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Abstract. We introduce an energy model whose minimum energy drawings reveal
the clusters of the drawn graph. Here a cluster is a set of nodes with many internal
edges and few edges to nodes outside the set. The drawings of the best-known
force and energy models do not clearly show clusters for graphs whose diameter
is small relative to the number of nodes. We formally characterize the minimum
energy drawings of our energy model. This characterization shows in what sense
the drawings separate clusters, and how the distance of separated clusters to the
other nodes can be interpreted.

1 Introduction

Force-directed and energy-based methods are popular for creating straight-line draw-
ings of undirected graphs. They are comparatively easy to implement, adapt-
able to different drawing criteria, and give satisfactory results for many graphs
([4, Chap. 10], [7]). Since the introduction of multi-scale algorithms they are even quite
efficient [28,15,17,26,29].

Energy-based methods generally have two parts: an energy model, and an algorithm
that searches a state with minimum total energy. In force-directed methods, the model
is a force system, and an algorithm searches for an equilibrium state where the total
force on each node is zero. Because force is the negative gradient of energy, this corre-
sponds to searching a local minimum of energy. We will take the perspective of energy
minimization in this paper.

Finding clusters, i.e. subsets of nodes with many internal edges and few edges to
outside nodes, in graphs is an important problem in VLSI design [2], parallel comput-
ing [25], software engineering [23], and graph drawing [9]. The most popular force and
energy models do not clearly isolate clusters, especially in graphs with small diameter.
The first main result of this paper is an energy model whose minimum energy drawings
reveal the clusters of such graphs.

The purpose of energy models is to create drawings from which a human viewer can
infer properties of the drawn graph. To make the inference more efficient and its results
more valid, the drawings are required to have certain properties, like small and uni-
form edge lengths, well-distributed nodes, or well-separated clusters. Empirical studies
were performed to evaluate to what degree force and energy models fulfill such criteria
(e.g. [6]), but few analytical results exist. A formal characterization of the minimum
energy drawings of our energy model is the second main result of this paper.
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The new energy model and its formal analysis are presented in Sect. 2. Sec-
tion 3 shows example drawings and compares them with drawings of the well-known
Fruchterman-Reingold force model [14]. Section 4 compares our energy model with ex-
isting force and energy models, and proposes a generalization that includes among others
our energy model and the Fruchterman-Reingold model. It discusses applications, the
importance of interpretability, and the benefits of theoretical analyses of energy models.

1.1 Basic Definitions

A graph G = (V, E) consists of a finite set V of nodes and a finite set E of edges with
E ⊆ V (2), where V (2) is the set of all subsets of V which have exactly two elements. We
only consider graphs with at least two nodes. Because layouts can be computed separately
for different components of a graph, we restrict ourselves to connected graphs, i.e. graphs
where every pair of nodes is connected by a path.

For two nodes u, v ∈ V , the length of the shortest path connecting u and v is the
graph-theoretic distance of u and v. The diameter of the graph G is the greatest graph-
theoretic distance between any two nodes. A cut of G is a pair (V1, V2) of nonempty,
disjoint sets of nodes with V1 ∪ V2 = V .

For V1, V2 ⊆ V and F ⊆ V (2) let F [V1] = {{u, v} ∈ F | u, v ∈ V1} and
F [V1, V2] = {{u, v} ∈ F | u ∈ V1, v ∈ V2}. Then E[V1] is the set of edges in V1, and
E[V1, V2] is the set of edges between V1 and V2.

A d-dimensional drawing of the graph G is a vector p = (pv)v∈V of node positions
pv ∈ IRd. For a drawing p and two nodes u, v ∈ V the length of the difference vector
pv − pu is called the (Euclidean) distance of u and v in p and denoted by ||pv − pu||.

For a subset F of V (2) and a drawing p, the arithmetic mean arithmean(F, p) of the
distances of F is defined as

arithmean(F, p) =
1

|F |
∑

{u,v}∈F
||pv − pu||,

the geometric mean geomean(F, p) of the distances of F is defined as

geomean(F, p) = |F |

√∏
{u,v}∈F

||pv − pu||,

and the harmonic mean harmmean(F, p) of the distances of F is defined as

harmmean(F, p) =
|F |∑

{u,v}∈F
1

||pv−pu||
.

