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A b s t r a c t  An analytical model is presented for the optimal 
design of linearly elastic continuum structures. To facilitate the 
expression of the combined analysis and design problem in gen- 
era] form, a basis is introduced covering a general set of energy 
invariants. Both internal (strain) energy and the expression of gen- 

eralized cost are represented conveniently in terms of this basis, 
and as a result the optimality conditions for the design problem 
have a particularly simple form. Present developments comprise 

a reinterpretation and an extension of existing models where the 
design variable is the material modulus tensor, and where "cost" 
is represented in a general form. The conventional potential en- 
ergy statement for linear continuum elastostatics is restated in the 

form of an isoperimetric problem, as a preliminary step. This in- 
terpretation of the mechanics is then incorporated in a max-min 
formulation applicable for the general design of linear continuum 
structures. To exemplify its application, the model is interpreted 
as it would apply for certain materials with particular geomet- 

ric structure, e.g. crystalline forms. Also problems treated earlier 

where optimal material properties are predicted for the case where 
unit cost is proportional to the trace of the modulus tensor are 
identified as examples within the generalized formulation. The 
application of a recently developed technique to predict optimal 
black-white structures, i.e. designs having sharp topological fea- 

tures, is considered in the setting of the present generalized model. 

1 I n t r o d u c t i o n  

The developments reported in this paper lie in the area of 

formulations for structural optimization where optimal ma- 

terial properties may be predicted at once along with other 

attributes of design such as material distribution, shape, and 

layout or topology. For the linearly elastic continuum struc- 

ture, the model for this design problem stated in its primitive 

form has the unrestricted modulus tensor appear in the role 

of "design variable". In past treatments of the problem, the 

constraint on total resource or cost is expressed in explicit, 

assumed form, i.e. a form where the argument in the con- 

straint is designated as one or another among specific invari- 

ant measures associated with the materiM modulus tensor. In 

the present formulation this earlier model is extended by hav- 

ing the global cost constraint represented in a general form. 

The expression for generalized cost is constructed in a way 

to accommodate all possible nonnegative, invariant measures 

of the material that are linear in the modulus tensor. Intro- 

ducti0n of an energy basis in the analytical modelling leads 

to a particularly simple form for the statement of the contin- 

uum structural design problem, and for the expression of the 

associated governing equations. Both the fundamental elas- 

tostatics analysis problem and its extension to predict the 

optimal continuum structure are expressed in terms of the 

basis in the process. An interpretation is given to identify 

earlier models as examples imbedded within the generalized 

cost formulation. Other applications to solve for black/white 

or "topology" design, and for the prediction of optimal con- 

t inua within restrictions on local attributes of the material 

tensor, are described as well. 

A treatment for the optimal design of the material mod- 

ulus tensor field was presented first by Bendsee e~ al. (1994); 

the paper includes a statement of the problem formulation, 

its analytical interpretation, and computational results for an 

example problem. The design problem treated in that paper 

and in subsequent elaborations to this approach for the de- 

sign of optimal continuum structures (see e.g. Bendsee et al. 

1995, 1996) is the basic (and ' overworked!) problem having 

the objective to minimize compliance. The approach to de- 

sign optimization having pointwise material properties as the 

design variables is notably distinct from the more familiar, 

precedent characterizations, where the models make use of a 

homogenization interpretation (or an approximation thereof) 

for a locally two-phase composite representation of structural 

material. The survey article by Rozvany et al. (1995), and the 

proceedings edited by Bendsee and Mota Soares (1993) are 

cited as useful recent publications where activity in the latter 

subject area is surveyed and documented. The entire subject 

of design optimization to predict local properties along with 

shape and material distribution is surveyed broadly and very 

effectively in the treatise by Bendsr (1995). Very recent de- 

velopments applicable to 3D topology design are reported by 

Olhoff et  al. (1997). Useful contrasts may be drawn between 

continuum modelling for arbitrary materials, as represented 

in studies with the modulus tensor as design variable, and the 

treatment for optimal design of anisotropic structures; exten- 

sive work by Pedersen in the latter area is summarized in the 

paper by Pedersen (1993). The factor of "arbitrariness of di- 

rectional properties" also arises within a generalized study of 

a class of structures in the inspired work of P~ozvany (1976) 

on the optimal design of flexural systems. 

A formulation for optimal continuum structural design 

having the cost constraint expressed in generalized form is 

presented in the work of Taylor and Washabaugh (1995a,b, 

1997). The selfsame technique, namely the introduction of 

a set of unit energies suitable as a basis for the expression 
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in general of unit cost, is employed to represent cost in the 

formulation of this paper. This form is applicable for lin- 

ear continuum structures modelled according to linear defor- 

mation kinematics, i.e. for linear elastostatics. The element 

of formulation for optima] design introduced here which has 

system strain energy expressed in terms of the same basis 

apparently is original. 

The development of the paper is presented in four parts. 

First, to facilitate the eventual expression of the general de- 

sign problem in compact and convenient form, the conven- 

tional "minimum potential energy" statement for linear elas- 

tostatics analysis is cast in the form of an isoperimetric prob- 

lem. The ultimate purpose of the presentation, namely to 

state the general coupled analysis and design problem in a 

substantially simplified and uniform form, calls for establish- 

ment of a "basis of invariants" suitable for the expression of 

both energy and cost invariants for the general problem, and 

this is done next. An interpretation of the measure of total 

strain energy in terms of this basis is introduced, and this 

provides for a restatement of the elastostatics problem in fi- 

nal form. Finally, the general combined analysis and optimal 

design problem is stated using the basis, and an interpreta- 

tion is given for the associated set of necessary conditions. 

The system is applied to show how an example of the mate- 

rial design problem treated in earlier studies, namely those 

where "unit cost" was taken to be proportional to the trace 

of the modulus tensor, appears according to interpretation 

under the present problem formulation. Also, a demonstra- 

tion is given to show how optimal continuum forms having 

particular geometric features, namely those associated with 

groups of crystalline material  structure, may be generated 

according to the particular form designated for the argument 

in the generalized cost constraint. Possible application in the 

setting of the generalized formulation for a technique (Guedes 

and Taylor 1997) for prediction of optimal black/white design 

for continuum structures is discussed as well. 

