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Abstract—The advent of energy “prosumers” that not only
consume but also produce energy, advocates a sharing market to
encourage energy exchange. Motivated by the recent technology
of online platforms, this paper proposes a simple but effective
mechanism for energy sharing by generalizing demand bidding.
Towards this end, a generic supply-demand function (SDF) is
devised for individual prosumers to determine their role of
buyer or seller in the sharing market, where the outcome is
shown to be a Nash equilibrium (NE) among prosumers. The
existence and uniqueness of NE are proved. Properties of the
equilibrium price are uncovered. Compared with individual
decision-making, the disutility of each prosumer can always be
reduced via purchasing cheaper energy in the sharing market,
leading to a Pareto improvement. It is revealed that the total
cost of prosumers decreases with the price elasticity and the
sharing market equilibrium can achieve social optimum when
the number of prosumers becomes large enough. It is also found
that introducing competition benefits social welfare. Case studies
confirm the theoretical results with analyses on the impacts of
several key factors. This work is expected to provide insights on
understanding and designing future energy sharing markets.

Index Terms—Prosumer, energy sharing, supply-demand func-
tion, game theory, Nash equilibrium

NOMENCLATURE

A. Indices and Sets

i Index of prosumers.

n Index of resources.

k Index of resource of prosumer.

I Set of prosumers.

N Set of resources.

S Set of sellers.

D Set of buyers.

Ki Set of resource of prosumer i.

fi(·) Disutility function of prosumer i.

si(·) Sharing cost of prosumer i.

mdi(·) Marginal disutility of prosumer i.

Πi(·) Total cost function of prosumer i.

Xi Action set of player i, and X = ∏i Xi.

B. Parameters

I Number of prosumers.
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N Number of resources.

D0
i Fixed amount of energy prosumer i consumes.

p0
i The amount of energy i generates originally.

E0
i The amount of energy bought from grid by i.

Di Required load reduction of prosumer i.

D,D Lower/upper bound of Di.

c,c Lower/upper bound of ci.

d,d Lower/upper bound of di.

a Price elasticity of prosumers

Ki Number of resource of prosumer i.

ci,di Coefficients of the disutility function for pro-

sumer i.

ck
i ,d

k
i Cost coefficients of resource k of prosumer i. .

C. Decision Variables

pi Output adjustment of prosumer i.

λc Sharing market clearing price.

bi Willingness to pay/buy of prosumer i.

b̄ Average purchase desire of all prosumers.

qi Amount of energy bought/sell from/to the sharing

market.

pk
i Output adjustment of resource k of prosumer i.

µi, µ
′

i Dual variable of energy balance equation in the

sharing problem of prosumer i.

ηi, η
′

i , η Dual variable of the market clearing condition.

ξ ,ξ
′

Dual variable of the energy balance equation of

the equivalent central decision-making problem.

I. INTRODUCTION

THE proliferation of distributed wind, solar power and

energy storage have been endowing traditional “pure”

consumers with capability of generation, precipitating the

advent of prosumers [1]. Different from traditional consumers,

prosumers can not only consume, but also produce energy.

Hence they can choose to either buy or sell energy when

participating in an energy market, which provides an opportu-

nity to flexibly exchange energy so as to enhance both the

individual utility and social efficiency [2]. In this context,

a well-designed market mechanism is desired to encourage

individual prosumers to participate in energy sharing. This

paper proposes a simple but effective mechanism based on

generalized demand bidding, making an initial step to better

understand the behavior of prosumers in energy sharing.

Nowadays, the advent of online platforms and applications

have been enabling resource sharing in more and more sectors,

such as ride-sharing (e.g., Uber, Lyft) [3], room-sharing (e.g.,

http://arxiv.org/abs/1904.07829v1
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AirBnB) [4], workplace-sharing (e.g., Upwork, Amazon Me-

chanical Turk) [5]. These sharing platforms allow people to

provide their idle goods for someone just in need and earn

profit from doing so, resulting in a win-win game. These

successes motivate a new paradigm of high-efficiency energy

utilization in power systems, where energy prosumers could

share their energy via online platforms in a similar way [6].

No surprising, such a paradigm has been gaining increasing

attentions from both the academia and the public.

Existing studies in economics have investigated the opera-

tion of resource sharing. The benefits and drawbacks of sharing

economy is discussed in [7]. The main difficulty of sharing

platform construction is the design of an appropriate sharing

mechanism, which means how the products be provided, how

the market be cleared and how the revenue be allocated.

Performance of typical sharing platforms is studied in [8]–

[10] and also their impacts on the social welfare [11]. The

influence of prices and subsidies is revealed in [12]. A review

of sharing economy can be found in [13].

As for energy sharing, the potential of game-theoretic

approaches was summarized in [14], including the applica-

tions in electric vehicles (EV), demand-side energy resource

(DER) and storage managements. The economic efficiencies

of autarky scheme, sharing scheme and aggregation scheme

were quantitatively compared in [15], showing that energy

sharing can achieve near-optimal efficiency without a central

coordinator, which is a promising scheme for future energy

market organization. An exchange article by article sharing

paradigm was investigated. Random sharing clearing price

in a storage investment problem is characterized in [16]. A

simplified time-of-use (TOU) model with peak price and off-

peak price was used. Above work initially explores the prob-

lem and opportunity of sharing in smart grid and the models

are relatively abstract and simple. More detailed analytical

studies related to resource sharing can be roughly cast into

the following three categories.