2 LinLog: A Clustering Energy Model

In this section, we first define a new energy model, called LinLog, and the cut ratio
as measure of the coupling of two disjoint sets of nodes. Using this measure we can
formalize and prove that in minimum energy drawings of the LinLog model, clusters
are clearly separated from the remaining graph, and the distance of each cluster to the
remaining graph is interpretable with respect to properties of the graph (more precisely,
the distance is approximately inversely proportional to the coupling).
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2.1 The LinLog Energy Model

The LinLog energy ULinLog(p) of a drawing p is defined as

ULinLog(p) =
∑

{u,v}∈E
||pu − pv|| −

∑
{u,v}∈V (2)

ln ||pu − pv||

The first term of the difference can be interpreted as attraction between adjacent nodes,
and the second term can be interpreted as repulsion between any two (different) nodes.
To avoid infinite energies we assume that different nodes have different positions. This
is no serious restriction because we are interested in good drawings, i.e. drawings with
low energy.

2.2 The Cut Ratio as a Measure of Coupling

Many different definitions of the term cluster of a graph have been proposed. Informally,
we denote by cluster a set of nodes with many internal edges (high cohesion) and few
edges to nodes outside the set (low coupling). Similar definitions are used in VLSI
design [2], parallel computing [25], and software engineering [23].

To make more precise what we mean by a cluster, we use a formally defined measure
of coupling: the cut ratio. For a cut (V1, V2), the cut ratio is the fraction of possible edges
between V1 and V2 which actually occur:

cutratio(V1, V2) =
|E[V1, V2]|
|V1| · |V2|

The problem of finding a cut with minimum cut ratio is known as the sparsest cut problem.
Section 4 shortly discusses work related to this problem.

The cut ratio is normalized with respect to the number |V1| · |V2| of possible edges
between V1 and V2, which makes its interpretation independent of the size of V1 and V2.
For all cuts (V1, V2) of a random graph the expected value of the cut ratio is equal, while
the expected number of edges crossing the cut strongly depends on the size of V1 and V2.

2.3 LinLog Separates Clusters

In this subsection we show that in minimum energy drawings of the LinLog model,
clusters are clearly separated from the remaining nodes, and the nodes of each cluster
are close to each other. More precisely: If a set of nodes V1 is loosely coupled to the
remaining nodes V \ V1, then the distance of V1 to the remaining nodes is large. If V1 is
strongly coupled to V \ V1, then V1 is close to the nodes in V \ V1, in particular to its
adjacent nodes. This is achieved by minimizing the ratio of the average edge length to
the average distance of (all pairs of different) nodes.

Let us illustrate this with two examples. First, consider a drawing where V1 is close to
the remaining nodes, although it is only loosely coupled to them. Loose coupling means
that there are few edges and many non-edges between V1 and the remaining nodes.
Thus increasing the distance of V1 to the remaining nodes will increase the average
distance of nodes much more than the average edge length. In the opposite case, V1 is
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strongly coupled to the remaining nodes, but is drawn at a great distance from them.
Then decreasing the distance, especially to the nodes to which V1 is adjacent, will make
relatively many edges and few non-edges shorter. Thus the average edge length will
decrease more than the average distance of nodes.

The following theorem states that drawings with minimal LinLog energy have a
minimal ratio of the arithmetic mean of the edge lengths to the geometric mean of the
node distances. So we formalize the average node distance as the geometric mean of
the node distances. The reason is our intuition that increasing the distance of two non-
adjacent nodes from 10 to 11 is not as good as increasing the distance from 1 to 2. Rather,
an increase from 1 to 2 (by a factor of 2) is about as good as an increase from 10 to 20
(also by a factor of 2). This also captures that different nodes should not have the same
position. Thus we preferred the geometric mean instead of the arithmetic mean, but we
do not claim that this is the only possible choice.

Theorem 1. Let G = (V, E) be a connected graph, and let p0 be a drawing of G with
minimum LinLog energy. Then p0 is a drawing of G that minimizes arithmean(E,p)

geomean(V (2),p) .

Proof: The basic idea is to fix the average edge length temporarily. This does not restrict
generality, but only the scaling factor, and thus can be removed at the end of the proof.
It allows to transform the minimization of energy into a minimization of the inverse
geometric mean of the node distances.

