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Abstract The growth of energy consumption has

been explosive in current data centers, super comput-

ers, and public cloud systems. This explosion has led

to greater advocacy of green computing, and many

efforts and works focus on the task scheduling in order

to reduce energy dissipation. In order to obtain more

energy reduction as well as maintain the quality of

service by meeting the deadlines, this paper proposes

a DVFS-enabled Energy-efficient Workflow Task

Scheduling algorithm: DEWTS. Through merging the

relatively inefficient processors by reclaiming the

slack time, DEWTS can leverage the useful slack time

recurrently after severs are merged. DEWTS firstly

calculates the initial scheduling order of all tasks,

and obtains the whole makespan and deadline based
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on Heterogeneous-Earliest-Finish-Time (HEFT) algo-

rithm. Through resorting the processors with their

running task number and energy utilization, the under-

utilized processors can be merged by closing the

last node and redistributing the assigned tasks on it.

Finally, in the task slacking phase, the tasks can be

distributed in the idle slots under a lower voltage and

frequency using DVFS technique, without violating

the dependency constraints and increasing the slacked

makespan. Based on the amount of randomly gener-

ated DAGs workflows, the experimental results show

that DEWTS can reduce the total power consumption

by up to 46.5 % for various parallel applications as

well as balance the scheduling performance.

Keywords Cloud computing · DVFS · Energy saving

scheduling · Heterogeneous · Heuristic algorithm

1 Introduction

Large-scale businesses and scientific applications,

which are usually composed of big-data, multitask-

ing, time-variant, and fluctuating workloads [1, 2],

have become the mainstream of current technolo-

gies. For instance, Hadoop has been combined by

Amazon with cloud computing called Amazon EMR,

which provides cloud service for people that allows

users quickly and easily handle large amounts of data.

With the rapid growth of data scale, using the cloud
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computing technology to deal with diverse applica-

tions has become increasingly important. Cloud com-

puting [3], with virtualization [4] as the key enabling

technology, provides an elastic scaling-up and scaling-

down provisioning mechanism. Realization of these

techniques are based on the large scale of cloud data

centers. And the high price of energy consumption has

become a critical issue for these data centers.

During the last few years, the high price of energy

consumption has become a critical issue [5]. One of

the research estimates that a data center with 50,000

computing nodes may use more than one hundred

million kwh/year [6], equivalent to the electricity con-

sumption for a 100,000 population urban in one year.

The energy consumption in data centers will still

increase quickly in the next ten years [7]. On the other

hand, the CPU utilization for severs is comparatively

not high. The work in [8] shows that the average CPU

utilization of more than 5,000 servers during a six-

month period is between 10 and 50 percent of their

maximum utilization levels. These researches illus-

trate the PUE (Power Usage Effectiveness: all energy

use of data center and IT load consumption ratio)

of most datacenters are unsatisfactory. Obviously, the

criterion to evaluate mechanisms for parallel applica-

tions only focus on minimizing the schedule length,

but rarely meeting the growing advocacy for green

computing system. This paper considers that efficient

task scheduling in cloud environment should not only

try to obtain a minimal completion time but also

increase the system resource utilization as well as

reduce the energy consumptions.

Based on the green computing concept, developing

energy-efficient mechanisms for parallel applications

becomes increasingly attractive. The problems of par-

allel application scheduling are NP-hard in the general

case. Most of the static scheduling problems can

be solved by an application represented as Directed

Acyclic Graph (DAG) scheduling, similar to the work

of Braun [9], in which nodes stand for application

tasks and edges represent intertask data dependencies.

Moreover, various other mechanisms for reducing the

energy consumption have been investigated in the ear-

lier works, such as Dynamic Voltage/Frequency Scal-

ing (DVFS) [10] and Dynamic Power Management

(DPM) [11]. DPM turns the idle components off lead-

ing the resources to the hibernate mode to reduce the

power consumption. While it only works when the idle

time is long enough, DVFS has been proven to be a

very promising technique with its demonstrated capa-

bility for energy savings [12–15]. It is based on the

fact that energy consumption in CMOS circuits has a

direct relationship with the square of the supplied volt-

age and frequency [16, 17], a large reduction in power

consumption can be achieved by switching between

processor’s voltages/frequencies during task execution

while guaranteeing some performance. However, most

of these approaches are confronted with the fact that

combining optimum to each sub-problem may ignore

the global optimality for the crucial system perfor-

mance. In addition to DVFS technique, if applications

are not time-critical, we can consider minimizing the

number of used processors by taking advantage of the

idle processor time among the running tasks in par-

allel to increase the resource utilization. In this way,

users may need to tolerate a little delay of execu-

tion for decreasing system energy consumption. Thus,

finding the inefficient processors and turning them off

combining the DVFS technique may be a promising

approach to reducing energy dissipation as well as

guaranteeing the performance.

In this paper, based on meeting the performance-

based service level agreement, we propose a new

energy aware scheduling algorithm named DVFS-

enabled Efficient-energy Workflow Task Scheduling

(DEWTS) to optimize the energy savings through

DVFS technique for parallel applications in the het-

erogeneous distributed computing systems. In this

paper, the effect and performance of DEWTS are esti-

mated through comprehensive experiments, under the

maximum performance conditions, different number

of processors, various extension ratios, different val-

ues of CCR, and different degree of parallelism. And

the evaluating indexes are four performance metrics:

energy consumption ratio (ECR), system resource uti-

lization ratio, average execution time, and energy

saving ratio. The main contributions of this paper are

summarized below.

1. This paper proposes an energy-aware task

scheduling algorithm. Within a given deadline,

this algorithm can distribute the parallel applica-

tions in workflows to appropriate processors, and

deals with them at the appropriate time slots to

reduce energy consumption as well as meeting the

required performance.
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2. Numerical experiments are given to verify that

DEWTS can increase the CPU utilization of pro-

cessors and reduce significant amount of energy

consumption in a wide range of workflow struc-

tures compared with other researches.

3. We analyze the factors which are affecting the

performance of our algorithm.

The remainder of this paper is organized as follows.

We compare our work with related research effort

in Section 2, including several different scheduling

heuristics on heterogeneous systems, power estima-

tion and optimization techniques, and some energy

aware scheduling algorithms. Section 3 describes the

energy models, cloud application, and system used

in this paper. In Section 4, we present the details of

our scheduling algorithm DEWTS, and illustrates a

simple case to explain this algorithm better. The exper-

imental results and evaluation analyses are presented

in Section 5. Finally, Section 6 concludes the whole

paper.

