Design

In order to use silicon photonic technology to improve the
calculation rate in deep learning, we first propose a PMVM
based on photonic devices in this section. Then, we create a
photonic-assisted CNN accelerator architecture based on
PMVM.

3.1. Silicon Photonic Matrix-Vector Multiplier.Matrix-vector
multiplication is the most important operation in CNN.
Therefore, in this section, we will use the essential photonic
devices to construct a PMVM and map the input feature
map and kernel weight data to the PMVM to complete the
parallel multiplication operation.

Figure 3 shows the PMVM architecture. It relies on an
all-pass MR-based input matrix and 1 × 2 cross-MR-based
kernel matrix. Current CNNs have tens of kernels in each
layer to convolve the same set of input data. Therefore, in
PMVM, we multiplex the input data to be convolved with
multiple kernels simultaneously, reducing the waste of time
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Figure 1: The logical graph and pseudocode for standard convolution and input map reuse convolution of a CONV layer.
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and energy consumption caused by repeated reading of the
input data. For convenience, if we assume that the size of
each kernel is R × S × C, the number of the kernels is M.
The weight matrix W in PMVM can be composed of an ðR
× S × CÞ ×M MR-based crossbar array. The MR in the array
has different resonance wavelengths to ensure parallel com-

puting. The MR would be on resonance when the wavelength
of the light fits a whole number of times inside the optical
length of the MRs:

λres =
neffL

m
, L = 2πR,m = 1, 2, 3⋯ : ð2Þ
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Here, λres is the resonant wavelength, neff is the effective
refractive index, and R is the radius of the MRs, respectively.
Therefore, in this paper, we use MRs with different radii to
realize the control of different resonance wavelengths.

As shown in Figure 3, the weight value of the coordinate
(i, j, n) in them-th kernel can be represented by the drop port

transmittance rate of the m-column and ððn − 1Þ × S × R +

ði − 1Þ × S + jÞ -row MR in the crossbar array, where 0 < i
< S, 0 < j < R, 0 < n < C, and 0 <m <M. According to
CNN’s characteristics, the state of all MRs in the kernel
matrix remains unchanged during the inference process.
In PMVM, the feature data of the input feature maps are
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mapped to the input matrix in turn. The input matrix com-
prises all-pass MR, and the size is the same as the kernel
matrix. The values of the MR in the input matrix are
updated with the sliding window. As shown in Figure 3,
assuming the stride of the sliding window is 1, the value
of MR with wavelength λ1,1 is b1,1,1 at time t1, and it will

be updated to b1,2,1 at time t2. In this PMVM, the multi-

wavelength optical signals emitted by the lasers are injected
from the input port of the input matrix and output from
the kernel matrix after photonic multiply-accumulate
(MAC) operation. The output power is the sum of all wave-
length signals. As shown in Figure 3, the calculation process
of the PMVM at time t1 is

b1,1,1, b1,2,1,⋯, bR,S,C½ �

×

w1,1,1 kernel 1ð Þ w1,1,1 kernel 2ð Þ ⋯ w1,1,1 kernelMð Þ

w1,2,1 kernel 1ð Þ w1,2,1 kernel 2ð Þ ⋯ w1,2,1 kernelMð Þ

: : : : : : ⋯ : : :

wR,S,C kernel 1ð Þ wR,S,C kernel 2ð Þ ⋯ wR,S,C kernelMð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

= c1,1, c1,2,⋯, c1,M½ �:

ð3Þ

Therefore, the PMVM enables all MAC operations to
finish with high parallelism. According to [39], the number
of multiplexed wavelengths can reach 128. Thus, the com-
putation speed of the PMVM will be 128 × 128 × 10 × 1010 =

1:6384 × 1015 MAC/s when all MRs work at 10Gb/s modula-
tion speed.

3.2. Silicon Photonic-Assisted Accelerator Architecture Design.
Based on the PMVM, we propose a photonic-assisted CNN
accelerator architecture, as shown in Figure 4. The accelera-
tor consists of multilayer CONV layers, pooling layers, and
FC layers, and all layers are processed sequentially. Accord-
ing to different CNN models, the distribution between layers
can be adjusted. The proposed PMVM is deployed in the
CONV layers. The input matrix and kernel matrix values
are read from the off-chip DRAM (the off-chip DRAM data
will be sent to the on-chip buffer first). Once the CNN model
is sufficiently trained, the weight values of kernels in each
layer are determined and programmed into PMVMs by con-

figuring each MR’s transmittance rate in the kernel matrix.
During the whole process, only the value of the input matrix
will be updated. After highly parallel MAC operations, the
output optical signals are converted into the electrical signals
by photodetectors (PDs) and then activated and pooled. This
process can be done very fast because all the photonic-
assisted devices’ operating frequency can reach tens of
GHz, e.g., lasers, MR, and PD. The calculation results are
stored back to the off-chip DRAM for reading and calcula-
tion of the next layer. After multiple layers of convolution,
pooling, and full interconnection operations, the accelerator
will output the final inference results.