Let the drawing p0 be a solution of the minimization problem:

Minimize ULinLog(p).

Let c =
∑

{u,v}∈E ||p0
u − p0

v||. Note that c ≥ 0. Then p0 is also a solution of

Minimize ULinLog(p) subject to
∑

{u,v}∈E
||pu − pv|| = c.

This is equivalent to

Minimize −
∑

{u,v}∈V (2)
ln ||pu − pv|| subject to

∑
{u,v}∈E

||pu − pv|| = c.

Because f(x) = |V (2)|√exp(x) is a monotonic increasing function, p0 is a solution of

Min. |V (2)|
√

exp
(
−

∑
{u,v}∈V (2)

ln ||pu− pv||
)

subj. to
∑

{u,v}∈E
||pu− pv|| = c.

This is equivalent to

Minimize
1

geomean(V (2), p)
subject to arithmean(E, p) =

c

|E| .

(|E| > 0 because we only consider connected graphs with at least two nodes.) Because
c

|E| is nonnegative, p0 is also a solution of

Minimize
arithmean(E, p)
geomean(V (2), p)

subject to arithmean(E, p) =
c

|E| .
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For every drawing q0 of G that minimizes arithmean(E,p)
geomean(V (2),p) , we can construct a

drawing q1 = c
|E| arithmean(E,q0)q

0 with arithmean(E,q1)
geomean(V (2),q1) = arithmean(E,q0)

geomean(V (2),q0) and

arithmean(E, q1) = c
|E| . (Because geomean(V (2), q0) > 0, no two different nodes

have the same position in q0, so arithmean(E, q0) > 0.) So p0 is also a solution of

Minimize
arithmean(E, p)
geomean(V (2), p)

.
�

This characterization of drawings with minimum LinLog energy is precise up to
scaling. To show this, we use a lemma which states that the overall edge length in all
minimum LinLog energy drawings is (|V |−1)·|V |

2 . So the overall edge length is inde-
pendent from the number of edges and the structure of the graph. This lemma has a
practical value in itself, because it helps to choose the scaling factor: For a drawing with
an average edge length of 1, scale the minimum LinLog energy drawing by a factor of

2|E|
(|V |−1)·|V | .

Lemma 1. Let G = (V, E) be a connected graph, and let p be a drawing of G with
minimum LinLog energy. Then

∑

{u,v}∈E

||pu − pv|| =
∣∣V (2)

∣∣

Proof: The basic idea is to express the LinLog energy as a function of the scaling factor,
where the scaling is applied to a minimum LinLog energy drawing. Then this function
has a minimum at the minimum energy drawing, i.e. at a scaling factor of 1. The details
of the proof are given in [24]. �

Theorem 2. Let G = (V, E) be a connected graph. Then p0 is a drawing of G with
minimum LinLog energy if and only if p0 is a drawing that minimizes arithmean(E,p)

geomean(V (2),p)

and satisfies
∑

{u,v}∈E ||p0
u − p0

v|| =
∣∣V (2)

∣∣.

Proof: ⇒: Follows from Theorem 1 and Lemma 1.
⇐: Similar to the proof of Theorem 1. The details are given in [24]. �

2.4 LinLog Creates Interpretable Distances

In this subsection we show that in minimum energy drawings of the LinLog model,
the distance of each cluster to the remaining nodes is interpretable. More precisely, the
distance approximates the inverse coupling of the cluster to remaining nodes.

The following theorem states that wherever one cuts a one-dimensional minimum
LinLog energy drawing into two nonempty parts, the harmonic mean of the distances
between the nodes in the two parts equals the inverse cut ratio. So we formalized the
distance of two sets of nodes as the harmonic mean of the distances of their members.
The harmonic mean corresponds better to our intuition than the arithmetic or geometric
mean because it weights small distances higher than large distances. If the distances
within the two sets of nodes are much smaller than the distances between the two sets,
then the harmonic, the geometric and the arithmetic mean are roughly equal.
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Theorem 3. Let G = (V, E) be a connected graph, and let p be a one-dimensional
drawing of G with minimal LinLog energy. Let (V1, V2) be a cut of G such that the nodes
in V1 have smaller positions than the nodes in V2 (i.e. ∀v1 ∈ V1 ∀v2 ∈ V2 : pv1 < pv2).
Then

harmmean(V (2)[V1, V2], p) =
1

cutratio(V1, V2)
.