2 Related Works

2.1 Task Scheduling in Heterogeneous Environment

Due to the NP-complete nature of the parallel task

scheduling problem in general cases [18, 19], many

heuristics have been proposed in recent researches

[15] to deal with this problem, and most of them

achieve good performance in polynomial time. Static

task-scheduling algorithms can be classified into two

main groups (see Fig. 1), heuristic-based and guided

random-search-based algorithms.

In the previous works, the heuristic-based algo-

rithms can be classified into a variety of categories,

such as list scheduling algorithms, clustering heuris-

tics, and duplication-based algorithms. Among them,

the list scheduling algorithms are generally more prac-

tical, and their performances are better at a lower

time complexity. A list scheduling algorithm main-

tains a list of all tasks of a given graph according

to their priorities. It has two typical phases: task pri-

ority phase for selecting the highest-priority ready

task, and processor selection phase for deciding suit-

able processors to minimize the predefined cost func-

tion (which can be the execution start time). Some

notable achievements are obtained in recent years

[20–23]. Among these algorithms, Heterogeneous-

Earliest-Finish-Time (HEFT) algorithm [21] is a well-

known heuristic list-scheduling which has an O(e ×

q) time complexity for e edges and q processors.

It has two major processes: task prioritization and

processor selection with insertion-based scheduling

policies.

Clustering heuristics are researched to select the

tasks among which there are relatively large traffic

into a group in distributed environment [33]. In these

algorithms, the tasks in same group will be distributed

to the same processor to decrease the inner communi-

cations among the computing nodes. A typical cluster-

ing heuristics algorithm is DSC (Dominant Sequence

Clustering) [24], whose basic idea is to put critical

path scheduling tasks to the same processor, and start

them at the earliest time. Analogously, for decreasing

Fig. 1 Classification of

Static task-scheduling

algorithms

Guided Random Search BasedHeuristic Based

List Scheduling Algorithms 

Duplication-based Algorithms

Clustering Heuristics 

Static Task-Scheduling Algorithms 
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the overall makespan, duplication-based algorithms

are proposed to replicate the forerunners using the idle

slots in processors, which can reduce the interprocess

communication distinctly. HLD (Heterogenous Lim-

ited Duplication) [25] is a typical duplication-based

algorithm, which provides a way to make appropriate

choices in heterogeneous environments when copying

the predecessor tasks.

2.2 Energy-Saving Optimization

In recent yeas, much attention has focused on energy

aware scheduling for single processor[26], homoge-

neous system [27, 28], and heterogeneous resources

[15, 17, 29, 30]. Many efficient techniques have been

researched for reducing the energy consumption, such

as DVFS mentioned in Section 1, based on which,

there have been a significant amount of task schedul-

ing works. In DAG scheduling model, each task has

an earliest start time (EST) and an earliest finish

time (EFT) respectively. For specific tasks, the range

between EST and EFT usually larger than the actual

execution time, and we call the difference between

them as slack time. For the running process of a sys-

tem, amount of slack time are usually produced while

waiting the output of predecessor tasks, or execut-

ing a task with earlier completion before its deadline.

Slack time reclamation technique is adopted in much

of recent researches. Kim et al. [14] proposed a power

aware scheduling algorithm of bag-of-tasks applica-

tions with deadline constraints on DVFS-enabled clus-

ter systems. In [31], for reclaiming the slack time slots

to save energy, Kimura et al. provided a slacking algo-

rithm for adjusting the frequency of CPU dynamically

to extended the task execution time.

Lee et al. [22] presented two energy-conscious

scheduling (ECS and ECS + idle) heuristics which

took account into the balance between makespan and

energy consumption for parallel tasks in heteroge-

neous distributed computing systems. In [17], Huang

et al. designed a way to lower the frequency of non-

critical tasks for parallel applications in heterogeneous

distributed computing systems, and reassigned the

tasks to appropriate time slots to low power consump-

tion, named Enhanced Energy-efficient Scheduling

(EES) algorithm. The goals of these above works

are to minimize the energy consumption of the tasks

while still meeting the performance based on the

determined service level agreement (SLA). Neverthe-

less, this approach may not perform well in dealing

with communication intensive applications, and most

of them do not lead to global optima with energy

consumption and time cost.

Except for the above works, most other researches

only focus on either lessening the completion time

or reducing the energy consumption. The objectives

of most existing scheduling algorithms are to shorten

the schedule length without caring about the energy

consumption. Different from the researches afore-

mentioned, our scheduling algorithm aims at reduc-

ing the energy consumption by decreasing the number

of inefficiently processors. Meanwhile, through com-

bining DVFS technique with list-based task schedul-

ing polices, this algorithm can retain the quality

of service by meeting the deadlines given by the

providers.

3 Models

3.1 System Model

In this work, we assume that the target system consists

of a set heterogeneous processors: P = {pi}, each

one is connected in a fully interconnected topology.

We presume that the set of task graphs is N = {ni}.

We also presume that computation can be overlapped

with communication, which means data can be trans-

mitted from one processor to another while a task is

being executed on the recipient processor. Each pro-

cessor pj ∈ P is DVFS enabled which means that it

can be operated at different voltage levels and clock

frequencies. For each processor pj ∈ P , we define

the supply voltage sequence set as V = {vs}, and the

clock frequency set as F = {fs}. While the supply

voltage operates at level v1, the clock frequency will

operate in level f1. Since the machine still consumes

energy while under the idle state, it will stay at its low-

est voltage state vlowest for maximum energy saving.

In this paper, we will ignore the overheads of the fre-

quency transitions for they take a negligible amount of

time (e.g., 10us-150us [15]).
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3.2 Cloud Application Model

Generally, parallel workflow applications can be rep-

resented by a directed acyclic graph (DAG) as shown

in Fig. 2. The task graph G = (N, E) consists of a

set of vertices N and a set of edges E, where N is

the set of n tasks partitioned from an application, and

E is the set of edges between the tasks which repre-

sents the precedence constraints. Each edge(i, j) ∈ E

between task ni and nj also represents inter-task com-

munication. Namely, task nj can not start until task ni

has transmitted its output.