2 E l a s t o s t a t i c s  r e s t a t e d  in i s o p e r i m e t r i c  f o r m  

We refer as a starting point to the conventional "minimum 

potential energy" statement for linear elastostatics of contin- 

uum structures. The structure is taken to be strongly stable, 

i.e. the material tensor, otherwise arbitrary within limits of 

the continuum model, is assumed to be positive definite over 

the entire domain of the structure (the requirement is to be 

reconsidered in the later section on the design problem). For 

structure occupying region ~2 with boundary /1, subject to 

body force field f and boundary forces t, the equilibrium 

state is identified with the necessary conditions for a mini- 

mum of potential energy. The problem is stated symbolically 

a s  

1 1 -~Eijk,eij(v)ek~(v) - f iv i  dV - 
vEK 

[2 

tivi dS } , 

G 

[Pl] 

where r symbolizes strain linear in admissible displace- 

ment vi, the material modulus is represented by E, Ft iden- 

tifies the portion of boundary /" subject to boundary trac- 

tion, K identifies the set of kinematically admissible displace- 

ments, defined as usual for the problem, and all other ele- 

ments of the problem statement are to be interpreted accord- 

ing to routine convention (the requirement of zero displace- 

ment on F - / ' t  is assumed for simplicity). For any properly 

cast version of the problem at hand, the potential energy is 

convex in displacement, the potential energy is minimized at 

the solution state, and the system is stable. In the treatment 

described below for the design problem, the present assump- 

tion of uniformly stable material is not invoked and, in that 

case, the consideration of structural stability is approached 

differently. The point is addressed in the section on design. 

For the next step, the relationship of the following isoperi- 

metric problem to the given potential energy problem state- 

ment is to be established. The isoperimetric problem re- 

flects minimization of the strain energy within an isoperi- 

metric constraint on the measure of compliance [this inter- 

pretation is applied e.g. by Taylor (1997), and by Achtziger 

ct al. (1997)], i.e. 

m  {!ii j } vEK -~Eijk~eij(v)eke(v ) dV , 

subject to 

Data for this problem includes the lower bound W > 0, as 

well as the loads and material tensor data of problem [P1]. 

The relationship between these two problem statements is 

established on the basis of a comparison of the conditions 

reflecting stationarity w.r.t, displacement v i for each, and on 

the demonstration that there exists a value, say ___W1, such 

that  the solutions to them are identical. Stationarity in [P1] 

requires satisfaction of the equilibrium equation and static 

boundary condition, i.e. 

(Eijkg~ii,j) ,k + fg = O, x E [2, 

= 0 ,  x (1)  

Symbols u with over-dots signify "solution function". Simi- 

larly, stationarity in [P2] requires 

(Ei jkgui ,J) ,k  + A f g =  O, 

( Eijkgit i , j )  n k - ./ltg = 0, 

and additionally 

x E E ) ,  

x E ;Tt, (2) 

A > o, (3) 
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where A symbolizes the multiplier associated with the isoperi- 

metric constraint. Note that  this constraint excludes /t - 

0, and accordingly from (2) and (3) A > 0 and [ I 4 / -  

(f~fii~idV + frtii~idS)] = O. The latter equation pro- 

vides for evaluation of multiplier Zi, i.e. with the substitution 

iq = A i i  i [the relation follows from similarity of the linear 

boundary-value-problem statements (1) and (2)] one finds 

z i =  __W 

dv as) 

Problems [P1] and [P2] are equivalent for A = 1 --* u = / i ,  

and so from (4) the data value W 1 for equivalence is given 

by 

5 / 

This completes a confirmation of the representation for 

elastostatics problems in the form of isoperimetric problem 

[P2] (literally that problem [P1] is imbedded within [P2]). 

However, one additional step is required in order to render the 

variational statement for elastostatics into the form appropri- 

ate for subsequent purposes. This modified form, which is en- 

tirely equivalent to [P2], has strain and displacement appear 

as variationally independent quantities, within a constraint 

to enforce (linear) strain-displacement relations [this form of 

representation of deformation kinematics within variational 

formulations is exercised in various other settings; see e.g. 

Washizu (1982)]. The modified problem is stated symboli- 

cally as 

e,vEK -~Eijkgeijskg dV  , 

subject to 

1 / \ 

Ivi,j + vj,i) o �9 IP3] 
2 

The character of the "rain problem" remains unaltered 

through this transformation, and the entire discussion given 

above for the interpretation of [P2] applies equally well to 

this slightly modified form of the problem. 

3 Basis  i nva r i an t s  for  t h e  c o u p l e d  p r o b l e m  

The object in this section is to establish a basis of invariants 

suitable for the expression in general of both strain energy 

and cost, for arbitrary linear material  and in the setting of 

linear elastostatics. The larger subject dealing with invari- 

ants of tensors in general, e.g. the material modulus tensor, 

is not addressed here, nor is it necessary for the purposes 

of this paper [relatively contemporary treatments of invari- 

ants, bases, etc. of general tensors are presented e.g. by Zheng 

(1994) and Jemiolo and Telega ( 1997)]. Rather, the aim here 

is to identify the simplest, self-consistent basis suitable for ex- 

pression of the combined analysis and design problem, and 

it appears that  this is accomplished with a basis defined in 

terms of a set of energies for the problem. Suitability of this 

interpretation is reckoned simply by the properties that both 

the general material tensor for linear elasticity, and the mea- 

sure of strain energy for the response in elastostatics as well, 

can be represented uniquely in terms of the same basis. As 

noted earlier, a precedent for the approach for the expression 

of cost used here is described in earlier treatments for gener- 

alized cost (Taylor and Washabaugh 199ha,b, 1997). Again, 

the current presentation differs somewhat in detail from the 

earlier ones, and it is distinct in particular for its interpreta- 

tion of the elastostatics (analysis) part  of the problem using 

the energy basis. 