Proof: The basic idea is to express the LinLog energy as a function of the relative
positions of the two sets of nodes, and to exploit that the minimum energy drawing p is
a minimum of this function.

The LinLog energy of the drawing p is:
∑

{u,v}∈E

|pu − pv| −
∑

{u,v}∈V (2)

ln |pu − pv|

(To simplify the notation, we consider the positions as scalars here.) If some d ∈ IR
is added to the coordinates of all nodes in V1, such that the condition that the
nodes of V1 have smaller coordinates then the nodes of V2 is still satisfied (i.e.
d < min{pv | v ∈ V2} − max{pv | v ∈ V1}), the LinLog energy is

U(d) =
∑

{u,v}∈E[V1]∪E[V2]

|pu − pv| −
∑

{u,v}∈V
(2)
1 ∪V

(2)
2

ln |pu − pv|

+
∑

{u,v}∈E[V1,V2]

(|pu − pv| + d) −
∑

{u,v}∈V (2)[V1,V2]

ln(|pu − pv| + d)

Because p is a drawing with minimal LinLog energy, this function has a global minimum
at d = 0, so U ′(0) = 0.

0 = U ′(0) =
∣∣E[V1, V2]

∣∣ −
∑

{u,v}∈V (2)[V1,V2]

1
|pu − pv|

Inserting the harmonic mean harmmean(V (2)[V1, V2], p) of the distances between V1
and V2 we get

0 =
∣∣E[V1, V2]

∣∣ − |V1| · |V2|
harmmean(V (2)[V1, V2], p)

harmmean(V (2)[V1, V2], p) =
|V1| · |V2|
|E[V1, V2]| =

1
cutratio(V1, V2) �

The generalization of the theorem to higher-dimensional drawings is: For each hy-
perplane that cuts a minimum LinLog energy drawing into two nonempty parts, the
harmonic mean of the distances between the corresponding sets of nodes equals their
inverse cut ratio. But it is not true. The reason is, loosely stated, that in two or more
dimensions the directions of the edges between the two sets of nodes can be different
from the directions of the non-edges. So when one set is moved, the average change of
the edge lengths is different from the average change of the non-edge lengths. However,
this difference is small in most practical cases. In particular, the one-dimensional case
is a good approximation when the distance of a cluster to the remaining nodes is large.
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3 Examples

Figures 1, 2 and 3 show drawings of pseudo-random graphs with clusters for the LinLog
energy model and the well-known Fruchterman-Reingold force model ([14], further
discussed in Sect. 4). In all figures, the LinLog model (left drawings) reveals the clusters
more clearly than the Fruchterman-Reingold model (right drawings).

Figure 1 shows a pseudo-random graph with eight clusters of 100 nodes each. The
probability of an edge {u, v} is 0.16 if u and v belong to the same cluster and 0.02
otherwise. (All edges are chosen independently.) Overall, the graph has 6341 intra-
cluster edges and 5625 inter-cluster edges. The eight clusters are clearly separated in
the drawing for the LinLog model, but the borders of the clusters look fuzzy and some
nodes do not seem to belong to any cluster. This is to be expected of a random graph:
Some nodes have a small degree, and hence drift to the border of the drawing. Other
nodes are equally connected to two clusters, and are drawn between these clusters.

Figure 2 shows a graph with four clusters, each having four subclusters of 50 nodes.
The subclusters are cliques (edge probability 1), the edge probability between nodes of
different subclusters of the same cluster is 0.32, and the edge probability between nodes
of different clusters is 0.16. The drawing for the LinLog model clearly shows the hier-
archical structure. With 19600 intra-subcluster edges and 57346 inter-subcluster edges,
separating the (sub)clusters seems more difficult than in the first graph. Nevertheless,
Fig. 2 looks more orderly than Fig. 1, because every node is guaranteed to be adjacent
to all other nodes of its subcluster.