A task without predecessors is called an entry task

nentry (such as n0 in Fig. 2a), and a task without suc-

cessors is called an exit task nexit (such as n5 in Fig.

2a). If there are more than one entry tasks (such as n0,

n1, n2 in Fig. 2b), more than one exit tasks (such as n3,

n5 in Fig. 2b), then it needs to introduce a virtual entry

task (such as n00 in Fig. 2c) or a virtual exit task (such

as n6 in Fig. 2c), which will connect multiple entrance

tasks or exit tasks. This process makes the DAG graph

has one and only one entrance or exit task. The virtual

entry (exit) task is a zero-cost node which is connected

to all the real tasks with zero-cost edges, that does not

affect the tasks schedule.

The weight on a task ni labeled as wj represents the

computation cost. In a heterogeneous computing envi-

ronment, the computing time may be different even

on the same processor due to various jobs. If a task ni

runs on the processor pj , we denote its computation

cost as wi,j . In this way, the average executioncost of

a task ni on all available processors is defined as (1):

wi =

∑p

j=1 wi,j

p
(1)

We denote the weight on an edge as ci,j , which

represents the communication cost between task ni

and nj . When both tasks ni and nj are allocated

to the same processor, ci,j becomes zero for we

assume that the intra-processor communication cost

can be ignored. The data transfer rates between pro-

cessors are stored in matrix B with size p × p. The

communication costs of processors are given in a p-

dimensional vector S. In addition, task executions of

a given application are assumed to be non-preemptive

which is possible in many systems. And datai,j rep-

resents the data size transferred from task ni to nj .

The communication cost between task ni (scheduled

on pm) and nj (scheduled on pk) is defined as (2):

ci,j = Sm +
datai,j

Bm,k

(2)

Before scheduling, average communication costs

are used to label the edges. The average communi-

cation cost between task ni and nj is defined as (3):

ci,j = S +
datai,j

B
(3)

where B is the average transfer rate among the pro-

cessors, S is the average time cost of communication

Fig. 2 A simple task graph
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startup. Tasks are ordered in our algorithm by their

scheduling priorities which are based on upward rank-

ing [21]. The upward rank of a task ni is recursively

defined as (4):

ranku(ni) = wi + maxnj⊂succ(ni)

(

ci,j + ranku(nj )
)

(4)

Without loss of generality, we use EST (ni , pj )

and EFT (ni , pj ) to denote the earliest start time

and the earliest finish time of task ni which been

scheduled on processor pj respectively. For the

entry task nentry , the EST can be calculated as

(5):

EST (nentry, pj ) = 0 (5)

For the other tasks in the graph, starting from the

entry task, the EST and EFT values can be calcula-

ted as (6) and (7):

EST (ni , pj ) =

{

0, if ni = nentry

max
{

avil[pj ], maxnm⊂pred(ni)

(

AFT (nm) + cm,i

)}

, otherwise
(6)

EFT (ni , pj ) = EST (ni , pj ) + wi,j (7)

where avil[pj ] is the earliest finish time of the last

assigned task nk of processor pj . pred(ni) is the

immediate predecessors set of task ni , pred(ni) =

{∀j |∃(j → i), i ∈ N, j ∈ N}. And AFT (nm)

represents the actual finish time of task(nm).

max
{

avil[pj ], maxnm⊂pred(ni)

(

AFT (nm) + cm,i

)}

returns the time when all data needed by ni has

arrived at processor pj . AST (nm) presents the

actual start time of task(nm). If nm = nentry , the

AST (nm) = EST (nm) = EST (nentry) = 0,

then we can get AFT (nm) by calculating

AFT (nm) = AST (nm) + tm recursively.

After all tasks in a graph are scheduled, the sched-

ule length will be the actual finish time of the exit task

nexit . We call the longest path of the scheduled task

graph as the critical path (CP) and the finish time of

the latest task as the schedule length or makespan. If

there are more than one exit tasks, the makespan MS

of the latest task can be defined as (8):

MS = max {AFT (nexit )} (8)

3.3 Energy Model

The power consumption of CMOS logic circuits

for an application are composed of dynamic and

static energy consumption: Edynamic and Estat ic.

Because the most expensive and time-consuming

part is the dynamic power dissipation [11], static

energyconsumptions are ignored in this paper.

Dynamic power dissipation Pdynamic can be defined

as (9):

Pdynamic = K × v2
j,s × fs (9)

where K is a constant parameter related to dynamic

power, depending on the capacities of devices. vj,s

denotes the supplied voltage at level s on the processor

pj , and fs denotes the frequency with the matching

vj,s . Based on this, the total energy consumption when

machines working can be defined as (10):

Ebusy=

n
∑

i=1

K×v2
i,pj,s

×fpj,s×ti,j=

n
∑

i=1

Pdynamic,i×ti,j

(10)

where ti,j is the execution time of task ni on proces-

sor pj , and v(i,pj,s) represents that task ni is scheduled

on the processor pj under voltage s. Moreover, fpj,s

denotes the frequency of processor pj with voltage

level s. For the supplied voltages and frequencies can-

not be adjusted to zero during the idle periods of

processors, the voltage has to be at the lowest state

vlowest to save the most energy, the energy consump-

tion of idle periods for all available processors can be

defined as (11):

Eidle=

p
∑

j=1

k×v2
jlowest

×fjlowest ×tjidle=

p
∑

j=1

pjidle ×tjidle

(11)
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where vjlowest and fjlowest are the voltage and fre-

quency of the processor pj under the lowest voltage

respectively, and tjidle denotes the idle time of pj .

Based on the above formulations, total energy con-

sumption of a DAG application can be defined as (12):

Etotal = Ebusy + Eidle (12)

4 Efficient Energy Scheduling Algorithm

As the overall scheduling processes in DEWTS, Algo-

rithm 1 aims at minimizing the schedule length and

energy consumption as much as possible. DEWTS

has three major phases: initial task mapping phase,

processors merging phase, and task drawing phase.

To reduce the number of processors being used, the

appropriate time slots are firstly picked out to place

the tasks which come from other low-utilized pro-

cessors. And then the ready tasks can be scheduled

on DVFS-enabled processors to reduce energy con-

sumption whenever the tasks have slack time. In this

section, each phase is illustrated and analyzed in

detail.