The calculations to establish the "energy basis" are de- 

scribed here in algebraic form applicable to the 2D or 3D 

continuum. As a first step, arbitrary strain field, say cij , is 

represented via the construction 

N 

c i i (x )  = (6) 
~=1 

where the ~/fli comprise a set of N linearly independent con- 

stant reference (strain) values. The number N corresponds 

to the number of independent components in the symmetric 

two-tensor. 

For physical dimension D, this number may be evaluated 

from: 

D-1  

N = D  2 -  E ( D - k ) "  (7) 

k=l  

The designation of reference strains r~; is arbitrary within 

the stated requirements (example calculations using a spe- 

cific choice for the reference strains are given in Appendix I). 

Interpretation (6), which has spatial dependence of strain 

represented through the coefficients cfl, is on its own of no 

consequence in the modelling of elastostatics. In the present 

development, however, this device provides directly for the 

construction of the energy basis, which is to be described 

next. 
A specific basis is constructed for a given material, rep- 

resented for the constitutively linear problem by arbitrary 

modulus tensor Ei jk f (x ) ,  and the designated set of reference 

strains. The first N elements of the basis, symbolized by I~,, 

are defined via the simple quadratic expression 

I7(x) := Ei jk l (  )~ij~?kg, 7---- 1,2 . . . .  ,N  

(no sum on 7).  (8) 

Recall that  N is the count of independent components of 

the symmetric two-tensor. The I~, evaluated according to (8) 

are simply twice the measures of unit strain energy of the 



individual components of reference strain. The remaining el- 

ements of the basis are comprised of unit strain energies as 

well, where each element is identified with one among all pos- 

sible independent linear combinations of the reference strains. 

These combinations, symbolized by ~j ,  are formed according 

to 

;. a /flj, a 5s 1,2,. C,  (9) = rlij + rl , # = ..,  

where C counts the number of independent combinations of 

two unlike components within a group of N components. The 

count C may be calculated from 

N ( N  - 1) (10) 
C =N C2 - 2! 

Also, in the 2D case, the strains {~. indicated in (9) may be 

evaluated directly from the expression (Crst represents the 

permutation symbol) 

1 
C a r / ~ ) ,  o4/3 1 , 2 , . . . , N ,  

# =  1 , 2 , . . . , C ,  (no sum on #).  (11) 

Thus the additional elements, say ~?0' , to complete the basis 

of invariants are the unit energies associated with strains ~ .  

of (9) and the same material E, i.e. 

: =  # = 1 , 2 , . . . , C ,  

(no sum on #).  (12) 

Unit energies (12) combined with those of (8) encompass all 

possible independent inner products (triples) associated with 

the given material modulus field Eijkg(x ) and quadratic in 

the designated set of reference strains. The complete basis is 

given by the collection of sets I7 and -TT, i.e. with its elements 

symbolized by B~(x) the basis is described by 

{Bm}= {r~} + {~,} = {h,  I2, . . . ,  IN;-rl, i2, . . . , /~c}. (13) 

The total number N + C of elements B~ is six in 2D and 

twenty-one in 3D, just the number of independent compo- 

nents of the modulus tensor for the classical continuum. For 

a given set of reference strains, relations (13) amount to an 
expression of B(E).  The expression is unique; the evaluation 

of transformation B(E) and its inverse E(B) is described in 
Appendix I for a particular numerical choice of the reference 

strains. 

As was suggested earlier, it becomes possible through the 

introduction of the energy basis to express the optimal design 
problem in a particularly convenient form. According to the 

developments just described, in this problem for the design 

of the optimal material field the basis itself may be taken 

to comprise the "design variable". Also, while local repre- 

sentation of the material modulus tensor may be expressed 

effectively with reference to its eigenproperties (see e.g. Lip- 

ton 1993; Diaz et al. 1995), the interpretation in terms of 

the present basis, identified with a fixed reference frame, is 

more convenient in the treatment of "design within general- 

ized cost" . 

Before turning to the full description of this design prob- 

lem, a brief consideration is given next to reinterpretation of 

the elastostatics alone making use of the energy basis. 
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4 Elas tos ta t i cs  r e s t a t e d  in t e r m s  of the basis 

Restatement of problem [P3] for the general elastostatics re- 

sponse of systems with arbitrary material follows simply from 

interpretations of strain and then strain energy in terms of 

the basis strains and invariant basis defined above. Thus with 

the substitution of response strains stated in terms of the set 

of.reference strains via (7) into the expression for unit strain 
energy, interpretation of the latter in terms of the "energy 

basis" (13) follows by a simple calculation, i.e. 

= E c~ cr / = ~ Eijkgr 1 N -~ ijkg cauij g 
= \Z=i / 

N+C 

. . . : :  ~ eaB 5. (14) 

5=1 

Coefficients eT(x), defined implicitly in the last step of this 

continued equation, are quadratic in cT(x ). (With judicious 

choice of the basis strains, the expressions for e- r have simple 

form, e.g. as realized with the examples described in Ap- 

pendix I.) With the substitutions for response strain via (7) 

and strain energy according to (14), version [P3] of the elas- 

tostatics problem is transformed to 

min ~. .  es(ec,)B 5 dV , 
ca;uk 

subject to 

W - - - - { ~ f i u i d V + f t i u i d S }  

1 
2 (ui,j + uJ, i) - E cTrl; " = O, x E 12. [P4] 

7 

Constants W, and rl;. and fields h ( x ) ,  tk(x), and Bs(x ) com- 

prise the data for this form of the problem. As noted earlier, 

the isoperimetric constraint excludes the possibility u k - O, 
and the objective in [P4], which measures total strain en- 

ergy, is definitely positive. The equilibrium boundary value 

problem statement is identified (still) with stationarity con- 

ditions for this version of the problem, where now the state 

variables are eel(x) and Uk(X ) (note that the prior require- 

ment Eijkg > 0 applies here as before, i.e. the formulation is 
intended for structures composed of uniformly stable materi- 

als). With the introduction of qij as the multiplier associated 

with the kinematic constraint of [P4], the equilibrium system 

is stated 

N+C Oe 5 
E ~c~ Ba-q i j r l ia j=O'  x E a ,  a = X , 2 , . . . , N ,  (15) 

5=1 

q i j , j + A f i = O ,  x E  ~ ,  i =  1, 2, 3, (16a) 

qijnj + At i = O, x E Ft, i =  1,2,3, (16b) 
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with qijnj = 0 on the remainder of the boundary where 

displacement is not prescribed. Clearly symbol qij may be 

identified as the measure of stress. Accordingly, the first term 

of (15) is seen to represent the component of total  energy 

associated with the a- th  element among prescribed reference 

strains ~;.; the equation can be recognized in this way as an 

implicit expression of the constitutive relations. Also from 

(15) qij r 0 almost everywhere, and so the constraint on 

deformation kinematics is enforced; it follows as well from 

(16) that A r 0. 