Two-sided market with clearing price. It is assumed that

there is a third-party platform. The sellers report the amount

of products they are willing to share or their cost coefficients;

the buyers report the amount of products they want or the

money they are willing to pay. After receiving all the bids, the

third-party sharing platform solves an optimization problem

with the objective function of social welfare maximization or

self-revenue maximization and clears the market. Ref. [17]

provides interesting insights into the tradeoff between revenue

maximization and social welfare maximization. The clearing

price of sharing market is analyzed in [18]. Incentive design

for electric vehicle-to-vehicle charge sharing is investigated

in [19]. System constraints such as energy-flow limits can be

taken into account in the two-sided market analysis. However,

since the supply and demand statuses of participants are pre-

determined, it can not fully capture the behaviors of prosumers

who can choose to purchase or sell changeably.

Single-sided market with set price. Different from the

two-sided market, it assumes that the statuses of participants

are symmetric, which means all of them can flexibly choose

to purchase or sell. The benefits from sharing are distributed

among prosumers via prices set by the sharing platform. An

hour-ahead optimal pricing model of energy sharing man-

agement platform is proposed based under the framework of

Stackelberg game in [20]. Energy sharing among photovoltaic

(PV) prosumers is considered in [21], taking into account

uncertainty of renewable energy generation. Two kinds of

sharing schemes, the direct sharing (within one time period)

and the buffered sharing (across different time periods), are

discussed. A supply demand ratio based pricing algorithm is

adopted in [22] for the energy sharing in PV prosumers. In

the above studies, the sharing prices are set by the platform

via solving a Stackelberg game, in which the upper level is

the platform’s pricing problem and the lower level prosumers’

decision making problems. The impact of one prosumer’s

strategy on the other prosumers’ decision is not fully captured.

Single-sided market with re-allocation. In this kind of

sharing, the benefit distribution is achieved via re-allocation

instead of price regulation. The main difficulty stems from

the design of re-allocation scheme. The renowned Vickrey-

Clarke-Groves (VCG) mechanism [23] could be regarded as

an example. Under VCG, each agent not only gains its own

value but also an additional payment based on an arbitrary

function of the values of the other agents. Although the VCG

re-allocation approach is ease to implement, it is not self-

budget balancing as extra bonuses outside the sharing market is

required. A cost re-allocation method for a group of electricity

storages is presented in [24], resulting in a cooperative game.

A coalitional game based algorithm was proposed in [25] for

energy exchange among microgrids. A conceptual design for

the DERs sharing is proposed in [26], where an aggregator

coordinates all DERs in real-time operation and evaluates

coordination surplus, which is split between aggregators and

prosumers. However, the redistribution after a sharing trans-

action is difficult in practice, as it requires some private

information of individual participants, e.g. the storage capacity

and the cost coefficient.

This paper proposes a simple but transparent and effective

energy sharing mechanism based on generalized demand bid-

ding. A similar framework is known as the supply function

bidding [27], [28] in demand response programs. Under this

mechanism, each seller submits his supply function to the

auctioneer, then the auctioneer sets a market clearing price

according to the submitted supply functions and the expected

total load shedding. Supply function bidding can fully capture

the impact of seller’s bid on his contracted quantity as well

as the market clearing price, and is effective in competitive

markets [29]. When it comes to the sharing market, the

situation is more complex since the prosumers not only aim to

minimize his cost but should also maintain power balancing.

Besides, sellers and buyers coexist and can change their roles

from time to time, and the equilibrium quantity is not known

in advanced. In this regard, we generalize the supply function

to a generic supply-demand function (SDF), based on which

we build a sharing market mechanism for energy prosumers.

This work possesses three salient features:

1) Sharing mechanism design. A generic supply-demand

function is proposed, enabling a generalized demand biding

based sharing mechanism. In contrast to the two-sided market

based analysis, any participant can be a prosumer that aims
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to minimize his own disutility. Moreover, different from the

single-sided market with set price, the mutual impacts among

prosumers are considered, which can better characterize the

market behavior. The model encapsulating the decision making

of prosumers turns out to be a generalized Nash game (GNG),

which can be further reduced to a standard Nash game. The

existence and uniqueness of Nash equilbrium are proved.

2) Provable properties of the sharing mechanism. Prop-

erties of the sharing equilibrium price are disclosed. It is

proved that every prosumer’s cost is no more than with

individual decision-making, leading to a Pareto improvement

and meaning that every prosumer has the motivation to par-

ticipate in sharing. Moreover, the total cost of all prosumers

decreases with the price elasticity and when the number of

prosumers is large enough, the sharing market will lead to

the same outcome as the social optimum. It is also revealed

that the proposed generalized demand bidding based sharing

mechanism is budget self-balancing and no private information

is needed for re-allocation, which is easier to implement

compared with the re-allocation based schemes.

3) Impacts of competition on social efficiency. The basic

model is based on a perfectly competitive situation, in which

every prosumer owns and controls only one resource. We

further investigate a more realistic case, in which a prosumer

could possess multiple resources. A special case provides a

proof of concept that social cost can be reduced by spreading

the resources among more prosumers which means more

competition is introduced.

The rest of this paper is organized as follows. The mathe-

matical formulations of energy prosumers and description of

the energy sharing mechanism are presented in Section II;

some basic properties of the sharing game are given in Section

III; The impact of competition on social welfare is studied in

Section IV; Illustrative examples are provided in Section V.

Finally, conclusions are summarized in Section VI.

