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We propose a new algorithm for multivalued discrete tomography, that reconstructs images from few projections
by approximating the minimum of a suitably constructed energy function with a deterministic optimization
method. We also compare the proposed algorithm to other reconstruction techniques on software phantom
images, in order to prove its applicability.
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1 Introduction

Tomography deals with the reconstruction of objects
from a given set of their projections. This is usually
done by exposing the object to some electromagnetic
or particle radiation, and measuring the loss of the en-
ergy as the beams pass through it. With this informa-
tion one can derive the integrals of attenuation coef-
ficients along the path of the beams, and obtain the
inner structure of the object.

There are several suitable algorithms for tomogra-
phy, which can provide satisfactory reconstructions of
arbitrary objects, when a sufficiently high amount of
information (which usually means hundreds of pro-
jections) is available (12).

In discrete tomography (DT) (10; 11), one assumes
that the object to be reconstructed consists of only
a few different materials with known attenuation co-
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efficients. Binary tomography – as a special case of
DT – makes the additional restriction that the recon-
structed volume contains only two materials. With
such prior information, the reconstruction can be per-
formed even from a few projections. DT can be par-
ticularly useful, e.g., in non-destructive testing (6),
where the goal is to gain some information of the inte-
rior of – usually homogeneous – objects without dam-
aging them.

There is a wide range of algorithms for binary and
non-binary (called multivalued) discrete tomography.
For example, the DART, Discrete Algebraic Recon-
struction Technique (4) is capable of producing highly
accurate reconstructions by thresholding a continuous
reconstruction and then adjusting the object bound-
aries. Also, there are reconstruction algorithms based
on minimizing an energy function by deterministic
(13; 15; 16; 18) or randomized (1; 2; 8; 14) optimiza-
tion strategies.

In this paper we propose a deterministic reconstruc-
tion method for multivalued discrete tomography, that
solves the problem by minimizing a suitably con-
structed energy function. The basic idea behind our
new method was provided by the algorithm given in
(15), that is a highly accurate binary reconstruction al-
gorithm based on D.C. programming – a method for
minimizing the difference of convex functions.

Unfortunately, the DC algorithm is restricted to the
reconstruction of binary images. Our goal is to pro-
vide a valuable extension, that is suited for the general
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case of multivalued DT. Although other simple exten-
sions of the DC algorithm also exist (see, e.g., (13;
16; 18)), we propose significant modifications of the
original method, to supply an algorithm that is fully
adjusted to multivalued DT. We introduce a new en-
ergy function for modeling the possible values of the
reconstruction, and we also define a new process that
can perform a fast approximate optimization of the
energy function.

The paper is structured as follows. In Section 2
we give a brief description of the theoretical back-
ground of discrete tomography. Then, in Section 3 we
describe the proposed method, and in Section 4 we
provide experimental results. Finally, in Section 5 we
summarize the results.

2 Discrete Tomography

For a simple formalism we present our reconstruction
algorithm in the case of two-dimensional tomogra-
phy, but the method can easily be extended to higher
dimensions, too. The model we use assumes that a
single slice of the reconstructed object is represented
by an n× n size digital image. Moreover, we assume
parallel beam projection geometry, i.e., a projection
is given by projection values corresponding to paral-
lel projection rays, where each value is given by the
integral of the image on a straight line.

With the above considerations the discrete recon-
struction problem can be represented by a system of
equations

Ax = b, A ∈ R
m×n2

, x ∈ Ln2

, b ∈ R
m , (1)

where

• x is the vector of all n2 unknown image pixels,

• m is the total number of projection lines used,

• b is the vector of all m measured projection val-
ues,

• A describes the projection geometry with all aij
elements giving the length of the line segment of
the i-th projection line through the j-th pixel,

• and L = {l0, l1, . . . , lc} is the set of the possible
intensities (assuming that l0 < l1 < . . . < lc).

An illustration of the applied projection geometry can
be seen in Fig. 1.

Note that – as a special case – with L = {0,1} we
arrive to the well-known model of binary tomography.

With the above formulation the reconstruction is
equivalent to the task of solving the equation system
given in (1). Unfortunately, beside the problems aris-
ing from the fact that we search a discrete-valued so-
lution, the system of (1) is usually extremely huge,
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Figure 1: Representation of the parallel beam geome-
try on a discrete image.

and often underdetermined (owing to the low number
of projections) or inconsistent (due to measurement
errors). Various techniques have been suggested to
overcome these problems, but all of them are heuris-
tic methods. Efficient exact reconstruction algorithms
exist only for some special classes of (mostly binary)
images (see, e.g., (5; 7)).