While there is no apparent advantage per se to version 

[P4] over more familiar variational forms for elastostatics 

analysis, recall that our purpose was to derive an expression 

that should be particularly convenient for a unified statement 

of the optimal design problem for elastostatic structural de- 

sign. It will become apparent with the developments of the 

next section how this formulation [P4] is useful toward that  

purpose. 

5 T h e  c o m b i n e d  ana lys i s  a n d  des ign  p r o b l e m  

As indicated in the Introduction, in existing treatments for 

optimization of continuum structures having the form where 

design is represented by the free material modulus tensor 

(e.g. Bendsce et al. 1994, 1995), the isoperimetric or "cost" 

constraint is expressed in terms of one choice or another from 

among select invariants of the modulus tensor. This was done 

as well in the extension of such formulations to establish 

a procedure for the prediction of "sharp image" (topology 

design) versions of optimal structures (Guedes and Taylor 

1997). So far as one may be concerned with the significance 

of how the measure of cost is designated, such formulations 

themselves amount to examples and clearly there is purpose 

to consider more general statements of the cost constraints. 

Where the measure of cost is to be linear in (elements of) the 

modulus tensor, Washabaugh and Taylor (199ha,b, 1997) de- 

scribe means to express the cost constraint in general form. 

Generality here follows from the fact that  the expression pro- 

vides a unique measure for any such given material, and that  

it is invertihle. The "basis of invariants" described in the 

latter papers has precisely the form of the basis described 

above, and so for present purposes we simply assert that the 

generalized cost is expressed as the integral over the struc- 

ture of an arbitrary linear function within the set of functions 

described in terms of this basis. Thus for a specified bound 

R on resource, the cost constraint is stated 

[V f bv(~)Bv(x) - < 0 ,  b v >  dV R 0 VT. (17) 

$2 

Variation of cost over the structure is reflected in the coef- 

ficients bT(X ) > 0 of the linear expression, and as indicated 

these coefficients are limited only to be positive-valued in po- 

sition coordinates, i.e. total cost per unit volume lies in the 

"first quadrant". The coefficients are specified for the opti- 

mal design problem. They may be interpreted to represent 

componentwise relative unit cost of the material. Generality 

of this form of expression for cost derives from completeness 

of the basis set B v. 

For the present statement of the design problem where 

the elastostatics and the cost constraint are represented via 

[P4] and (17), the basis elements B 7 themselves have the role 

of "design variables". Thus with upper and lower bounds B 7 

and B__ 7 on the local value of By, the design problem is stated 

symbolically in the form of the maxmin problem: 

max 

B7 

subject to 

min { / ~ e T ( c c ~ ) B v d V  } 
c~(~);~(~) 

subject to 

0 < B 7 _< B 7 _< B 7 , 

l(ui,j + uJ, i) - E cTr/;' = O. [D1] 
7 

The "max" of total strain energy w.r.t, the basis energies 

does in fact correspond to the intended objective to mini- 

mize compliance. This correspondence is confirmed in Ap- 

pendix II. Noting that  design variable B 7 appears only in 

the argument of the integral within "min" of maxmin prob- 

lem [D1], the "max" or design part of the problem can be 

interpreted independently [the step is argued by Bendsce et 
al. (1994) in terms of an interchange of max and mini as 

B~ ts 

subject to 

) bvB 7 d V - R _ < 0 ,  0<B__ 7_<B 7_<B 7. [D2] 

x2 

Maximization in [D2] relates in fact to local control of the/?7" 

Introducing K,  g7, and_~7 as multipliers on the isoperimetric 

constraint and the local upper and lower bounds respectively, 

stationarity w.r.t. B 7 requires (satisfaction of the "optimality 

conditions" ) 

-e,,/ + -g7 - n-3, + bvK = 0, 
~ 7 ( B v - B 7 ) = 0 ,  n T - > 0 '  
s~ (~v  - B~) = o, > o, 

\ f )  7 

xEs 7GG7, (18) 

K>_O,  (19) 



where G 7. identifies the set of all values gamma. It is assumed 

that the data value R lies in the range such that at least one 

among the design variables B 7 satisfies B 7 < B 7 < BT, 

i.e. lies off the local constraints at least somewhere in s 

Identifying such intervals and the set of associated indices 

respectively by f2D7 and GD7 , from (18) 

e 7=bTK , xCs 7 E G D  7. (20) 

Since b 7 > 0 for all gamma and over the entire structure, if 

K = 0 then according to (20) e 7 = 0 for all 7 C GD~,. This 

implies in turn that the optimal structure includes compo- 

nents B-~ > B_B_.~ with positive cost and zero contribution to 

the objective of "max", and of course this is a contradiction. 