Initial Task Mapping Phase This phase requires to

obtain the priorities of all tasks in descending order

according to ranku through traversing a DAG upward

by starting from the exit task to the entry task. Some

researches call it b-level sorting [15]. In this process,

we firstly just need sorting one time for we just need

to get a simple scheduling order without violating the

dependency constraints among tasks. And then, the

well-known heuristic list-scheduling algorithm HEFT

is used to calculate the initial makespan MS of the lat-

est task on the list. Finally, based on MS, meanwhile

according to a user given extension ratio α, α ≥ 0,

we can calculate the overall allowed time D of the all

tasks according to (13):

D = MS × (1 + α) (13)

Our objective is to reduce energy consumption as

much as possible in accomplishing all the tasks under

the condition of maintaining deadline D. Algorithm

2 shows the implementation details of calculating the

initial makespan MS.

Processors Merging Phase As shown in Algorithm 3,

we firstly calculate the number of assigned tasks for

each turn-on processors, and then sort the processors

in descending order according to {p1, p2, . . . , pn}

based on rankm. If rankm values of two different pro-

cessors are equal, the processors with smaller energy

utilization(peu) should be placed behind. The calcula-

tive process peu of corresponding processors is shown

as (14):

pjeu =

(

∑rankm(pj )

i=1 wi,j

)

×pjmax

(

∑rankm(pj )

i=1 wi,j

)

×pjmax +

(

MS −
∑rankm(pj )

i=1 wi,j

)

×pjidle

(14)
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where pjmax denotes the maximum power dissipa-

tion of processor j , and pjidle denotes the power

dissipation when processor j is idle.

Algorithm 3 Processors_Merging

Input:

A DAG: G N E ;

A set of DVFS-enabled processors: P;

The b-level;

The MS and D obtained from Algorithm2.

Output:

Get the optimized turn-on processors list.

1: Set MS

MS

= MS;//record the initial scheduling

length as  length asMS  ;
2: // Merge the processors until the scheduling length

     larger than the deadline;

3: //initialize sequence;

4: for each i 1 n do

5: Do ranki 0;

6: end for

7: while MS D do

8: Calculate the number of tasks each turn-on

          processor has been assigned, denoted as rank ;

9: for each j 1 n do

10: for each i 1 n do

11: if task ni is scheduled on processor j then

12: Do tp_ j wi j ;

13: rank j++;

14: end if

15: end for

16: end for

17: For tie-breaking rankm , caculate the energy

utilization of corresponding processor p jeu as:

p jeu

tp_ j p jmax

tp_ j p jmax MS tp_ j p jidle

;

18: Assumes that the processor’s rankm is lower

when peu is smaller;

19: Sort the processors in

descending order of rankm;

20: Set k as the number of the processors which have

            been assigned tasks;

21: Run tasks list on processors based

on HEFT algorithm and gain the new value of MS;  

22: // The unused processors can be shutdown only

            if the scheduling length is not longer than the deadline;

23: if MS D then

24: Turn off the processor pk from P;

25:

26:

27:

28: MS = MS;// Save the scheduling length in MS

temporarily;

29: Mark the DAG as unexecuted;

30: end if

31: end while

//Obtain the effective processors set as P ;

32: return P .

p = k ;//There new number of available processors

is k;

This algorithm will repeat scheduling the tasks on the

first k − 1 processors until the total scheduling length

is larger than D, where k is the number of processors

with initial arrangement tasks on the first phase. After

completing a circuit, if the scheduling length is still

no larger than D, shutdown the processor which has

not been assigned jobs, and the value k minus 1. After

these steps, we can store the last scheduling results as

our final processors selection, and mark the surviving

processors as a set of P ′. When finishing this step,

for dealing with a group of given tasks in a workflow,

the relatively efficient processors can be reserved to

reduce the waste of energy consumption.

Time Slacking Phase In this phase, the idle time slots

can be slacked and reassigned using DVFS technique

without violating precedence constrains. As shown in

Algorithm 4, for a specific task, the latest allowable

finish time LFT should be calculated as (15):

LFT (ni)=

{

D, ifni = nexit

minnj ∈succ(ni )

(

LFT (nj ) − tj − ci,j

)

, otherwise

(15)

where succ(ni) = {∀j |∃(j → i), i ∈ N, j ∈ N}

formalizes the direct successor node of task ni , which

tj denotes its execution time. The allowable slack time

of task ni can be calculated as (16):

Slack(ni) = LFT (ni) − EST (ni) − ti (16)

The next is to lower and optimize the clock fre-

quency of task ni . Similarly to the EES algorithm [17],

we first choice the job ni with the largest LFT . If

Slack(ni) > 0, compare the EST of task ni with

the LFT of the previous task on the same proces-

sor. If LFT (ni) > EST (nx), it shows that there are

overlaps of the slack times between these two tasks,

repeat this step forward until finding a task nm which

has no slack overlapping time slots with subsequent

task nm−1. Equation (17) calculates the total execution

time from task ni to nm on processor pj :

Trun = ti + tx + · · · + tm (17)

And (18) calculates the total idle time on processor pj

from ni to nm:

Ttotal = AFT (ni) − EST (nm) (18)

Then, the ideal smallest operating frequency f ′
ni ,pj

for

task ni can be calculated by (19):

f ′
ni ,pj

= fpj ,0 × max

(

ti

ti + Slack(ni)
,

Trun

Ttotal

)

(19)
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Through the comparing between f ′
ni ,pj

and the set

of voltage/frequency levels of processor pj , we can

pick out the nearest value fpj,s as the actual oper-

ating frequency of task ni , fpj,s ≥ f ′
ni ,pj

. Then

we can set the actual operating frequency to fni ,pj ,

fni ,pj = fpj,s , and update task ni’s execution time to

t ′i according to (20):

t ′i =
ti × fpj,0

fni ,pj

(20)

Through the above processes, execution time slot

of task ni on processor pj can be changed on the

range of [LFT (ni) − t ′i , LFT (ni)]. In this way, after

completing scaling the frequencies, we can calculate

the specific scheduled time of task ni , and update the

LFT for both task nx and its predecessor which exe-

cuting just before ni on pj , if it exists. The same

process is repeated until all tasks are optimized.