II. GAME MODEL OF ENERGY SHARING

A. Energy Prosumers

In this paper, we consider the decision-making problems of

a set of prosumers I , indexed by i ∈I = {1,2..., I}. There

are N kinds of resources, indexed by n ∈N = {1,2, ...,N},
which can be a distributed generator (DG), virtual power

plant (VPP) and etc. First, we consider the case under per-

fectly competitive market, where each prosumer i owns one

kind of resource, and we have I = N. To distinguish from

the case under imperfect competitive market, we use N to

represent the number of prosumers here. The fixed amount

of energy prosumer i consumes is D0
i , and is satisfied by

the amount of energy it generates p0
i as well as the energy

bought from the grid E0
i . These prosumers take part in a

demand response program, and the required amount of load

reduction for prosumer i is a given value Di, which means

the amount of energy it bought from the grid needs to be

reduced by Di (D ≤ Di ≤ D). Each prosumer changes its

resource output to meet the load adjustment. For example,

to reduce its load by Di > 0, prosumer i needs to increase

pi by Di. Any deviation from the original operating point

will cause disutility. The disutility function of prosumer i is a

quadratic function fi(pi) = ci p
2
i +dipi, where pi is the output

adjustment of resource and 0 < c≤ ci ≤ c, 0 < d ≤ di ≤ d are

the cost coefficients. When a prosumer i ∈ I takes part in

a demand response program individually, there is no room

for optimization since pi = Di is clearly the solution. The

corresponding cost is fi(Di).
However, the result under individual decision-making may

not be the most efficient if prosumers with different marginal

disutilities are allowed to trade with others. In such a cir-

cumstance, the design of an effective profit allocation scheme,

from which all prosumers take part in sharing can benefit,

is desired. The traditional supply function bidding in demand

response program cannot be applied because of the simulta-

neous non-deterministic clearing quantity and clearing price

as a prosumer can changeably acts as either a producer or a

consumer. Hence a more general bidding mechanism, which

can reflect prosumers’ willingness to buy or sell energy while

determining both the clearing quantity and price, are necessary.

B. Generic Supply-Demand Function

In this subsection, we propose a generic supply-demand

function by generalizing the conventional supply function, so

as to consider the situation where the participant can flexibly

change his role between a seller and a buyer.

In the sharing market, the demand (or supply) function of

each prosumer can be expressed by

qi = aiλc + bi (1)

where λc is the market clearing price, qi is the amount of

energy (qi > 0 means he is a buyer and gets energy from the

sharing market, qi < 0 means he is a seller and sells energy to

the sharing market). ai < 0 represents price elasticity and bi

shows his willingness to buy. For simplification, we assume all

prosumer have the same price sensitivity, i.e. ai = a< 0, i∈N .

The average purchase desire is defined as b̄ = (∑i bi)/N. The

market clears when the net quantity ∑i qi = 0 and the obtained

sharing price is

λc =−∑i
bi/Na =−b̄/a (2)

here bi ≥ b̄ implies prosumer i is more willing to buy than the

average. We have qi = aλc+bi ≥ 0, and the prosumer appears

to be a buyer. Similarly, a prosumer who has less willingness

to buy than the average (bi ≤ b̄) turns to be a seller (qi ≤
0). In consequence, the statuses of prosumers are determined

spontaneously by their purchase desires, which enable a simple

but effective sharing mechanism, as we explain.

C. Energy Sharing Mechanism

The sharing mechanism follows these three steps.

Step 1: Estimate the value of price elasticity a via historical

data. Each prosumer i bids bi to the sharing platform. The

average purchase desire is b̄ = ∑i bi/N

Step 2: Clear the sharing market by setting price to λc(b) =
−∑i bi/Na, which is called the equilibrium price. The amount

of energy prosumer i gets is qi(b) = aλc(b)+ bi
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Step 3: If bi ≥ b̄, the amount of energy qi(b) ≥ 0, which

means prosumer i will buy qi(b) from the sharing market and

his payment is λc(b)qi(b). Otherwise, if bi ≤ b̄, the amount of

energy qi(b)≤ 0, which means prosumer i will sell −qi(b) to

the sharing market and he will get −λc(b)qi(b).
Under this setting, the sharing market clears when

∑i∈S
(−qi) = ∑i∈D

qi (3)

S is the set of sellers, D is the set of buyers and each pro-

sumer i belongs to either S or D , which means I =S ∪D .

Hence equation (3) also implies

∑i∈I
(aλc + bi) = 0 (4)

D. Energy Sharing as A Generalized Nash Game

It is easy to verify that the setting price λc(b) clears the mar-

ket. When participating the sharing market, the optimization

problem of each prosumer i ∈I becomes

min
pi,bi

Πi := ci p
2
i + dipi +(aλc(b)+ bi)λc(b) (5a)

s.t. pi + aλc(b)+ bi = Di : µi (5b)

∑i
(aλc(b)+ bi) = Naλc +∑i

bi =0 : ηi (5c)

Here, Πi(pi,bi,b−i) is the cost function, which can be divided

into two parts: the disutility in terms of money fi(pi) := ci p
2
i +

di pi and the sharing cost si(b) := (aλc+bi)λc. (5b) represents

the energy balancing. (5c) is the sharing market clearing

condition, which appears in every prosumer’s problem. µi

and ηi are corresponding Lagrangian multipliers. Due to the

common constraint (5c), problem (5) constitutes a generalized

Nash game (GNG), where players’ payoffs and strategy sets

depend on each other.

In summary, the sharing game consist of the following

elements: 1) the set of prosumers I = {1,2, ..., I}; 2) action

sets Xi(b−i)
1,∀i, and strategy space X =∏i Xi; 3) cost functions

Πi(pi,bi,b−i),∀i. For simplicity, we use G = {I ,X ,Π} to

denote the sharing game (5) in an abstract form.

III. PROPERTIES OF THE SHARING GAME

A. Existence and Uniqueness of Equilibrium

In this subsection, we show that the GNG model of energy

sharing problems can be reduced into a standard Nash game,

based on which we prove the existence and uniqueness of its

equilibrium.