Accordingly, the solution value of K satisfies K > 0, and so 

e 7 > 0 Vx E s 7 C GDT, and also from (19) 

[ ~bTZ 7 d r -  .R = 0. (21) 
, J  

To consider further the issues related to stability, note 

that the deduction e 7 > 0 applies componentwise and locally 

in Y2. Thus, for example, the system admits the possibility 

of a solution where there is no interval within the structure 

having 

e 7 > 0 ,  for a l l T E G  7. (22) 

Stated differently, there is no assurance that the solution to 

the set of necessary conditions excludes a negative contri- 

bution to strain energy for one or more components among 

7 E G 7. Nonetheless, considering the solution to problem 

[D1], i.e. the putative optimal design, the total strain energy 

associated with it is definitely positive; this is substantiated 

within material presented in Appendix II. For the standard 

linear continuum elastostatics problem, this assures that the 

loaded structure is (globally) stable. In other words, the solu- 

tion to optimal material design problem [D1] (where it exists) 

identifies a stable structure independent of explicit local re- 

quirement on the material properties. Accordingly, it would 

be redundant in this setting to impose a local constraint of 

the form E > 0, i.e. to enforce the pointwise condition for a 

strongly stable material, out of concern about (global) sta- 

bility. Note that in the present formulation for the design 

problem the local constraint to ensure that B 7 > 0; x C s 

7 C G 7 is essential, and this constraint implies through the 

relation B(E) a restriction on the modulus tensor itself. 

To summarize explicitly the remaining possibilities within 

(18), note from the complementarity conditions there that the 

two local constraints on design cannot be active simultane- 

ously, i.e. ~_793, = 0 and so for x ~ ~D, 

either g7 > O ---* B 7 = B7 and e 7 = Kb 7 +-g7, 

m 

say for x C f27 , (23a) 

or ~-7 > 0 ~ B 7 = B__ 7 and e 7 = Kb 7 - ~7, 

say for x E s (23b) 

121 

o r g T = 0 a n d B  7 = B 7  a n d e  7 = K b  7 + g 7 ,  

m 

say for x E s (23e) 

o r_~7=0  a n d B  7=B__ 7 and e 7 = K b  7-~_7, 

say for x G ~70" (23d) 

The last two lines represent the conditions at intersections be- 

tween s and ~ 7 '  and between s and ~7 ,  respectively. 

This interpretation of the original optimality condition (9) is 

exhaustive, and we have the closure 

s U s U a 7 U s U s = s (24) 

Since problem [D1] is a maxmin problem, the system com- 

prised of the necessary conditions plus the original constraints 

is in fact sufficient to identify the optimal design and associ- 

ated equilibrium response state. In other words, the system 

serves to identify a unique solution to the general design prob- 

lem. Again, a confirmation of the correspondence between 

[D1] and the intended objective of "minimum compliance" is 

presented in Appendix II. 

Before quitting this section on modelling to consider 

example applications, a technique for the prediction of 

black/white design mentioned earlier is discussed to indi- 

cate its interpretation in the setting of the generalized cost 

problem. Reference is made to the particular approach pre- 

sented by Guedes and Taylor (1997a,b) for the case where 

the isoperimetrie (cost) constraint is expressed in terms of 

the trace measure of the modulus tensor. As described in 

the cited paper, it is necessary in this approach to modify 

the argument of the global cost constraint by the addition of 

a (prescribed) weighting function or relative unit cost coeffi- 

cient. This weighting function corresponds precisely in terms 

of its significance to the coefficients bk(x ) in the global cost 

constraint for the present generalized cost formulation, and 

so the same method is directly applicable in the setting of 

the "general cost" formulation. With some elaboration in 

the computational procedure, the system provides the possi- 

bility of generating one or more black/white designs, each one 

associated with an element of the basis set Bk(X ) of design 

functions. This point is discussed further in the Conclusions. 

6 E x a m p l e  app l i ca t ions  

Formulation [D1] for the design of continuum structures cov- 

ers the generally inhomogeneous structure having arbitrary 

local constitution of material, the former following from the 

representation of both state, in terms of dT(x), and design 

unit cost bT(x ) as relatively unrestricted functions. The 

model is general as well in the sense that a full range of 

optimal materials may be predicted out of its solution, cor- 

responding to the breadth of coverage in stating "cost" in 

the cost constraint. This is in contrast to the problems de- 

scribed in earlier treatments for the design of the material 

tensor, where in each case a specific form of cost is assumed 

and the resulting solution identifies a specific constitution of 

the material. Acknowledging that - relative to the range of 
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possibilities for its application - exemplification via a limited 

set of specific problems comprises at best a sharply limited 

demonstration of the model, the following kinds of problems 

are to be described. 

�9 An example from among treatments presented in the lit- 

erature on design of continuum structures, namely the op- 

timal design of a Lamd cylinder where local cost is taken 

to be proportional to the trace of the modulus tensor, is 

interpreted within the present formulation. The solution 

itself is taken from existing results (Guedes and Taylor 

1997b) for this problem. A recently developed technique 

for the prediction of optimal black/white design is inter- 

preted in the setting of the present generalized formu- 

lation, also using this example as a reference case. A 

graphical presentation of this solution for the "sharp im- 

age" optimal design is given as well. 

�9 The general formulation is to be interpreted with the pur- 

pose in mind to predict optimal design where the local 

properties are identified in a system for classification with 

one or another group, according to its symmetry proper- 

ties. Here we follow the classification scheme for crystal 

structures as given by Love (1926), and treat the mono- 

clinic and rhombie groups as examples. The correlation 

between optimal design having material symmetries be- 

longing to each of the groups and the respective argument 

of the cost constraint in [D1] is addressed. 

6.1 For cost proportional to the trace of the modulus tensor 

The original report on a model for optimal design where the 

design variable is the material modulus (Bendsee et al. 1994) 

treats the case where total cost is proportional to the integral 

over the structure of the trace of the modulus tensor. The 

solution in this case and for minimum compliance design of 

the single purpose structure is verified (in analytical form) to 

be a zero-shear-stiffness, orthotropic material aligned with 

the principal directions of the strain tensor. This result may 

be viewed as an example of how a unique material structure 

derives from the designation of a specific measure of local 

cost, namely the trace Eiji j  of the modulus tensor. An in- 

terpretation of the present formulation [D1] to correspond to 

the original study is obtained simply by replacing the "total 

cost" constraint there by 

f Eijij dY R O. (25) < 

D 

The result is obtained for problems in 2D, for example, with 

chosen constant values b 1 = b 2 : b 3 = 1/2; b 4 = b 5 = b 6 = 0 

for the unit cost coefficients in [D1]. Note, however, that 

the designation of zero values here is inconsistent with the 

requirement bx(x ) > 0,V7 of (17). An appropriate interpre- 

tation of the general formulation is obtained for this example 

by assuming the values to be small rather than zero. (In the 

original study, the existence of the solution is argued for the 

form of the cost constraint assumed there, and this amounts 

to a confirmation of that problem as a limit case with the 

small values approaching zero within the general model.) The 

distinction may be important in the respect that while the 

general formulation is valid for all problems that can be sim- 

ulated within the cost constraint of [D1], any specific form 

of cost outside those admissible in the general formulation 

would require independent confirmation. For the purposes of 

this demonstration, attention is restricted to examples cov- 

ered within the present formulation. On another point, one 

may note that the presence of unit cost coefficients within 

the general formulation makes it possible to study how the 

character of optimal local material properties varies with con- 

tinuous variation of these factors. Studies of this kind have 

not yet been performed. 