Comparing to EES [17], our algorithm ignores the

step of distributing the slack time between the origi-

nal makespan and the deadline to each task evenly, it

only shifts time slots in the scaling slack time. This

is because after the processors merging phase, the

makespan MS ′ is near upon the deadline D, may even

equal to D. On the other hand, the ideal frequency

f ′
ni ,pj

may not precisely equal to the presetting volt-

age/frequency levels, so we should pick out the nearest

fpj ,s to replace f ′
ni,pj

without violating the initial

condition: fpj,l ≥ f ′
ni ,pj

.

In DEWTS algorithm, while holding the overall

performance of the task scheduler in the deadline

given by the user, the total energy consumptions of

the system are also reduced. The main idea is to opti-

mize the number of processors used firstly, reassigned

tasks on the light load processors to others, achieve

the goal of reducing the number of running proces-

sors. To take advantage of residual idle slot between

tasks on processors, we further use DVFS technology

to reduce voltage and clock frequency of processors,

and effectively extend the task execution time. The

ultimate goal is to reduce the processors energy costs.

The following is an example to verify the advantage

of DEWTS Algorithm over HEFT, DVFS and EES.

A Simple Example To illustrate that decreasing the

number of processors in conjunction with DVFS tech-

nology can improve resource utilization, and reduce

total energy consumption of systems more effectively,

an simple example is provided to verify the feasibility

of DEWTS. To simplify the description, the example

assumes that there are five isomorphic processors with

DVFS function. The five processors can run in the

following voltage levels {1.2v, 1.1v, 1.0v, 0.9v, 0.8v,

0.7v} within the frequency levels {1.0Ghz, 0.8Ghz,

0.6Ghz, 0.5Ghz, 0.4Ghz, 0.3Ghz}.

Firstly, we sort the tasks through b-level sorting.

For the sample DAG of Fig. 3, Table 1 shows the

computation costs of the ten tasks on processors. For

Fig. 3 A simple task graph with 10 tasks.
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Table 1 The tasks list in the DAG of Fig. 3

Task 0 1 2 3 4

ti 8 16 10 12 10

Task 5 6 7 8 9

ti 6 7 6 12 5

simplicity, we suppose that all these five processors

have no difference with their performance. That is to

say the same task have the same execution time on all

of the processors.

Table 2 Task priorities in the DAG of Fig. 3

ni 0 1 2 3 4

b-level 97 62 73 43 58

ni 5 6 7 8 9

b-level 62 58 31 33 5

Table 2 gives the upward ranks calculated by using

(4) for the given DAG. By comparing the values, we

can get the order of the tasks is: {n0, n2, n1, n5, n4, n6,

n3, n8, n7, n9}.

Fig. 4 An example of DEWTS compared with EES and HEFT
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As an illustration, Fig. 4a shows the initial sched-

ules obtained by the HEFT algorithm for the DAG in

Fig. 3, and Fig. 4b presents the results without proces-

sor merging using EES algorithm. Through Algorithm

Processors Merging, we can decide which proces-

sors can be turned off. Figure 4c shows the process

and result of processor merging. In this example, the

processor p3 and p2 are turned off in turn not only

without violating precedence constrains but also with-

out increasing the schedule length. And the tasks 4 and

6 in p2 and p3 are all scheduled to the processor p4.

As shown in Fig. 4d, these task executing time are all

slacked under lower voltages to decrease the energy

consumption. It is the final scheduling result obtained

by DEWTS algorithm. For simpleness and easy anal-

ysis, in this example, we assume that there are five

homogeneous processors and α = 0, in other words,

the deadline D equals to MS.

According to Fig. 4a, we can see the MS with

HEFT algorithm is 80, we also can easily calculate

that the busy time is 92, the idle period is 308, so the

utilization ratio of CPU is only 23 %, and the Etotal is

177.756 which consists of 132.48 dynamic and 45.276

idle energy consumption. Likewise, the utilization

ratioes of CPU with EES and DEWTS are 34.875 %

and 54.875 % respectively, meanwhile the energy

saving ratioes are 22.6 % and 29.5 % respectively.

This example demonstrates that we can benefit from

combining processor merging technique with DVFS

technique to reduce processor energy consumption

more efficiently while still meeting the performance

requirement.

5 Experiments and Analysis

In this section, to evaluate the performance of our pro-

posed approaches, we present the comparative evalua-

tion of DEWTS with two heuristics algorithms: HEFT

[15] and EES [17]. HEFT is a well-known algorithm

without considering energy cost, yet proven perform-

ing well for task scheduling. EES is an enhanced

energy-efficient scheduling based on DVFS tech-

nique, which can be used to decrease the frequencies

of non-critical jobs in a global manner, and reas-

sign the tasks to appropriate time slots to get low

power consumption. With HEFT and EES are as the

benchmarks in this paper, we choose CloudSim sim-

ulator as our experiment platform. CloudSim is a

widely used framework for modeling. It can be used

to simulate the cloud computing infrastructures and

services, which can offer a repeatable and control-

lable experimental environment, as well as do not

need to pay much attention to the hardware details

[32].

The experiment comparisons of the algorithm are

based on the following four performance metrics:

Energy Consumption Ratio (ECR) In this paper, the

main performance measure of the algorithms is ECR.

ECR refers to the ratio of the total energy consumed

by the task execution DAG and consumption of tasks

executing in the fastest finished processor on the criti-

cal path. For a specific task, the ECR can be calculated

based on (21):

ECR =
Etotal

K ×
∑

ni∈CP minpj ∈P {wi,j } × maxvj,k∈Vj {vj,k}
2 × maxfj,k∈Fj {fj,k}

(21)

System Resource Utilization Ratio The system

resource utilization ratio is the percentage of used

resources compared with total resources. This metric

is the basic feature that we need to considered in this

paper as it can direct reflect the resource utilization

efficiency of an algorithm.

Average Execution Time The execution time of an

algorithm is its running time for obtaining the output

schedule of a given task graph. Among all the three

algorithms, the one who get the minimization average

execution time is the one most practical implementa-

tion.

Energy Saving Ratio In this paper, the total energy

consumption can be measured during the whole

period, which involves the task execution time and

the idle periods. Energy saving ratio means the energy
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saved of all the algorithms compared with Ebase. In

order to facilitate comparison, we use the energy con-

sumption of HEFT schedule as the base line Ebase,

which adjusts the frequency to the lowest level when

the processor is in idle. The performances of all the

algorithms are measured in terms of the normalized

total consumption.