3 The Proposed Method

Since, even in the binary case, the discrete reconstruc-
tion problem is NP-hard if the number of projections
is more than two (9), our aim is to provide an approx-
imate solution of the reconstruction task. The algo-
rithm we propose performs the discrete reconstruction
by minimizing a suitably constructed energy function.

3.1 The Energy Function

The energy function consists of two terms. Using the
notation of Sect. 2 it can be given as

Eµ(x) := f(x) + µ · g(x) , x ∈ [l0, lc]
n2

. (2)

In more detail, the first function

f(x) =
1

2
· ‖Ax− b‖22 +

α

2
· xTSx (3)

is a formulation of the continuous reconstruction
problem, where S is a matrix such that

xTSx =
n2

∑

i=1

∑

j∈N4(i)

(xi − xj)
2 (4)

and N4(i) is the set of pixel indexes 4-connected to
the i-th pixel.

Informally, f(x) consists of an ‖Ax− b‖22 projec-
tion correctness (or data fidelity) term, and an xTSx
smoothness prior, that is lower if the reconstructed
image is smooth, and thus it forces the results to con-
tain larger homogeneous regions.

The second, µ · g(x), term of (2) is a formulation of
the discreteness, which propagates solutions contain-
ing values only from the L predefined set of intensi-
ties. Here, µ ≥ 0 is a constant weight that can be used
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Figure 2: Example of the gp(z) one-variable dis-
cretization function with intensity values L =
{0,0.25,0.5,1}.

to balance between the two separate parts of the en-
ergy function, and g(x) is constructed to take its min-

imal values at discrete solutions (i.e., when x ∈ Ln2

)
and higher positive values otherwise. The g(x) dis-
cretizing function is given in the form

g(x) =
n2

∑

i=1

gp(xi) , i ∈ {1,2, . . . , n2} , (5)

where gp is a one-variable function composed of a set
of forth-grade polynomial functions defined over the
intervals of L in the way

gp(z) =







[(z−lj−1)·(z−lj)]
2

2·(lj−lj−1)2
, if z ∈ [lj−1, lj ] for

each j ∈ {1, . . . , c},
undefined, otherwise.

An illustration of a gp function can be seen in Fig. 2.
Informally, this discretization function assigns a small
value to each pixel if the pixel value in the reconstruc-
tion is close to an element of L, and higher values (in-
creasing with the distance) otherwise. There are sev-
eral other possible functions which could be used for
such purposes (see, e.g., (13; 16; 18)). We have de-
cided to construct this novel one, since it is easy to
handle and can be efficiently computed.

3.2 The Optimization Process

The process of the optimization in our proposed
method is based on breaking the energy function (2)
into two parts, and prioritizing between them. The
first part is given by the f(x) defined in (3), i.e.,
two terms responsible for projection correctness and
smoothness. The other part is provided by the µ · g(x)
discretization term.

In the beginning, the reconstruction algorithm as-
sumes that the first two terms in the energy function
prioritizes the discretization term. Therefore, the pro-
cess will first focus on finding a continuous recon-
struction, and neglect the discretization term. After-
wards, when a good approximation of the continuous

reconstruction is found, the weight of the discretiza-
tion term will be increased, thus the optimization pro-
cess is steered towards a discrete solution.

The description of the algorithm uses the following
notations.

• A, b, x and n are as defined in Sect. 2,

• ∇gp(xi) denotes the derivate of the discretization
term applied for the i-th xi pixel of the recon-
structed image,

∇gp(z) =
(z − lj−1)(z − lj)(2 · z − lj−1 − lj)

(lj − lj−1)2
,

if z ∈ [lj−1, lj ] ,
(6)

• G0,σ(z) is an unnormalized Gaussian function
with 0 mean and σ deviance, that is

G0,σ(z) = e−( z2

2·σ2
) , (7)

• α≥ 0, µ≥ 0, and σ ≥ 0 are predefined constants
controlling in the energy function, respectively,
the weight of the smoothness term, the weight of
the discretization term, and the deviance of the
Gaussian function applying the adaptive weight-
ing of the discretization,

• λ is an upper bound of the largest eigenvalue of
the matrix (ATA+α ·S), that is used for reasons
described in (15).

For obtaining the result, the optimization method
uses an adaptive and automatic pixel-based weighting
of the discretization term. The detailed description of
the algorithm is given in Algorithm 1.

The optimization process makes a connection be-
tween the two parts of the energy function (i.e., the
formulation of the continuous reconstruction prob-
lem, and the discretization term), and assumes that
the first part has a higher priority (as our first con-
sideration is to find a reconstruction that satisfies the
projections, but we would also like to get a discrete
result if possible).