Computational results are shown in Fig. la  for the ex- 

ample problem taken from the paper by Guedes and Taylor 

(1997b). The structure is a Lamd cylinder loaded by external 

pressure varying as cos 20. The shades of grey superposed 

over the regions of the structure in this figure represent the 

relative value of the trace measure of the modulus tensor. To 

mention the counterpart in the generalized cost setting to the 

results for this special case, note that in the former one ex- 

pects a set of such shades of grey diagrams, each associated 

with an element of the set of design variables B 7. 

(a) (d) 

(e) 

(c) (0 

Fig. 1. Optimal designs for a cylinder subject to external pressure 
p(O) = a cos20. Relative magnitude of the trace measure of 
the m~terial modulus shown in (a) as shades of grey. Evolution 
toward a black/white design is pictured in (b) through (e). Final 
black/white topology is depicted in (f) 



To facilitate description of a method for the prediction of 

an optimal b l a c k / w h i t e  des ign  based on the same formulation 

(see e.g. Taylor 1997; Ouedes and Taylor 1997a,b), the global 

cost constraint is restated from (25) with unit relative cost 

coefficient (weighting) b(x)  recovered 

f b ( x ) E i j i j  d V  - t~ < O. (26) 

S? 

The procedure for this method has a sequence of solutions to 

the design problem performed, where for each solution step 

b(x) is modified as follows. A user-determined value of the 

measure of the trace corresponding to a relatively light grey 

shade is chosen, and a relatively higher value is assigned to 

the cost coefficient in all regions having trace value below this 

designated cutoff value. With such (stepwise) adjustment in 

the cost coefficient, the solution for the subsequent step has 

the trace measure of the material suppressed in those regions 

with higher unit cost. The limit result for a sequence of solu- 

tion steps with appropriate stepwise adjustment of unit cost 

is an op t ima l  design having the value of the trace measure at 

either its upper (black) or lower (white) value. Results for 

the cylinder design example are shown in Figs. lb  through e 

representing steps in the procedure, with Fig. If to depict the 

final black/white topology. In the final step of computations 

for this result, the trace measure is off its bound limits for 

only a few from among several thousand elements, and so 

this limit is approached effectively in the computational pro- 

cedure. Also, if the value of this measure in the black regions 

is unity, then white areas in the sample results have value on 

the order of 10 -7.  Finally, note that in this method the op- 

timal black/white design result is reached through a stepwise 

procedure where the result at each step is the solution to a 

(the original) convex optimal design problem. 

5.2 Iden t i f i ca t ion  o f  "local cos t"  to produce  speci f ic  local at- 

t r ibu tes  

We follow the presentation of Love (1926, pp. 158-160) for 

a classification scheme by which groups having specific crys- 

talline symmetries are identified acccording to their strain 

energy functions. By direct translation of Love's description 

into the present notation, reduction from the general expres- 

sion with 21 terms to the form for the "monoclinic or oblique" 

group having 13 terms to express strain energy is obtained if 

the terms identified with components El123 , E 1113, E2223, 

E2213 , E3323, E3313 , E1223, E1312 in the general expression 
are set equal to zero. Accordingly, making use of the listing 

(A.12) of Appendix I it may be verified that for the mon- 

oclinic group the basis elements B l l  , B12 , B14 , B15 , B17 , 

B18 , B19 , Byo are to be eliminated from the expressions for 

cost and for strain energy. As an alternative approach, de- 

sign simulating one with the designated local symmetries may 

be induced through an optimization procedure where the re- 

strictions on elements of the modulus tensor are enforced via 

appropriate treatment of the cost constraint. Specifically, if 
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total cost is expressed in the form 

21 

bkBk + h i (B11  - B1 - 8 5 ) +  

k=l 

(k#11,12, 

14,15,17, 

18,19,20) 

b i i ( B 1 2  - B 1 - B6) + b i i i ( B 1 4  - B 2 - B5)+ 

b I v ( B 1 5  - B 2 - B6 )  + b v ( B 1 7  - B 3 - B5)+ 

b v I ( B 1 8  - B 3 - B6) + b V I I ( B 1 9  - B 4 - Bs)+ 

b v i i i ( B 2 o  - B4 - 8 6 ) ,  (27) 

then the design produced when all coefficients h i , . . .  , b v i f I  

have value large relative to the remaining coefficients b k is 

a simulation of the monoclinic local structure. Toward an 

understanding of why the simulation is produced, we note 

that the technique here is similar to the one for the prediction 

of optimal black/white design described in the section just 

above. As in that application, the desired symmetry forms 

in fact are identified with a limit as the b l , . . . ,  b v i i 1  grow 

large without bound relative to ]bk[ , with control so that the 

net value of the associated terms in (27) approach zero. 

To summarize, for the case described the material proper- 

ties in an optimal design produced with total cost expressed 

in terms of the reduced basis generally belongs to the clas- 

sification group "monoclinic". The particular form within 

that group depends on the values prescribed for the unit cost 

coefficients of basis terms remaining in the measure of cost. 

Of course, materials with lower order symmetries may result 

as well. The alternative approach to identify with a sym- 

metry group may be useful in the construction of a general 

purpose program, one where the option exists to specify the 

symmetry group within the most general model of material 

via specification of the unit relative cost coefficients. 