5.1 Experimental Settings

Four groups of DVFS-enabled heterogeneous proces-

sors are simulated for our studies. Table 3 shows their

voltage/frequency pairs and types of chosen proces-

sors.

In this experiment, we take the randomly gener-

ated DAG graphes as the tasks set for our experiments.

The simulation parameters [21] depending on several

characteristics are given as below.

– The number of random DAG tasks: {20, 40, 80,

160, 320, 400}.

– The set of parallelism factor β: {0.2, 0.5, 1.0, 2.0,

5.0}. A high β will lead to a DAG with shorter

length but high parallelism.

– The communication to computation ratio (CCR)

set: {0.1, 0.5, 1.0, 2.0, 5.0}. if CCR value is

very low, it can be considered as a computation-

intensive application, otherwise, it can be consid-

ered as communication-intensive application.

– The set of processors available to use is from 2 to

32, incrementing by the power of 2.

– The extension ratio α in our experiments ranges

from 0 to 180 %.

To avoid biasing toward a particular algorithm,

we assign several input parameters, and choose each

parameter from a wide set to generate diverse DAGs

with various characteristics. The experimental results

are the average of the values obtained from 600 differ-

ent graphs for each set of the above parameters.

5.2 Results and Analysis

This paper designs five experiments to provide the

performance comparisons in different number of pro-

cessors, various extension ratio, different CCR, and

different degree of parallelism. The following experi-

ments provide a detailed analysis for each group.

5.2.1 Estimate in the Maximum Performance

Conditions

In the first set of experiments, to evaluate the method

that combines the merging processors with the DVFS

technique can perform better than the HEFT while

considering energy consumption, we just set the

extension ratio α = 0 (see Fig. 5), namely without

extending the schedule length, and other parameters

are randomly selected. For each number of tasks,

we iterate the experiment for 25 times, and the final

results are averaged. The number of processors in this

experiment is 32, and there are 8 processors for each

type.

Figure 5a shows the average resource utilization for

all algorithms. Obviously, we can observe that both

EES and DEWTS can increase the system utiliza-

tion on different levels, but DEWTS performs more

Table 3 The voltage/frequency pairs

Level AMD Athlon-64 Intel Pentium M AMD Opteron 2218 AMD Turion MT-34

Voltage Frequency Voltage Frequency Voltage Frequency Voltage Frequency

(V) (GHz) (V) (GHz) (V) (GHz) (V) (GHz)

0 1.5 2.0 1.484 1.4 1.30 2.6 1.20 1.8

1 1.4 1.8 1.463 1.2 1.25 2.4 1.15 1.6

2 1.3 1.6 1.308 1.0 1.20 2.2 1.10 1.4

3 1.2 1.4 1.180 0.8 1.15 2.0 1.05 1.2

4 1.1 1.2 0.956 0.6 1.10 1.8 1.00 1.0

5 1.0 1.0 1.05 1.0 0.90 0.8

6 0.9 0.8
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(a) Average resource utilization. (b) Average ECR.

(c) Average running time. (d) The energy saving ratio.

Fig. 5 Evaluation of random DAG without extension schedule length

competitively. The max utilization ratio even reaches

to 80 %.

The average ECR is given in Fig. 5b. As we know

from the definition of ECR, the lower ECR and the

better scheduling algorithm. Figure 5b demonstrates

that DEWTS has more advantages in energy saving

visually, and the proportional reduction of ECR val-

ues in DEWTS is much more steadily than that in EES

because of EES just considering the DVFS mecha-

nism. From Fig. 5b, we can reach a conclusion that

both DEWTS and EES perform better in large scale of

workloads.

Figure 5c depicts the three algorithms for the aver-

age execution time of the task sets. The average exe-

cution time is calculated from the total execution time

divided by the number of tasks. With the increasing

number of tasks, the average execution time of three

basic scheduling algorithms all tended to decrease.

This is because with the increase number of the tasks,

the scale of the random pattern DAG is also increased.

It can be seen from the HEFT curve that the average

execution time for a single task tends to be more sta-

ble, and gradually achieve a balance. And the average

time of EES and DEWTS algorithms are significantly

higher than HEFT, because the first two algorithms

aim at saving energy, and both of them have vary-

ing degrees of task execution time stretching. Because

DEWTS algorithm completes the processor number

optimization before using DVFS technique to reduce

the generation of luxury consumption, the average task

execution time of DEWTS algorithm is lower than

EES. Actually, EES only focuses on the energy con-

sumption optimization, and it relatively ignores the

impacts of some other conditions on performance.

Figure 5d gives the energy saving ratio for the other

two algorithms compared with HEFT algorithm. From

the results we can know that DEWTS algorithm saves

more energy than EES as compared with EES, for

DEWTS holds the step of processors merging. While

increasing the number of tasks, the performance of
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DEWTS becomes much more better, and the highest

energy saving ratio nearly reaches up to 47.5 %. But

once the number of tasks exceeds a threshold value,

the energy saving ratio of these two algorithms will

decrease and become equal finally. On average, the

DEWTS can achieve higher energy saving ratio than

EES up to 7 % from our experimental results.

From the above four figures, we can draw such

conclusion: at the highest performance conditions,

DEWTS and EES algorithm have shown a good

energy saving effect when working set is relatively

on a large scale, the energy optimization efficiency of

DEWTS is slightly more obvious.

5.2.2 Estimate in Different Number of Processors

For the efficiency comparison, the number of proces-

sors used in our experiments varied from 2 to 32,

incrementing by the power of 2. In this application the

number of tasks is fixed, as large-scale task is more

meaningful and typical than small-scale task in a dis-

tributed system, so we set the size of task as 400. Other

parameters are the same as in the above experiments.

Figure 6a shows the data of average resource uti-

lization in different number of processors for the three

algorithms. The trend of data reveals that the change

of processors number has less effect on HEFT, as

this algorithm only focuses on reducing the schedul-

ing time. With the increase number of processors,

the running time decreases but more resources are

wasted because some processors remain empty wait-

ing, it leads to a degree of wastage. EES and DEWTS

perform much better than HEFT, because they all

have the step of task slacking by using DVFS tech-

nique. By comparing all the performances of the three

algorithms, DEWTS has the highest resource utiliza-

tion. With the increasing of processors number, this

advantage becomes more obvious (the biggest gap is

0.25 compared with HEFT) as the processors merging

played a crucial role.