Denote by b j the bids of other prosumer j ( j 6= i). From

(5c), we have

λc(b) =−
bi

Na
−

∑ j 6=i b j

Na
(6)

Substituting into (5b) yields

pi = Di−
N− 1

N
bi +

∑ j 6=i b j

N
(7)

Using bi to represent pi and λc(b), the GNG (5) degenerates

into a equivalent standard Nash game (8).

min
bi

ci

(

Di−
N− 1

N
bi +

∑ j 6=i b j

N

)2

1The subscribe −i means all players in I except i

+di

(

Di−
N− 1

N
bi +

∑ j 6=i b j

N

)

+

(

−
bi

N
−

∑ j 6=i b j

N
+ bi

)(

−
bi

Na
−

∑ j 6=i b j

Na

)

(8)

Direct computation shows that, the second derivative of the

objective function is 2
[

ci

(

N−1
N

)2
− N−1

N2a

]

> 0, implying each

prosumer solves a strictly convex optimization.

Definition 1. (Nash Equilibrium) A strategy profile (p∗,b∗) ∈
X is a Nash Equilibrium (NE) of the sharing game G =
{I ,X ,Π} defined by (5) 2, if ∀i ∈I

Πi(p∗i ,b
∗
i ,b
∗
−i)≤Πi(pi,bi,b

∗
−i),∀(pi,bi) ∈ Xi(b−i∗)

Given p, define λ̃ (p) := 1
N ∑i(2ci pi +di) and b̃i(p) := Di−

pi− aλ̃(p). We have the following proposition.

Proposition 1. There exists a unique NE for the sharing game

(5). Moreover, a strategy profile (p∗,b∗) is the unique NE if

and only if, ∀i ∈I , p∗i is the unique solution of:

min
pi,∀i

∑
i

(

ci−
1

2(N− 1)a

)

p2
i +

(

di +
Di

(N− 1)a

)

pi (9a)

s.t. ∑
i

pi =∑
i

Di : ξ (9b)

and b∗i = b̃i(p∗).

The proof of Proposition 1 can be found in Appendix A.

Proposition 1 is fundamental since it ensures that the proposed

sharing game is well defined. Furthermore, it implies that

the NE computation can be greatly simplified into solving a

simpler optimization problem (9), which is strictly convex.

B. Individual Rationality of Prosumers

The next proposition shows that all the prosumers are

incentivized to share by comparing the costs of the individual

decision-making and the sharing game (5) at equilibrium.

Let Πi(p∗i ,b
∗) be the cost of prosumer i at the NE of sharing

game G = {I ,X ,Π} defined by (5), and fi(Di) the cost of

prosumer i with his individual optimal decision.

Proposition 2. We have

Πi(p∗i ,b
∗)≤ fi(Di),∀i ∈I (10)

moreover, (10) holds with strictly inequality for at least one i

unless the unique optimal solution of (9) is p∗i = Di,∀i.

The proof of Proposition 2 can be found in Appendix B.

It says that with the proposed sharing mechanism, a Pareto

improvement can be achieved for all prosumers, since the

cost of each prosumer is no worse than making decisions

individually. Hence, the sharing mechanism provides positive

incentives for prosumers to participate in the sharing market,

which is crucial for the market design.

2Given a collection of xi for i in a certain set A, x denotes the vector
x := (xi; i ∈ A) of a proper dimension with xi as its components
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C. Sharing Price and Prosumers’ Behavior

In this subsection, we clarify the relationship between the

sharing price λc that clears the market and prosumer’s marginal

disutility, as well as the resulting prosumers’ behavior.

Definition 2. (Marginal Disutility) The marginal disutility of

prosumer i, denoted by mdi, is defined as

mdi(pi) :=
∂ fi(pi)

∂ pi

= 2ci pi + di

Proposition 3. Assume (p∗,b∗) is the NE of the sharing game

(5). Then

1) the sharing price at equilibrium is given by

λ ∗c =
1

N
∑

i

mdi(p∗i );

2) mdi(p∗i )> λc(b
∗) if and only if qi(b

∗)> 0.

The proof of Proposition 3 can be found in Appendix C.

Proposition 3 says that, the clearing price at the NE is simply

the average marginal disutility of all prosumers participating in

the sharing market. Moreover, the prosumers whose marginal

disutility is larger than the average (which equals λc) have

qi(b
∗) > 0 and hence will buy energy, while whose marginal

cost is lower than the average have qi(b
∗) < 0 and hence

will sell energy. Under the proposed sharing mechanism,

a prosumer with higher/lower marginal disutility produces

less/more and purchases/sells in the sharing market.

D. Social Efficiency

To investigate the social efficiency of the proposed sharing

mechanism, consider the social planner’s problem:

min
pi,∀i∈I

∑i
(ci p

2
i + dipi) (11a)

s.t. ∑i
pi = ∑i

Di (11b)

Definition 3. (Socially Optimal) p̄ is socially optimal if p̄ is

the unique optimal solution of (11).

Optimal solution of (11) is different from the case under

individual decision-making, except for the case in which pi =
Di ∀i∈I happens to be the optimal solution to problem (11).

The difference in their optimal values interprets the loss of

social welfare. Next we reveal that the proposed energy sharing

mechanism can effectively reduce the loss of social welfare.

Invoking Proposition 1, it is easy to see, as the number

of prosumers N in model (9) approaches infinity, the NE of

the sharing problem (5) would turn to be identical to the

solution to social optimization problem (11). Next we show

the asymptotic convergence as N→ ∞.