With this, the algorithm is based on optimizing the
energy function with a simple projected subgradient
method, while applying an automatic weighting be-
tween the two terms of the energy function. In each
iteration step of the optimization process, one can cal-
culate the gradient of the ‖Ax− b‖22 projection cor-
rectness term in the energy function by computing
the AT (Ax− b) vector. For each pixel, this vector ex-
plicitly contains an estimation of correctness of the
pixel in the current solution according to the projec-
tions (the higher this value is the more responsible the
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Algorithm 1 Energy-Minimization Algorithm for
Multivalued DT
Input: A projection matrix, b expected projection
values, x0 initial solution, α,µ,σ ≥ 0 predefined con-
stants, and L list of expected intensities.

1: λ← an upper bound for the largest eigenvalue of
the (ATA + α · S) matrix.

2: k← 0
3: repeat
4: v← AT (Axk − b).
5: w← Sxk.
6: for each i ∈ {1,2, . . . , n2} do

7: yk+1
i ← xk

i −
vi+α·wi+µ·G0,σ(vi)·∇gp(xk

i )

λ+µ

8: xk+1
i ←







l0, if yk+1
i < l0,

yk+1
i , if l0 ≤ yk+1

i ≤ lc,
lc, if lc < yk+1

i .
9: end for

10: k← k+ 1
11: until a stopping criterion is met.
12: Apply a discretization of xk to gain fully discrete

results.

pixel is for causing incorrect projections). If we ap-
ply a Gaussian function on these values we can get a
weight, that is smaller when the corresponding pixel
needs further adjustments, and higher if the projec-
tion rays connected to that specific pixel are more
or less satisfied. By weighting the discretization with
this value calculated from the gradient of the projec-
tion correctness, one can apply an automatic adjust-
ment of the discretizing term for each pixel, omitting
it when the projections are not satisfied, and slowly
increasing its effect as the pixel values get closer to
an acceptable reconstruction.

In practice this means that the method starts with an
arbitrary initial solution, and first approximates a con-
tinuous reconstruction based on the given set of pro-
jections. Later, as the projections of the solution get
closer to the described vectors, the automatic weight-
ing of the discretizing term begins to increase for each
pixel. Thus the pixels will be slowly steered towards
discrete values of L.

It is possible that the process will get stuck in a lo-
cal minimum of the energy function. In this case the
process will stop in a semi-continuous solution, where
some pixels are properly discretized, and the rest of
them are left continuous, since the projection correct-
ness did not allow a full discretization. The µ and σ
parameters, are used to control the maximal strength
of the discretizing term, and the speed at which the
discretizing term gets strengthened during the pro-
cess, respectively.

Finally, after the optimization process we complete
the discretization by simply thresholding the pixel
values, to gain a fully discrete reconstruction result.

a) b) c)

Figure 3: Some of the software phantoms used for
testing. a) a binary image; b) a multivalued image
from (4); c) the well-known Shepp-Logan head phan-
tom (see, e.g., page 53 of (12)).

The final thresholding of the result can be performed
with values chosen half-way between neighboring in-
tensity levels as

xi =







l0, if xk
i < (l0 + l1)/2,

lj, if (lj−1 + lj)/2 ≤ xk
i < (lj + lj+1)/2,

lc, if (lc−1 + lc)/2 ≤ xk
i ,

(8)
where xk is the result of the iterative optimization pro-
cess of Alg. 1, j ∈ {1, . . . , c − 1}, and i takes each
element of the set {1, . . . , n2} as a value.

4 Experimental Results

We conducted experiments to compare our method to
other published algorithms. On one hand, on binary
images, we compared our new method to the DC algo-
rithm, to see how the original, and our new approach
performs related to each other. Unfortunately, due to
the limitations of the DC algorithm (as it is not suited
for multivalued tomography), we could only do this
comparison for binary images. Also, we ran tests with
the recently published DART (4) in order to compare
the reconstruction of multivalued images.