Comparisons of average ECR under different pro-

cessors are given in Fig. 6b. From this figure we

know that when processor number is 2, all of the

three algorithms meet their lowest ECR. Based on our

experiments, their lowest average ECR values are 6.5,

6.17 and 6.1. These values are increased slowly when

the number of processors is less than 8 as the total con-

sumptions of energy increased not so fast, compared

with the situation when the number of processors is

larger than this value. But value of ECR in our algo-

rithm increased much slower than others as the energy

consumption is much lower.

Comparisons of average running time are given

in Fig. 6c. Obviously, with the increasing of proces-

sor numbers, the average running time will decrease.

When the number of processors is 8, we meet the first

and the last turning point. The executing time of all the

three algorithms tend to be stabilized with the increas-

ing of processors number. The average executing time

of both EES and DEWTS are higher than HEFT,

because EES and DEWTS all aim at saving energy,

and both of them have different degrees of stretch-

ing the execution time of a single task. Comparing

these two algorithms, EES only focuses on reducing

energy consumption, but DEWTS finishes processor

number optimization before using DVFS technique.

Hence, the average task execution time of DEWTS is

naturally lower than EES.

Figure 6d shows the energy saving ratio of EES and

DEWTS comparing to HEFT algorithm. Although the

resource utilizations of all the three algorithms are rel-

atively high, DEWTS seems the best algorithm. From

the results, we can conclude that the energy saving

ratio is small when the number of processors is less

than 8. With continuously increasing the number of

processors, the energy saving ratio is obviously higher.

From the figure we know that the highest saving ratio

of the two algorithms are up to 48 % and 62 %.

By analysing all the four experiment results, it can

be concluded that increasing the number of proces-

sors can cut down the running time, which will bring

the waste of resources. Therefore, in practice we can-

not blindly increase the number of processors. In this

experiment case, 8 processors is the best choice.

5.2.3 Estimate in Various Extension Ratios

In this experiment, we compare the performance with

respect to various extension ratios. Because in a dis-

tributed system environment, large-scale task is more

meaningful, so in this set of experiments we select

400 tasks with 48 available processors, namely 12

processors for each type. Other parameter values are

randomly selected from the set of parameters.

Figure 7a shows the resource utilization of the

three algorithms under different extension ratios. This

figure depicts that both EES and DEWTS can increase

the resource utilization on different levels but HEFT
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(a) Average resource utilization. (b) Average ECR.

(c) Average running time. (d) The energy saving ratio.

Fig. 6 Evaluation of random DAG with different number of processors

doesn’t. The change of extension ratio has no effect on

the performance of HEFT, for HEFT algorithm itself

only focuses on how to deal with the tasks within

their earliest finish time. For increasing deadline will

not affect the HEFT scheduling policies, the value

remains unchanged. In contrast, the extension ratio

makes more effect on both EES and DEWTS. For

EES, the value of resource utilization increases from

53 % to 70 % while α increases from 15 % to 90 %.

In addition, the resource utilization will be decreased

with the further increasing of α, because the slacking

time reaches to its finite value. For DEWTS, the criti-

cal value of α is 135 %, this value comes later because

of processors merging. The resource utilization value

of DEWTS varied from 54 % to 83 %, increased much

rapidly than EES. So we can conclude that for both

EES and DEWTS, with the appropriate sacrifice of

the whole tasks makespan, the resource utilization will

improve greatly.

From the results shown in Fig. 7b, we can see that

the extension ratio has no effect on the ECR value of

HEFT. The reasons are explained in the previous para-

graph. In contrast, the extension ratio has more effect

on both EES and DEWTS, the ECRs decrease rapidly

when α is in the range of [15 %, 60 %]. And the

decrease ratio of DEWTS is faster than EES, because

DEWTS has merged some processors before scaled

the frequency. We can also see that the ECR of EES

achieves its smallest value when α equals to 90 %, but

135 % to DEWTS. That is to say the idle slots have

been reclaimed more sufficiently.

To evaluate the efficiency comprehensively, we

consider the average execution time for each task as

a comparison metric as well, see in Fig. 7c. The aver-

age running times for EES and DEWTS keep raising

rapidly along with the scale of α, but the ratio is much

lower, and the average execution time is approach-

ing to the HEFT. Based on these results, we can say
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(a) Average resource utilization. (b) Average ECR.

(c) Average running time. (d) The energy saving ratio.

Fig. 7 Evaluation of random DAG with different extension schedule length

that EES sacrifices too much performance to meet

the energy consumption. And DEWTS has a better

trade-off value between the performance and reducing

energy dissipation.

At last of this set of experiments, we turn our atten-

tion to study the relationship between energy saving

ratio and various extension ratio. From Fig. 7d, we

know that both EES and DEWTS perform better in

energy saving, but the advantage of DEWTS is much

more obvious as we can see from the figure, and its

energy saving ratio increases more rapidly than EES.

Figure 7d shows another information that if α out-

strips a threshold (e.g., 90 % for EES and 135 %

for DEWTS), the energy saving ratio starts decreasing

after reaching the critical value, because the abili-

ties of both processors merging and the slacking time

are limited. As a periodically conclusion, DEWTS

outperforms EES in terms of extending the schedule

length.

From this group of experiments, we come to the

conclusion that changing extension ratio has no effect

on the performance of HEFT, but it does have a big

effect on both EES and DEWTS. The performance

of four features would be sequential improved with

the increasing of α, until α outstrips a threshold (e.g.,

90 % for EES and 135 % for DEWTS). Due to

the features of the DAG model and the slack room

for workloads are always finite, there exist an upper

bound in reducing the power consumption.

5.2.4 Estimate in Different Values of CCR

Like many previous researches, this paper also take

consideration of the evaluation for CCR. This group

of experiments are designed to investigate the impacts

that the attributes and structure of DAG graph itself

have on the three algorithms: EES, HEFT, and

DEWTS. In order to avoid the effect of other factors
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on EES and DEWTS, we set the value of the extension

ratio as 100 %. The reason for this choice is because

when the α = 1.0, the ECR of EES and DEWTS are

close to the minimum. Without loss of generality in

distributed environment, in this set of experiments, we

select 400 tasks with 48 available processors, namely

12 processors for each type. Other parameter values

are randomly selected from the set of parameters.