Proposition 4. Let (p∗(N),b∗(N)) be the unique NE of (5)

and p̄(N) be the socially optimal solution of (11). Then, we

have

∑i∈I
fi(p∗i (N)) ≥∑i∈I

fi(p̄i(N))

and the average cost difference

lim
N→∞

1

N

[

∑i∈I
fi(p∗i (N))−∑i∈I

fi(p̄i(N))
]

= 0

The proof of Proposition 4 can be found in Appendix

D. Proposition 4 says that the proposed sharing mechanism

asymptotically converges to the social optimum when there is

an large enough number of prosumers in the sharing market.

Similarly, the impact of price elasticity can be analyzed by

the following proposition.

Proposition 5. Let (p∗(a),b∗(a)) be the unique NE of (5) with

price elasticity equals to a < 0. Then, we have ∑i∈I fi(p∗i (a))
is decreasing in |a|.

The proof of proposition 5 can be found in Appendix

E. It reveals that when |a| becomes larger, which means

the prosumers are more sensitive to the change of price,

the total social cost under sharing decreases and becomes

closer to the social optimal cost. It is worthy nothing that,

because ∑i∈I (aλc + bi)λc = 0 holds, the group of prosumers

are budget self-balancing. It implies that no extra bonus is

needed to motivate the sharing market, which is a main

superiority compared with the renown Vickrey-Clarke-Groves

(VCG) mechanism.

IV. IMPACTS OF COMPETITION

Above analysis assumes a simplified competitive market,

where each prosumer owns only one resource and there exists

no monopoly power. Next we analyze a more complicated

situation, in which prosumers could own multiple resources.

Assume that there are I multi-resource prosumers (MRP)

indexed by i ∈ I = {1,2, ..., I}. Each prosumer i owns Ki

kinds of resources labeled by k ∈Ki = {1,2, ...,Ki}. The cor-

responding energy productions are p1
i , p2

i , · · · , p
Ki
i . However,

we assume there are still N resources in total, which means

∑i∈I Ki = N. The multi-resource prosumer (MRP) i ∈I can

either carry out the demand response command individually

by solving the following problem

min
pk

i ,∀k∈Ki

∑
k

[

ck
i

(

pk
i

)2

+ dk
i

(

pk
i

)

]

(12a)

s.t. ∑
k

pk
i = Di (12b)

or take part in the sharing market by solving

min
pk

i ,∀k∈Ki,bi

∑
k

[

ck
i

(

pk
i

)2

+ dk
i pk

i

]

+(aλc + bi)λc (13a)

s.t. ∑
k

pk
i + aλc+ bi = Di : µ

′

i (13b)

∑
i

(aλc)+∑
i

bi = 0 : η
′

i (13c)

Following the similar process as in Section III, we can easily

prove again that the proposed sharing mechanism can benefit

all MRPs and the equilibrium sharing price reflects the average

marginal disutility.

Definition 4. (Social Optimal for MRP) p̄ is socially optimal

(or the most efficient) if p̄ solves

min
pk

i ,∀i∈I ,k∈Ki

∑
i

∑
k

[

ck
i

(

pk
i

)2

+ dk
i pk

i

]

(14a)

s.t. ∑
i

∑
k

pk
i = ∑

i

Di (14b)
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If I = 1, the sharing problem for MRP (13) becomes the

social optimal problem (14). If I = N, the sharing problem for

MRP (13) degenerates to the sharing problem in the previous

sections. If 1 < I < N, the following propositions hold.

Proposition 6. The marginal disutilities of the resources for

a prosumer are equal, which means3

mdi(pi) := md1
i

(

p1
i

)

= · · ·= md
Ki
i

(

p
Ki
i

)

, ∀i ∈I (15)

Proposition 6 can be directly deduced from the KKT con-

dition. So we omit the proof here.

Given p := (pi,∀i), we define λ̃ (p) := 1
I ∑i mdi(pi) and

b̃i(p) := Di −∑k pk
i − aλ̃ (p). Then we have the following

proposition.

Proposition 7. There exists a unique NE for the sharing

problem with MRP (13). Moreover, a strategy profile (p∗,b∗)
is the unique NE if and only if, ∀i ∈ I , p∗i is the unique

solution of (16).

min
pk

i ,∀i,k∈Ki

∑
i

∑
k

[(

ck
i −

1

2(I− 1)a

)

(

pk
i

)2

+

(

dk
i +

Di

(I− 1)a

)

pk
i

]

−

∑
i

∑
j>k∈Ki

pk
i p

j
i

(I− 1)a
(16a)

s.t. ∑
i

∑
k

pk
i = ∑

i

Di : ξ ′ (16b)

and b∗i = b̃i(p∗).

The proof of Proposition 7 can be found in Appendix F.

Proposition 7 extends the result of existence and uniqueness

of the NE in the sharing game from the single-resource case

to the multi-resource one, and again provides an effective way

to simplify the computation of NE.

Then we analyze the change in efficiency based on model

(16). Generally speaking, as I varies from 1 to N, the change

in the total socially optimal cost may not be monotonous. So

we only consider a special case in which all ck
i = c,∀k,∀i and

Ki = KI ,∀i and gives the following proposition.

Let (I,KI ,D) denotes a scenario that there are I prosumers,

each has KI resources and the required load adjustment for

prosumer i is Di. Then, the scenario (I
′
,K

I
′ ,D

′
) is an equal

partition of (I,KI ,D) when there exists an Z ∈ Z
+, such

that I
′
= ZI and KI = ZK

I
′ , the resources one prosumer

possesses and required load adjustment is distributed equally

to Z prosumers and satisfies, ∀i,∀z1,z2 ∈ {1, ...,Z}

(D
′

Z(i−1)+z1
−

K
I
′

∑
k=1

pk∗
Z(i−1)+z1

)(D
′

Z(i−1)+z2
−

KI
′

∑
k=1

pk∗
Z(i−1)+z2

) ≥ 0

Z

∑
z=1

D
′

Z(i−1)+z = Di

where p∗ is the NE under scenario (I,KI ,D).