We performed the evaluations, by using a set of
phantom images (all having a size of 256 by 256 pix-
els). Three of these phantoms can be seen in Fig. 3.
The reconstructions were performed from projection
sets containing 2 to 18 projections, distributed equian-
gularly on the half circle, assuming that the projection
with 0◦ angle corresponds to vertical rays. The angle
sets describing the projection directions for a p pro-
jection number can be given as

S(p) = {i ·
180◦

p
| i = 0, . . . , p− 1} . (9)

As mentioned above, we used a parallel beam pro-
jection geometry, where projection values were given
by line integrals on the image. The distances between
neighboring projection lines were set to be one unit
(the width of one pixel on the image), the rotation cen-
ter of the projections was located in the center of the
image half way between two projection lines, and in
each projection the rays covered the whole image.
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In our tests, the parameters of the DART and DC
algorithms were mostly set from the literature, with
slight adjustments to get the best performance of all
the methods in our tests. The parameters of the DC
algorithm were set as given in (17) except that the
strength of the smoothness term was α = 2.5. In
DART, we used 10 iterations of the Simultaneous It-
erative Reconstruction Technique (see, e.g., (12)) for
performing the continuous reconstructions, applied
the same smoothing kernel as described in (3), and
terminated the algorithm when the thresholded image
did not change in the last 10 DART iterations or the
number of iterations reached a limit of 500.

For the parameters of the proposed method, we
used the values α = 2.5, µ = 20, σ = 1, and in the
x0 initial solution all the x0

i positions were set to the
same value in the middle of the range of possible in-
tensities (i.e., x0

i = (lc− l0)/2, for all i ∈ {1, ..., n2}).
The iteration was stopped when the difference be-
tween the solutions of the k-th and (k + 1)-th itera-
tion steps computed as ‖xk+1− xk‖2 became less then
0.001 or the number of iterations reached a limit of
5000. Although, the convergence of the optimization
process is not yet proven, we found the algorithm to
be convergent in all our tests with these parameter set-
tings.

We implemented the algorithms in C++ with GPU
acceleration using the NVIDIA CUDA C sdk. The
computation was performed on a PC, with an Intel
Q9500 CPU, and an NVIDIA Geforce GTS250 GPU.

After reconstructing the results using all three algo-
rithms, we compared them visually, and by using the
error measurement

Err =
D(x,x∗)

O(x∗)
· 100% , (10)

where D(x,x∗) is the number of misclassified pixels
on the result, and O(x∗) is the number of non-zero
pixels on the original phantom.

In addition, we also measured the computation
times of the algorithms in each case. A summary of
the numerical results can be seen in Table 4, while
Fig. 4 and Fig. 5 give some examples of the recon-
structed results of binary and multivalued images.

Based on the results we can deduce the following.
In case of using very few projections (i.e., 2-3 pro-
jections for simple images like the phantoms of fig-
ures 3a-b, and up to 5-6 projections for more complex
ones like Figure 3c), there was obviously not enough
information for the reconstruction algorithms to give
accurate solutions. Usually DART produced the best
results, but this seems to be irrelevant since the recon-
struction error is unacceptably high.

DC, DART, Prop. meth.,
5 proj. 5 proj. 5 proj

DC, DART, Prop. meth.,
6 proj. 6 proj. 6 proj

Figure 4: Reconstructions of a binary phantom (Fig-
ure 3a), produced by the three compared algorithms,
from projection sets containing different numbers of
projections.

DART Prop. meth.

Fig. 3b,
6 proj.

Fig. 3b,
9 proj.

Fig. 3c,
15 proj.

Fig. 3c,
18 proj.

Figure 5: Sample of reconstructions of multivalued
phantoms of Figure 3b-c, produced by the DART
and our proposed algorithm, from different number
of projections.
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Table 1: Reconstruction errors and computation times
of the compared algorithms, reconstructing the phan-
toms of Figure 3. The error measurement is computed
by (10), and the computational time is given in sec-
onds. Reconstructions of the DC algorithm could only
be performed on binary test images. In each row, the
best result is highlighted in bold.

Figure 3a
DC DART Proposed method

P. Num. Error Time Error Time Error Time
2 90.7% 12.1 s 85.6 % 6.6 s 107.4% 10.1 s
3 22.0% 12.4 s 52.9% 5.4 s 30.8% 11.2 s
4 1.2% 13.6 s 44.9% 8.0 s 22.4% 11.8 s
5 0.3% 12.5 s 29.9% 9.5 s 7.9% 12.7 s
6 0.2% 8.1 s 0.2% 2.7 s 0.8% 7.6 s
9 0.2% 6.5 s 0.0% 0.8 s 0.3% 4.6 s
12 0.0% 7.2 s 0.0% 0.9 s 0.1% 4.8 s
15 0.0% 8.7 s 0.0% 1.2 s 0.1% 5.8 s
18 0.0% 8.7 s 0.0% 0.9 s 0.1% 5.8 s

Figure 3b
DC DART Prop. meth.