The graph of Fig. 3 is a pseudo-random graph with one central cluster of 200 nodes
and three “satellite” clusters of 100 nodes each, called cluster A, B and C. The probability
of an edge {u, v} is

– 0.12 if u and v belong to the same cluster,
– 0.04 if u belongs to the central cluster and v belongs to cluster A,
– 0.02 if u belongs to the central cluster and v belongs to cluster B,
– 0.01 if u belongs to the central cluster and v belongs to cluster C, and
– 0 otherwise.

The first thought might be that the distance from the central cluster to cluster A should
be half the distance from the central cluster to cluster B, which again should be half the
distance from the central cluster to cluster C. But the actual central-to-B distance in the
drawing for the LinLog energy model is greater than twice the central-to-A distance. This
is because for cluster B, the central cluster and cluster A effectively form one big cluster
of 300 nodes, yielding an effective edge probability of only about 0.013. On the other
hand, cluster B has little influence on the central-to-A distance because it is relatively
far away from both. So the LinLog model did not only separate different clusters, it also
produced interpretable distances between the clusters.

4 Discussion

Related Work: Force and Energy Models. In Sect. 2.4 we have shown that in draw-
ings with minimum LinLog energy, the distance of a cluster to the remaining graph is
approximately inversely proportional to the coupling. For many of the best-known force
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Fig. 1. Pseudo-random graph with intra-cluster edge probability 0.16 and inter-cluster edge prob-
ability 0.02; left: LinLog model, right: Fruchterman-Reingold model

Fig. 2. Pseudo-random graph with hierarchical clusters; left: LinLog model, right: Fruchterman-
Reingold model

Fig. 3. Pseudo-random “satellite” graph; left: LinLog model, right: Fruchterman-Reingold model
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and energy models there is only a weak dependency of distance and coupling, and thus
these energy models do not isolate clusters well. (See [24] for a more detailed discussion
of these models.)

The models of Eades [12], Fruchterman and Reingold [14], and Davidson and
Harel [10] strongly enforce uniform edge lengths. However, separating clusters requires
some long edges. Section 3 contains example drawings of the Fruchterman-Reingold
model. In multidimensional scaling [20] and the model of Kamada and Kawai [18], the
distances between nodes in the drawing are determined by their graph-theoretic dis-
tances. But the graph-theoretic distances and the coupling are only weakly related. The
energy model of Hall ([16], recently used e.g. in [8,19]) places some non-adjacent nodes
and loosely coupled subgraphs very close or at the same position.

All mentioned energy models easily generalize to graphs with weighted edges. Given
appropriate edge weights, the models create drawings which reveal clusters. But this
means putting clusters in (in the form of edge weights) to get clusters out. Other ap-
proaches apply force-directed methods to draw graphs with a given hierarchical cluster
structure [30,13]. But finding clusters or appropriate edge weights is difficult, because
most variants of the graph clustering problem are NP-hard.

In the LinLog energy model, the attraction and repulsion between the nodes reveal the
clusters. It does not require knowledge about clusters as input, but provides it as output.
Classical force and energy models and the LinLog model complement each other, as
discussed in the third subsection.

Related Work: Clustering by Minimizing Distance Ratios. For a given graph, the cut
with the minimum cut ratio is called the sparsest cut. Computing sparsest cuts is NP-
hard. In [22] and [3] approximation algorithms are given that compute sparse cuts from
minima of arithmean(E,p)

arithmean(V (2),p) (with respect to appropriate metrics). So it is not surprising

that minimizing the similar ratio arithmean(E,p)
geomean(V (2),p) reveals clusters. The proof that minima

of the LinLog energy are also minima of the latter ratio (Theorem 2) is a main result
of this paper, because it enables the application of algorithms from force-directed graph
drawing to minimize this ratio. Lacking space for a detailed discussion, we can only
note that the results concerning sparsest cut approximations from [22] and [3] cannot be
directly transferred to minima of the LinLog model, and that the minima used in these
approximations are generally less interpretable to humans than LinLog minima.