Definition 5. (Variance of marginal disutility) The variance

of marginal utilities mdk∗
i ,∀k ∈KI,∀i ∈I is defined as

Var(mdk∗
i , I) :=

1

N

I

∑
i=1

KI

∑
k=1

(mdk∗
i −

1

N

I

∑
i=1

KI

∑
k=1

mdk∗
i )2

3 pi denotes the vector pi := (pk
i ,∀k)

Proposition 8. Suppose ck
i = c,∀i ∈ I ,∀k ∈ Ki and

(p∗(I),b∗(I)) is the unique NE of the sharing problem for

MRP (13) with I > 1. For any I prosumers with the same

number of resources, i.e. Ki = KI ,∀i ∈I , there always exists

an equal partition of (I,KI ,D) to (I
′
,K

I
′ ,D

′
), such that

I
′

∑
i=1

K
I
′

∑
k=1

fik(pk∗
i (I

′
))≤

I

∑
i=1

KI

∑
k=1

fik(pk∗
i (I))

Moreover, if −2ac≤ N, then

Var(mdk∗
i , I

′
)≤Var(mdk∗

i , I)

The proof can be found in Appendix G. It shows that the

system under I = 1 is the most efficient; otherwise, introducing

competition by spreading resources benefits social welfare.

Proposition 8 only considers a very special case. In Section

IV, we provide empirical results of numerical experiments to

further confirm this property.

V. ILLUSTRATIVE EXAMPLES

In this section, numerical experiments are presented to

illustrate theoretical results. First, a simple case is used to

illustrate the basic setup. Then, the impacts of several factors

are analyzed, including the number of prosumers, their price

elasticities as well as the impact of competition.

A. Benchmark Case

The simplest scenario with two prosumers is taken as an

illustrative example. p1 and p2 are the output adjustment of

prosumer 1 and 2. We assume the price elasticity a = −1,

the cost coefficients c1 = 2, d1 = 3 and c2 = 4, d2 = 5. The

required demand reduction are D1 = 1 and D2 = 2. The optimal

output adjustments and the corresponding costs when making

decisions individually (IDL), taking part in the sharing market

(SMK) and the social optimal (SCO) are shown in Table I. The

best response curves of two prosumers are shown in Fig.1.

TABLE I
OPTIMAL SOLUTION UNDER IDL, SMK AND SCO

Scheme IDL SMK SCO

Optimal output adjustment p1 1.00 2.00 2.17

Optimal output adjustment p2 2.00 1.00 0.83

Cost of prosumer 1 5.00 2.00 15.89

Cost of prosumer 2 26.00 21.00 6.95

Social total cost 31.00 23.00 22.83

Relative cost difference 35.76% 0.73% –

From Table I, we can find that when the prosumers take part

in sharing, their individual costs all decrease (prosumer 1 from

5.00 to 2.00, and prosumer 2 from 26.00 to 21.00), so does

the social total cost, confirming Proposition 2. The relative

social cost difference 4 between IDL and SCO is 35.75% while

the relative social cost difference between SMK and SCO is

4Relative social cost difference(IDL,SCO)= ∑ i∈I fi(Di)−∑i∈I fi(p̄i)

∑i∈I fi(p̄i)
, Rela-

tive social cost difference(SMK,SCO)=
∑ i∈I fi(p∗i )−∑i∈I fi(p̄i)

∑i∈I fi(p̄i)



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, FEB. 2019 7

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12
12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

b1

b
2

BRC of Prosumer 2

BRC of Prosumer 1

Fig. 1. Best response curves of two prosumers.
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Fig. 3. Variance of marginal disutilities under different N.

0.73%, showing that the sharing mechanism can greatly reduce

the social total cost. The intersection of best response curves in

Fig.1 gives the sharing market equilibrium, which is (b1,b2) =
(11,13) and the corresponding equilibrium output adjustment

is (p1, p2) = (2.0,1.0), which is the same as the results in

Table I offered by the proposed equivalent model (9), verifying

Proposition 1.

B. Impact of the Number of Prosumers

We change the number N from 2 to 30. We assume that

c = 1, c = 10, d = 2, d = 12, D = 0, D = 10. The parameters

ci, di, Di are randomly chosen within the upper and lower

bounds and 10 scenarios are tested. For each of the 10 random

scenario, the average cost difference in Proposition 4 is plotted

in Fig.2 and the variance of marginal disutilities in definition

5 (with KI = 1) is plotted in Fig. 3, both as functions of N.

In Fig.2, the average cost with sharing is always larger than

the average optimal social cost but the gap shrinks sharply

with the increase of N in all scenarios, validating Proposition

0.5 1 1.5 2 2.5 3 3.5 4
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Fig. 4. Average costs under different a.
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Fig. 5. Relative cost of sharing different numbers of MRPs with different ck
i

and the same Ki .

4. When N increases, the variance of marginal disutility also

drops sharply, implying that the marginal disutilities of all

prosumers under sharing become closer and all prosumers

converge to the social optimum, as shown in Fig. 3.

C. Impact of Price Elasticity

When price elasticity coefficient a varies in [−3.5,−1], the

social costs under NE are shown in Fig. 4. The optimal social

cost is marked by a dash line. From the figure, when the

absolute value of a increases, the social cost under sharing

is decreasing and gets closer to the optimal social cost. This

is in accordance with Proposition 5.