The results of testing the average resource utiliza-

tion under different CCR are given in Fig. 8a. Based

on the observations from the figures, we can find

that DEWTS is able to achieve quite considerably

resource utilization while meeting the deadline. When

the value of CCR is 2, DEWTS reaches its highest

resource utilization of 80 %, which is a quite consid-

erable value compared with EES (equal 60 % when

CCR is 0.5) and HEFT (equal 58 % when CCR is 0.5).

According to the results, it can be speculated that both

EES and HEFT can be considered as computation-

intensive applications because when CCR is low they

can get their highest resource utilizations. Meanwhile,

DEWTS can deal with both computation-intensive

applications and communication-intensive applica-

tions.

Figure 8b shows the effects of different CCR on

the ECR of these three algorithms. This figure shows

that when CCR is 0.5, both HEFT and EES meet their

lowest ECR: 6.9 and 4.1 respectively. Meanwhile,

DEWTS gets its lowest ECR (equal to 4.01) when the

value of CCR is 2. Compared with HEFT, both EES

and DEWTS perform much better. But compared with

EES, the value of CCR has smaller impact on the ECR

of DEWTS, for the fluctuation 0.5 is much less than

1.12. This phenomenon demonstrates that both HEFT

and EES are suited to computation intensive appli-

cations better than communication intensive parallel

(a) Average resource utilization. (b) Average ECR.

(c) Average running time. (d) The energy saving ratio.

Fig. 8 Estimate in Different CCR
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applications. And DEWTS can deal with both types of

applications better than EES.

The average executing time is given in Fig. 8c. As

HEFT has been proven to perform very competitively

with a low time complexity, and extension ratio has no

effect on it, so it is the best algorithm among the three

as far as the average running time is concerned. As

from the two above experiments results analysis, CCR

has an unignored impact on those three algorithms.

The average task execution time of DEWTS is lower

than EES, that is because DEWTS decreases the num-

ber of processors before using DVFS technique, which

brings the energy consumptions shorten.

Figure 8d describes the saving ratioes of EES and

DEWTS under different CCR compared with HEFT.

The results presented show that, when CCR is 0.5, the

EES comes to its best saving ratio. Based on our exper-

iments, the average saving ratio can reach up to 44 %.

We can find out that DEWTS comes to the best scene

when CCR is equal to 2, and the energy saving ratio

is up to 46.5 %. In contrast, when CCR is equal to 2,

EES can reduce 37 % of energy dissipation. And when

CCR is equal to 0.5, the best saving ratio can be up to

44 %.

Combined with all the four experiments, we can

conclude that both EES and HEFT can be appropri-

ate for computation-intensive applications. And when

CCR is low, they can get their best performances.

As the advantages, DEWTS can deal with both

computation-intensive and communication-intensive

applications compared to EES and HEFT.

5.2.5 Estimate in Different Degree of Parallelism

In the last experiment, for verifying the varieties of

distributed system, the effects of the different degree

of parallelism β are considered. And we only test the

effect does the degree of parallelism has on resource

utilization and energy saving ratio. To balance both

EES and DEWTS, we use two CCR values (0.5 and

2.0) in this experiment, as the effects of the degree

of parallelism have on ECR and average running time

are similar to CCR. In order to avoid the effect of

other factors on EES and DEWTS, we set the value

of the extension ratio as 100 %. In this group of

experiments, we select 400 tasks with 48 available

processors, namely 12 processors for each type. Other

parameter values are randomly selected from the set

of parameters.

From Fig. 9, we can notice that although there is

little impact on energy consumption by parallelism

factors, DEWTS can achieve more energy saving ratio

when β equals to 5 and CCR = 2, because in these

conditions, there are more effective idle phases when

DEWTS leverages resource utilization by merging the

number of processors. Therefore, it can achieve higher

resource utilization and saves more power consump-

tion.

With DEWTS, the number of running processors

are less than the compared algorithms without violat-

ing the dependency constraints. Meanwhile, the task

executing time are slacked under the lower processor

voltages to decrease the energy consumption. Based

parallelism factor -β

(a) Average resource utilization.
parallelism factor -β

(b) Average ECR.

Fig. 9 Estimate in Different parallelism factor

Author's personal copy



An Energy-Efficient Task Scheduling Algorithm in DVFS-enabled Cloud

on all these experiments, with different types of DAG

task set, DEWTS can meet the deadline given by the

user constraints, not only maintains the good perfor-

mance, but also reduce the idle cost and extravagant

energy consumption.

There are 4-8 Voltage Identification (VID) pins for

each central processing unit, the basic principle for

CPU to adjust the voltage is to change the voltage on

VID pins. It can generate a group of VID identification

signal by changing the voltage of these identification

feet. We can use voltage regulation model to realize

this operating. In current processor productions, CPUs

like Intel XScale and AMD Duron all support a set

of voltage levels, such as AMD Mobile K6, its volt-

age range is from 0.9V to 2.0V, and the voltage of

Intel PXA250 can be also adjusted in the range 0.85V

- 1.3V. Based on these above processors, a DVFS-

enabled private cloud environment can be established

through an open source VM management platform

CloudStack. This cloud platform can be deployed on

a cluster consists of physical servers using the above

DVFS-enabled processors.

6 Conclusion and Future Works

Energy consumption reducing in cloud centers is crit-

ical for green computing. This paper provides an

energy-saving scheduler DEWTS based on dynamic

voltage/frequency scaling algorithm. DEWTS is

applicable to the scheduling system of most data cen-

ters consist of DVFS-enabled processors. Comparing

to previous works, the tasks can be distributed in the

idle slots under a lower voltage and frequency, without

violating the dependency constraints and increasing

the slacked makespan. This algorithm can be applied

to various parallel applications on heterogeneous envi-

ronment. It can obtain significant energy reduction as

well as maintaining the quality of service by meeting

the pre-set deadlines.

In future work, the system reliability will be con-

sidered. Some detail settings would be taken into

account to fit the experiments to the real environment.

For instance, the communication overhead, the volt-

age/frequency switching overhead and other uncertain

parameters in the actual presence of a heteroge-

neous environment will be considered in the further

researches.
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