Generalization: The r-PolyLog Energy Models. The class of energy models r-
PolyLog contains two energy models that were already discussed: The 1-PolyLog model
is the LinLog model introduced in Sect. 2, and the 3-PolyLog model is equivalent to the
Fruchterman-Reingold model [14] discussed in the first subsection. (The Fruchterman-
Reingold model is usually expressed as force model, but we give the energy version for
uniformity.) For all r ∈ IR with r ≥ 1, the r-PolyLog energy Ur-PolyLog(p) of a drawing
p is defined as

Ur-PolyLog(p) =
∑

{u,v}∈E

1
r
||pu − pv||r −

∑
{u,v}∈V (2)

ln ||pu − pv||
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The class contains energy models which isolate clusters (r = 1), energy models
which enforce uniform edge lengths (r → ∞), and many compromises between both
extremes (1 < r < ∞). Thus it contains suitable energy models for many kinds of
undirected graphs from the small worlds described in the next subsection to the graphs
addressed by classical force-directed graph drawing.

Application: Drawing Clustered Small-World Graphs. According to Albert and
Barabási [1], three concepts are prominent in contemporary thinking about complex
networks: small worlds, clustering, and degree distributions. In small-world graphs, the
nodes have small graph-theoretic distances, relative to the number of nodes. For clustered
small-world graphs with hundreds or thousands of nodes, drawings with uniform edge
lengths or Euclidean distances proportional to graph-theoretic distances do not reveal
the structure of the graph. That is why most well-known force and energy models are
not suitable for drawing such graphs.

The LinLog model can reveal the clusters in small worlds. We applied it for drawing
call graphs and similar models of object-oriented programs [21]. Further examples of
clustered small-world graphs include models of computer networks, the World Wide
Web, and social networks [27,1].

Interpretability of Drawings. Drawings of graphs are useful because we can infer
properties of the graph from properties of the drawing. For valid inferences, we need
precise statements which properties of the drawing correspond to which properties of
the graph. For minimum energy drawings of the LinLog model, Theorem 1 states how
the Euclidean distance of nodes corresponds to the adjacency of nodes, and Theorem 3
states how the Euclidean distance of sets of nodes corresponds to their coupling.

Empirical studies have shown that human viewers indeed attribute semantics to the
placement of nodes, even if they are not told that such a correspondence exists. In a
study of Dengler and Cowan, the most important semantic attribution is that observers
view graph drawings hierarchically, that they separate them into interconnected sub-
graphs [11]. Blythe et al. concluded from their study in the context of social network
analysis, that the Euclidean distance of nodes has a significant effect on the viewers’
assignment of nodes to groups [5].

The Role of Theory in the Development and Evaluation of Energy Models. To date,
force and energy models have been evaluated mainly empirically. Complementing this
empirical evaluation with theoretical evaluation (as done in Sects. 2.3 and 2.4) is desirable
for two reasons. First, while empirical studies can only examine a limited number of
graphs, theory can prove results for large or infinite classes of graphs. Second, theory
can explain why an approach does or does not work for a given class of graphs.

Unlike the strategy of presentation in this paper, the development process of the Lin-
Log model was not first guessing and then evaluating it. Rather, we gradually developed
the energy model from the informal requirement of having isolated clusters with inter-
pretable distances. In this process, theoretical considerations were used for the stepwise
reduction of the space of candidate energy models. (See [24] for details.)
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5 Conclusion

The LinLog energy model was introduced. It was shown that in its minimum energy draw-
ings, clusters are clearly separated from the remaining nodes and their distance to the
remaining nodes is approximately the inverse of the coupling. The LinLog model com-
plements well-known force and energy models like the Fruchterman-Reingold model
which do not separate the clusters of graphs with small diameter well. The class of
energy models r-PolyLog was proposed that includes suitable energy models for many
graphs from clustered graphs with small diameter to the graphs addressed by classical
force-directed graph drawing.

In the future, we will apply and extend our theoretical tools to develop special-
purpose energy models for interpretable visualizations of software systems. Another
direction of future work is the theoretical analysis of existing force and energy models.
Initial results can be found in [24].

An important problem that was not addressed in this paper is the development of
algorithms that reliably and efficiently find good energy minima. We have shown that
we can draw valid inferences from minimum energy drawings, but interpreting drawings
with high energy (e.g. most random drawings) in the same way can give invalid results.
Different kinds of graphs not only require different energy models, but may also require
different minimization algorithms. For example, some multi-scale algorithms are not
expected to find good energy minima for dense graphs or graphs with small diameter [15,
17,29].
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