D. Impact of Competition

A special case, in which all ck
i = c,∀k,∀i and Ki = KI ,∀i, is

analyzed in Section IV, showing that introducing competition

improves social welfare. However, the general case is difficult

to prove. Here, we first test cases with different ck
i but the

same Ki; and cases with different ck
i and Ki. We assume that

c = 1, c = 10, d = 2, d = 12, D = 0, D = 10. The parameters

ck
i , dk

i and Di are randomly chosen within the ranges and 10

scenarios are tested. The resources are allocated according to

the condition (17) and the way in [30] (for same/different Ki).

To eliminate the impact of scale, relative social cost, which

equals to the ratio of costs with I > 1 and I = 1 minus 1, is

used for comparison and its change under different scenarios

with different ck
i and same/different Ki are given in Fig.5 and

Fig. 6, respectively.

It can be observed from Fig.5 that the relative cost is

the smallest when I = 1, which means all the resources are



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, FEB. 2019 8

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7
x 10

−4

Number of multi−resource prosumer (I)

R
el

at
iv

e 
so

ci
al

 c
o

st
 o

f 
sh

ar
in

g

Fig. 6. Relative cost of sharing different numbers of MRPs with different ck
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and Ki .

owned by one prosumer and the social optimal are achieved.

When I ≥ 2, the relative cost decreases with I, demonstrating

that competition improves economic efficiency as stated in

Proposition 8. This property extends to the case when Ki are

different as shown in Fig. 6.

VI. CONCLUSION

Prosumers endowed with distributed generators are emerg-

ing nowadays, providing a great opportunity for energy shar-

ing. By allowing prosumers to exchange energy with each

other, energy sharing can greatly reduce the cost of pro-

sumers while enhancing social efficiency. To promote energy

sharing in smart grid, a simple but transparent and effective

mechanism is proposed based on the generic supply-demand

function. This paper establishes fundamental properties of such

a sharing market by proving the existence and uniqueness

of market equilibrium, disclosing the individual rationality

of prosumers, characterizing the sharing price, comparing the

social efficiency, as well as investigating the market impact of

competition. Both theoretical analysis and case studies justify

the effectiveness of the proposed sharing mechanism.

In contrast to the existing works, the proposed mechanism

considers the choosability of prosumers to become a seller or

buyer, the equilibrium price set by market sharing, and the

fairness and operability of profit allocation. It is expected that

this work provides a fundamental, though initial, framework

for energy sharing problems. Future research directions in-

clude analyzing the behavior of such mechanism when coping

with uncertainty due to the integration of renewables.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof. Given the other prosumers’ bids b j, j 6= i, prosumer i

solves a strictly convex optimization problem. Thus, the KKT

condition below is the sufficient and necessary condition of

the optimal solution.

2ci pi + di + µi = 0 (A.1a)

2aλc+ bi+ aµi +Naηi = 0 (A.1b)

λc + µi +ηi = 0 (A.1c)

pi + aλc+ bi = Di (A.1d)

Naλc + bi +∑
j 6=i

b∗j = 0 (A.1e)

where µi is dual variable of constraint (5b) and ηi is the dual

variable of constraint (5c) for prosumer i.

Problem (9) is also a strictly convex optimization problem

and the KKT condition is

2

[

ci−
1

2(N− 1)a

]

pi + di+
Di

(N− 1)a
+ ξ = 0 (A.2a)

∑
i

pi = ∑
i

Di (A.2b)

⇒ : If (p∗,b∗) is the NE of the sharing game, it satisfies the

KKT condition (A.1). If we sum up all (A.1d) for each i and

together with (A.1e), constraint (A.2b) is obviously satisfied.

By Na× (A.1c) - (A.1b), we have

(N− 2)aλc− bi+(N− 1)aµi = 0 (A.3)

Substitute (A.1d) into (A.3), we have

(N− 1)aλc+ pi−Di +(N− 1)aµi = 0 (A.4)

For prosumer j, we also have

(N− 1)aλc+ p j−D j +(N− 1)aµ j = 0 (A.5)

With (A.4)-(A.5), we have

pi−Di +(N− 1)aµi = p j−D j +(N− 1)aµ j (A.6)

Then with (A.1a) we have

2ci pi + di + µi = 2c j p j + d j + µ j (A.7)

(A.7)-(A.6)/(N− 1)a gets

(2ci−
1

(N− 1)a
)pi +(di +

Di

(N− 1)a
)

= (2c j−
1

(N− 1)a
)p j +(d j +

D j

(N− 1)a
) (A.8a)

Then we can always find a ξ such that (A.2a) is satisfied. As

a result, p∗ is also the optimal solution of (9).

Obviously, we have b∗i = Di− p∗i −aλ ∗c . λ ∗c = 1
N ∑

i

(2ci p
∗
i +

di) will be proved latter in Appendix C.

⇐: If p∗ is the optimal solution of problem (9), then by

letting

µi = −2cip
∗
i − di

λc = ξ ∗ =
1

N
∑

i

(2cip
∗
i + di)

ηi = −λc− µi

bi = Di− p∗i − aλc

It is easy to prove that it satisfied the KKT condition (A.1).

In consequence, the sharing problem (5) is equivalent to

the central decision-making problem (9). This completes the

proof.

APPENDIX B

PROOF OF PROPOSITION 2

Proof. Under SDF-based sharing mechanism, given other pro-

sumers strategies b j, j 6= i, by choosing

pi = Di, bi =
∑ j 6=i b j

(N− 1)

with

λc =−
∑ j 6=i b j

(N− 1)a

We have Πi(pi,b) = fi(Di), which means prosumer i can

acheive the same cost as under individual decision-making.