4. Simulation Evaluations

In this section, we used a widely adopted deep learning accel-
erator simulator, FODLAM [42], to evaluate the perfor-
mance of our accelerator. FODLAM does total up the
latency and energy for each layer, including the storage and
read/write costs of the intermediate layers. The simulation
of the photonic part of our accelerator structure is performed
using a professional optical simulation platform, i.e., Lumeri-
cal Solutions [43]. The configuration parameters of other
accelerators are obtained from the prior art as referenced.

4.1. Photonic Matrix Multiplication Function Verification.
The photonic vector multiplication results of B ×W with dif-
ferent working frequencies are exhibited in Figure 5. Assum-
ing the matrix size is4 × 4, we perform the simulation using
four CW lasers with different working wavelengths. The
input matrix (B = ½b1 ; b2 ; b3 ; b4�) is modulated by four 27-
1 pseudorandom binary sequence (PRBS) from the pattern
generators. The values in the kernel matrix W are randomly
generated once programmed into the corresponding MR
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Table 1: Execution time for convolution layers of AlexNet (P = 0,
S = 1).

CONV layers Input patch size Kernel size Execution time (μs)

1 55 × 55 11 × 11 337.561

2 27 × 27 5 × 5 19.881

3 13 × 13 3 × 3 1.0368

4 13 × 13 3 × 3 1.0368

5 13 × 13 3 × 3 1.0368
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units with W = ½1, 0, 0:5, 1 ; 0, 1, 1, 1 ; 1, 0:5, 0, 1 ; 0, 1, 1, 0�,
which is fixed throughout the simulation. The simulation out-
put C = ½c1, c2, c3, c4� results from the multiply-accumulate of
W and B.

It can be seen from Figure 5 that when PMVM works at
1.28GHz, the simulation results are almost the same as the
ideal results. Although a particular error will occur as the
operating frequency increases, the designed PMVM can also
maintain good calculation accuracy under the operating fre-
quency of 25GHz.

4.2. Area and Power Consumption Evaluation Models. The
area of PMVM is affected byMRs. According to [44], the area
of each MR unit is 25μm× 25μm with 0.025mW energy
consumption. The size of the kernel determines the number
of MRs used in PMVM. For example, the first CONV layer
of the AlexNet architecture contains 96 kernels, and the size
of each kernel is 11 × 11 × 3. Assuming that a set of input
data completes all convolution operations of this layer within
one cycle, theoretically, the PMVM of this layer needs 69,696
MRs. The area and power of PMVMs in this layer are
43.56mm2 and 1.74W, respectively. Due to the current tech-
nological limitations, it is difficult to integrate so many MRs
on a single chip. Therefore, multiple interconnected chips are
usually used to complete the above functions [19, 39].
Figure 6 shows the number of MRs, occupied area, and power
consumption in each convolutional layer of AlexNet. It can be
seen that the fourth layer of AlexNet has the largest consump-
tion because this layer has the largest convolution kernel.

4.3. Execution Time Evaluation Models. As mentioned in the
previous section, our PMVM can compute convolutions of

multiple kernels in parallel for a single input data within
one cycle. In AlexNet, the length and width of the input
patches are the same. Assuming the size of input patches is
W ×W, the kernel size is K × K , the padding size is P, and
the stride is S. Thus, the number of convolution calculations
for each input patch is

NCalculation =
W − K + 2P

S

� �

+ 1

� �2

: ð4Þ

Thus, the computation time of each input patch is

T =
NCalculation

f PMVM

, ð5Þ

where f PMVM is the operating frequency of the PMVM.
Assuming P = 0 and S = 1, the execution time results for

each layer of AlexNet as shown in Table 1 when the working
frequency of the PMVM is 25GHz.

4.4. Inference Performance. To fully evaluate our accelerator’s
inference performance, the energy-efficient performance is
considered in our simulation, i.e., MAC/s/watt. We com-
pared our accelerator with GPU, FPGA, TPU, and ReRAM-
based CNN accelerator ISAAC. The CNN architecture are
AlexNet, LeNet-5, and ResNet-18, and the database are Ima-
geNet (AlexNet and ResNet-18) and MNIST (LeNet-5). In
the simulation, we use the parameters of the electrical devices
listed in Ref. [19]. The simulation results of MAC/s/watt are
shown in Figure 7. Compared to other electricity-based
accelerators, our accelerator can increase energy efficiency

ISAAC TPU FPGA GPU Our accelerator
Accelerator architectures

108

106

104

102

100

10−2

M
A

C
/s

/w
at

t

AlexNet

LeNet-5

ResNet-18

At least a 75x.
improvement
than ISAAC

Figure 7: The inference performance of different accelerators under different CNN models.
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by at least 75 times because it can use silicon photonics’
advantages to increase computing speed while reducing
energy consumption.

5. Conclusions

This paper proposed a silicon photonic-assisted CNN accel-
erator to maximize the inference performance in deep learn-
ing. It achieved a high inference throughput by exploiting the
high modulation rate MRs and WDM technology. The pro-
posed accelerator achieves at least 75x improvement in
computational efficiency compared to the state-of-the-art
designs. The photoelectric hybrid CNN accelerator needs to
match the operating frequency of the electronic device, which
affects the performance of the photonic device. In the future,
we will explore the all-optical accelerators to maximize accel-
eration performance.
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