The next more restrictive symmetry group is the rhom- 

bic, for which there are just nine independent terms in its 

strain energy. If the same approach would be applied to 

restrict material properties in the optimal design result to 

those belonging to this group, then the additional basis terms 

B10, B13, B16 and B21 are to be deleted from the problem. 

Again, the reduction accomplished in this way may be verified 

to represent the rhombic symmetry group through a direct 

translation of notation from Love's to the present form. Here 

as in the monoclinic example, either the direct approach or 

the option that leads to the desired result by an inductive 

procedure may be applied to produce designs having mate- 

rial properties within this group. The actual procedures for 

producing the reduced model associated with "rhombic lo- 

cal properties" is the same as that already described, so no 

further consideration is given here to this example. 

Six additional symmetry groups are given in Love's pre- 

sentation, each group providing a variety of classes of material 

properties, so that altogether 27 specific symmetry structures 

are listed there. A number of other specific, characteristic 

material property structures also are identified in this section 

of Love's book (including a material with negative Poisson's 
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ratio!), and the reader is referred to this rich resource and 

to the contemporary literature [e.g. the introductory text on 

materials by Callister (1994)] as well for additional consider- 

ation of special materials. 

7 Conclus ions  

With the interpretation of both generalized cost for the opti- 

mal design problem and the mechanical strain energy in terms 

of a common basis, optimality conditions for the general de- 

sign of continuum structures take on an especially simple and 

revealing form. This result, which states that in regions of 

the continuum where the design is free of local constraints, 

the optimal material is (the) one for which all components of 

unit strain energy are proportional to the relative unit cost of 

like components in the isoperimetric cost constraint, is itself 

an extension of familiar requirements in earlier experience 

with less general representations for cost. The parallelism 

between unit cost and unit energy follows from the use of 

a common basis, but the property holds independent of the 

specific choice among possible bases. One may appreciate in 

this way that the problem formulation provides a measure 

of flexibility, and that the freedom to select reference strains 

at will can be advantageous, e.g. when certain directional at- 

tributes of the material (modulus tensor) are to be introduced 

as data in the design problem. 

Noting that the set of admissible modulus tensors in the 

design problem covers all possible materials within the con- 

text of classical elasticity theory, and that the expression for 

cost spans the space of such materials, it may be judged that 

- depending on the particular form of the measure of cost 

- material properties predicted as a part of an optimal de- 

sign may be those corresponding to any modulus tensor  from 

among those in the admissible set. In other words, any one 

among possible materials may turn up as the (pointwise) op- 

timal material. This property suggests consideration of the 

following inverse probIem, namely, given an arbitrary ma- 

terial, does there exist an expression of unit cost such that 

the given material is optimal? Restricting attention again to 

regions free of local constraints on design, the answer is af- 

firmative. Given linearity in the relation between unit strain 

energy and unit cost coefficients, this conclusion is supported 

simply on the basis of the completeness of the set of admis- 

sible modulus tensors in the formulation. 

While in the generalized cost formulation the basis com- 

ponents appear as independent elements of design, the struc- 

tural material composed of them has effective properties as 

would be predicted f o r  a mixture.  Viewing this mixture as 

a composite material, a variety of interesting interpretations 

for application of the model are possible. As was noted in 

the applications section, using the procedure described there 

an optimal topology 'may be predicted for any one or more 

of the basis components. In the 2D case, for example, the 

resulting optimal structural material may be viewed as a lay- 

ered composite having discrete components, each identified 

with and corresponding layer-by-layer to the properties of 

the topology design for the basis components. Likewise, an 

interpretation for 3D structures would be possible if one al- 

lows that where the components overlap the resulting optimal 

material is comprised (still!) of a mixture of the intersecting 

components [this is reminiscent of other design situations re- 

quiring an interpretation for "overlapping materials"; see e.g. 

Rozvany et al. (1982)]. Noting at the same time that any 

one or more of the basis elements may be held fixed while 

the remaining ones are to be designed, it becomes clear that 

the general model offers a broad range of possible interpreta- 

tions. 
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A p p e n d i x  I. T h e  e n e r g e t i c  bas i s  for  a specif ic  des ig-  
n a t e d  set  o f  " r e f e r e n c e  s t r a i n s "  

First, the complete set of calculations for the expression of 

an energy basis is exemplified in the following for the 2D case 

[this material amounts to an elaboration on what is given by 

Taylor and Washabaugh (1995a)]. As the first step in this 

process, reference strains r];.; 7 = 1,2, 3 are designated 

u 0 0 ' l / v /2  0 ' 0 1 ' 

and for the associated independent linear combinations (~.; 

# = 1,2,3 one may find 

1 1 1 3 r]2)] 

lx/~ 0 {[0 1 1[ 1/2 0 ] ;  

0 1/2 

1/2 l/v/ '2 ] } ' 

The corresponding basis energies (no sum on 7, #) 

f 1 E . ,  7 7 .  1 E 
B k = 12 ~Jk~qijZ]kg ' ijkg ij~,ks , 

are evaluated as 

B k = {E1111/2;E1212; E2222/2; 

(El111 + 2El122 -t- E2222)/4; 

(El111 + 23/2El112 + 2E1212)/4; 

) 
(E2222 + 23/2E1222 + 2E1212)/4~ 

The inverse relation is given by 

E l 1 1 1 - - 2 B  1, E1212 = B  2, E2222 = 2 B  3, 

E1222 = ( - B 2  - B3 -t- 2 B 6 ) / ' / 2 ,  

El112 = (--B 1 -- B 2 q- 2B5) /V~ , 

125 

(A2) 

(A3) 

(A4) 

3 
1E c 2 r  r 

U = ~ ijkg E ( r )  r]ijqkg+ 
r--1 

2 3-r  
r r~-8  

Eijke CrCr+s'i j 'ke = 
r----1 s= l  

2 1 1 2 2 2 @3) ~ijrlkg] + ~Ei jk t  [@1) ~ij~ki + @2) ~ij~kg + 2 3 3 

The latter product is written in expanded form as (for the 

2D case, still) 

(A7) a cfl~ 1Eijkg ca ~?ij 

El122 = - B 1  - B3 + 2B4. (A5) 