P. Num. Error Time Error Time Error Time
2 - - 62.9% 6.7 s 52.7% 10.4 s
3 - - 45.1% 8.0 s 41.9% 11.4 s
4 - - 43.4% 8.6 s 35.4% 12.2 s
5 - - 36.4% 9.4 s 26.4% 13.2 s
6 - - 27.0% 10.2 s 11.6% 13.8 s
9 - - 0.7% 4.5 s 1.9% 15.6 s
12 - - 0.4% 14.9 s 1.0% 11.6 s
15 - - 0.3% 2.3 s 0.8% 11.6 s
18 - - 0.1% 21.3 s 0.6% 10.9 s

Figure 3c
DC DART Prop. meth.

P. Num. Error Time Error Time Error Time
2 - - 84.4% 6.7 s 85.7% 9.3 s
3 - - 77.3% 8.2 s 82.5% 6.0 s
4 - - 75.3% 8.8 s 81.0% 8.0 s
5 - - 73.3% 9.7 s 74.2% 10.2 s
6 - - 74.1% 10.2 s 70.0% 12.7 s
9 - - 57.0% 12.6 s 46.8% 14.7 s
12 - - 33.9% 14.5 s 24.8% 11.4 s
15 - - 22.0% 18.0 s 16.3% 8.6 s
18 - - 15.7% 20.8 s 14.0% 8.0 s

a) b) c)

Figure 6: Continuous results of the proposed recon-
struction algorithm, without the final thresholding.
(The images a), b) and c) were reconstructed from 5,
6, and 15 projections, respectively.)

Starting to increase the number of projections, the
amount of information in the data was also increasing
and the results provided by the algorithms began to
improve as well. The optimization based algorithms
(DC and the proposed method) showed a faster im-
provement with the increasing of the projection num-
bers, therefore after a certain number of projections
they started to give better results than the DART. Usu-
ally, the advantage of the optimization-based meth-
ods caused a sudden drop in the reconstruction error,
when the algorithms started to give more accurate re-
sults. Thus, we can deduce that these two algorithms
can ensure more or less accurate reconstructions from
fewer projections than the DART.

Later, when we had even more projections with
more than sufficient information for an accurate re-
construction, again the DART provided the best re-
constructions, by producing slightly better results
than the other two methods.

When comparing the energy minimization based
methods, we can observe that on binary images the
DC algorithm works better than our proposed method.
This might be due to the form of the discretization
term in the energy function. The DC algorithm is spe-
cialized for binary tomography, and aims a full bina-
rization in the optimization process. The drawback is
that the original DC algorithm is not capable of per-
forming multivalued tomography at all.

On the other hand, our algorithm needs a different
approach for having the generality to be able to re-
construct multivalued images, and it only makes an
approximate discretization. This means that in a later
state of the energy minimization process – without
the final thresholding – we get a semi-discrete, semi-
continuous result. This intermediate result is pro-
duced by taking into account that we are looking for
a discrete solution, but still contains some uncertainty
of the values (some of the examples of such results
can be seen in Fig. 6). This kind of soft discretization
is necessary for the multivalued reconstruction in our
method, but it reduces the accuracy of the algorithm
on binary images.

Finally, regarding the computational time of the al-
gorithms, we found that depending on the conditions
of the reconstruction and the image processed, one or
another algorithm gave results faster than the other
ones. Still, in general the time requirements showed
to be similar.

In summary, the performance of the algorithms
were similar on our dataset. All three methods can
yield highly accurate reconstructions. Nevertheless,
we found that the energy minimization-based meth-
ods gave slightly better results when the reconstruc-
tions were performed from a low number of projec-
tions, but the results of DART were better with more
projections. This diversity makes all the algorithms
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valuable, and in a practical application, we would ad-
vise to choose from them based on the conditions of
the reconstruction.

5 Conclusion and Further Work

In this paper we proposed a new algorithm for multi-
valued discrete tomography, that is based on the min-
imization of a suitably constructed energy function.
We compared our method to two existing reconstruc-
tion algorithms by performing experimental tests on
a set of software phantoms. Our results show that the
proposed method performs better than the other ones
under certain conditions, thus it should be considered
a useful alternative for discrete tomography recon-
struction.

Also, neglecting the final thresholding step of our
algorithm, one can gain reconstruction results which
– in some way – might describe the uncertainty in the
reconstruction. We think that this property is worth to
be investigated in more detail.

In our future work we intend to improve the algo-
rithm by modifying the minimized energy function,
and to study the applicability of the technique in dif-
ferent practical fields of discrete tomography. Also,
we will make efforts to prove the convergence of the
method.
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