Substitution of the chosen reference strains into (6) leads to 

the expression for strain components eij as 

Cll = e l ,  ~22 = c3, el2 = c2/V'2. (A6) 

Both algebraic and numerical results for the unit strain en- 

ergy, say U, also are demonstrated in this Appendix. The 

expression from (14) for strain energy is recalled 

1 
U := ~Ei jk~ i jekg  = 
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1 2 1 3 _t_c2c3rlijrlkg]. (A8) Eijk ~ [ClC2~?ijrlkg + clc3rlijt]kg 2 3 

With the substi tut ion of the designated values for reference 

strain, this expression is reduced to the simplified result 

@1) 2 r~ @3) 2 r~ , 
U = , - ~ - ~ m l  + (c2)2E1212 + - - 7 ~ 2 2 2 2 ~  - 

V~ClC2El112 + clC3El122 + "v/2c2c3E1222 . (A9) 

Comparing this result to the lat ter  part  of (14) [i.e. the ex- 

pression ~ N + C  e B ], 6=1 5 5 and recalling the earlier evaluat ion of 

Bk, the coefficients e k are determined directly as 

q = ( c l )  2 - q c 2  - q c 3  e2 = ( ~ 2 )  2 - c2~1  - c 2 ~ a ,  

e 3 = @3) 2 - c3c I -- c3c 2 e4 = 2ClC 3 , 

e 5 = 2CLC2, e6 = 2c2c 3 (A10) 

This completes the evaluation of all expressions related to 

the basis and expansions for the 2D problem. 

Comparable results in 3D (or higher dimension!) are ob- 

tained by application of the formulae given in the text.  The  

information is needed for the in terpreta t ion of crystal moduli  

given in the section on applications. To consider this case, 

suppose the six independent  components  of reference strain 

eta for the symmetr ic  two-tensor in 3D are designated as 

[l~176176176176176176176 ] Z/i12,...,6 = 0 0 0 ; 0 1 0 ; 0 0 0 ; 

0 0 0 0 0 0 0 0 1 

E0x01[000] [ o01 ] 
1 0 0 ; 0 0 1 ; 0 0 0 . ( A l l )  

0 0 0 0 1 0 1 0 0 

The six squared terms for these eta plus fifteen independent  

cross-product terms, calculated as indicated for the 2D ex- 

ample, comprise the requisite set of 21 basis strain energies. 

For indices c~, ~, # as defined in (9), an example set of index 

values for the fifteen cross-product terms is 

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

a 1 1  2 1 1 1 2  2 2  3 3 3 4 4 5 

3 2 3 3 4 5 6 4 5 6  4 5 6 5 6 6 

The calculations required to evaluate  the basis energies are 

routine, following the pat tern  described for the 2D case. Re- 

sults for the 3D counterpar t  of (A5), i.e. components  of the 

modulus tensor in terms of the basis energies, are (these ex- 

pressions were generated by Pete Washabaugh using Mathe- 

matica) 

El111 = 2B1 , E2222 = 2B2 1 E3333 = 2B3 , 

El112 = ( - B  1 - B 4 -t- B10) /2 ,  

El113 = ( - B  1 - B 6 + B12) /2 ,  

E1212 = B4/2 , El122 -- ( - B  1 - B 2 + B7) ,  

E l a l 3  = t76/2 , El133 = ( - B  1 - B 3 + B8) ,  

E1323 = ( - B  3 - B 6 + B18) /2 ,  

E1233 = ( - B 3  - B4 -t- B16) /2 ,  

E2221 = ( - B  2 - B 4 + B13) /2 ,  

E2223 = ( - B  2 - B 5 + B14) /2 ,  

E2233 = ( - B  2 - B 3 -t- B9) ,  

E2333 = ( - B  3 - B 5 + B17) /2 ,  

Eala2 = ( - B  5 - B 6 + B21) /4 ,  

El123 = ( - B  1 - B 5 + B11) /2 ,  

E3221 = ( - B  4 - B 5 + B19) /4 ,  

E1322 = ( - B  2 - B 6 + B15) /2 ,  

E1213 = ( - B  4 - B  6 + B 2 0 ) / 4  , E 2 3 2 3 = B 5 / 2 .  (A12) 

The expression for strain energy may be obtained from the 

expansion of (A9) applied with these results and the assumed 
1,...,6 

set rli j of ( A l l ) .  

A p p e n d i x  II .  R e l a t i o n s h i p  b e t w e e n  " m a x  f j  2 bkB k dV" 
a n d  " m i n i m u m  c o m p l i a n c e "  

Recall  that  solution ii to (1) equilibrates the specified loads, 

while 7i = Aii represents the solution to the inner (mini- 

mization) problem of [D1]. As was noted in the section on 

"elastostatics restated in isoperimetric form",  u satisfies 

/ f i h i d V  + f f  t i i~ idS= W .  (A13) 

9 5 

The result of integration by parts of the product  of ~ and (2) 

can be stated as 

f eiy%jak,edV = A ~ fii~idV + f f  t i i t idS (A14) 

~? Ft 

Replacing the left side by the measure of "strain energy" of 

deformat ion/ t  in terms of B k, and with the substi tution from 

(A13) on the R.S., (A14) becomes 

2 f ekBk dV = A N .  (A15) 
d 

D 
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For convenience, (4) is restated here 

zi= __w 

( f  fiiiidV + f ti{iidS) (A16) 

Finally, by elimination of ?s between (A15) and (4), one may 

find 
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W_ 2 f f 
] fii~i dV + ] ti~i i dS 

f ekBk d V  
~2 rt ~2 

(A17) 

The L.S. of (A16) measures compliance under the specified 

loads, while the denominator on the R.S. equals twice the ar- 

gument of "max" in [D1] [recall that (A16) holds for arbitrary 

structure]. Thus maximization on this argument corresponds 

to minimization of compliance, and so the form of the prob- 

lem represented in [D1] is justified. Noting again that the 

problem described in [D1] is a maxmin problem, the system 

of * conditions for stationarity w.r.t, variation in design is 

sufficient to identify the optimum structure. 