Because each prosumer solves a minimization problem, so that

we always have Π(p∗i ,b
∗)≤ fi(Di). In consequence, a Pareto

improvement is achieved for all prosumers.

If p∗i = Di does not hold for all i, then as p∗ is the unique

optimal solution of problem (9), we always have

∑
i

(ci(p∗i )
2 + dip

∗
i )−∑

i

(p∗i −Di)
2

2(N− 1)a
< ∑

i

(ciD
2
i + diDi) (B.1)

and becasue ∑
i

Π(p∗i ,b
∗) = ∑

i

fi(p∗i ), so we have

∑
i

Π(p∗i ,b
∗)

< ∑
i

fi(Di)+∑
i

(p∗i −Di)
2

2(N− 1)a

< ∑
i

fi(Di) (B.2a)

so that at least one strict inequality of (10) holds. This

completes the proof.

APPENDIX C

PROOF OF PROPOSITION 3

Proof. If (p∗,b∗) is the NE of the sharing game, then it

satisfies the KKT conditions (A.1).

1) With (A.1b)-a×(A.1c), we have

η∗i =−
aλc + b∗i
(N− 1)a

(C.1)

Sum up (C.1) for all i, we have ∑
i

η∗i = 0. Sum up (A.1c)

for all i and then substitute (A.1a) into it, we have

λ ∗c =
1

N
∑

i

(2ci p
∗
i + di) =

1

N
∑

i

mdi(p∗i ) (C.2)

2) Given any b j, j 6= i, let bi(pi) =
−N pi+ ∑

j 6=i

b j+NDi

N−1
be the

unique solution of constaints (5b), (5c). Then, for any fixed

b j, j 6= i, Πi(pi,bi,b−i) = Πi(pi,bi(pi),b−i).
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Derivatives of (5b) and (5c) with respect to pi are

1+ a
∂λc

∂ pi

+
∂bi

∂ pi

= 0 (C.3)

Na
∂λc

∂ pi

+
∂bi

∂ pi

= 0 (C.4)

Solving the equations we have

∂λc

∂ pi

=
1

(N− 1)a

∂bi

∂ pi

= −
N

N− 1

In consequence, the derivative of Πi(pi,bi(pi),b−i) is

∂Πi

∂ pi

(pi,b−i)

= (2ci pi + di)−

[

λc(bi(pi),b−i)−
aλc(bi(pi),b−i)+ bi(pi)

(N− 1)a

]

(C.5)

The first term 2cipi+di is the marginal disutility of prosumer i;

the second term λc is the marginal cost he needs to pay when

buying from the market regardless of the mutual impact of

different prosumers; the third term (aλc+bi)/a(N− 1) reflects

the marginal profit deviation due to the interest conflicts among

different prosumers.

If mdi(p∗i ) > λc(b
∗) and qi(b

∗) < 0, then prosumer i can

always choose ∆pi < 0 to reduce his cost, and thus, it is not a

stable situation. Similarly, if mdi(p∗i )< λc(b
∗) and qi(b

∗)> 0,

the market is also unstable as prosumer i always has a better

choice of ∆pi > 0. As a result, mdi(p∗i ) > λc(b
∗) if and only

if qi(b
∗)> 0. This completes the proof.

APPENDIX D

PROOF OF PROPOSITION 4

Proof. 1) According to Proposition 1, p∗i is the unique solution

of (9) and satisfies ∑
i

p∗i = ∑
i

Di. So p∗i must be a feasible

solution to the social optimal problem (11). As p̄i is the

optimal solution of (11), we always have

∑
i∈I

fi(p∗i )≥ ∑
i∈I

fi(p̄i)

2) With the KKT conditions, we can obtain the optimal

solutions to problem (9) and (11) are

p∗i =



∑
j

D j +∑
j

d j +
D j

a(N−1)

2c j−
1

a(N−1)





1

2ci−
1

a(N−1)

∑
j

1

2c j−
1

a(N−1)

−
di +

Di

a(N−1)

2ci−
1

a(N−1)

and

p̄i =

(

∑
j

D j +∑
j

d j

2c j

)

1
2ci

∑
j

1
2c j

−
di

2ci

respectively. Moreover, we have

p̄i ≤

(

ND̄+N
d̄

2c

)

c̄

cN
−

d

2c̄

= (D̄+
d̄

2c
)

c̄

c
−

d

2c̄
(D.1a)

p̄i ≥ (ND+N
d

2c̄
)

c

c̄N
−

d̄

2c

= (D+
d

2c̄
)

c

c̄
−

d̄

2c
(D.1b)

Letting Ā := ∑
j

1
2c j

and A∗ := ∑
j

1

2c j−
1

a(N−1)

gives

0≤ Ā−A∗ = ∑
j

− 1
a(N−1)

2c j(2c j−
1

a(N−1))

= ∑
j

1

2c j− 4ac2
j(N− 1)

≤
N

2c− 4ac2(N− 1)

≤ −
1

2ac2
(D.2)

Consequently, we have

Ā−A∗

Ā
≤ −

c̄

ac2N
(D.3a)

Ā−A∗

Ā
≥ 0 (D.3b)

Let B̄ := ∑
j

d j

2c j
and B∗ := ∑

j

d j+
D j

a(N−1)

2c j−
1

a(N−1)

. Then there are

B̄−B∗ = ∑
j

d j + 2c jD j

−4ac2
j(N− 1)+ 2c j

≤ ∑
j

|d̄ + 2 ¯cD|

−4ac2(N− 1)+ 2c

≤
|d̄ + 2 ¯cD|

−2ac2
(D.4a)

B̄−B∗ = ∑
j

d j + 2c jD j

−4ac2
j(N− 1)+ 2c j

≥
−N|d+ 2cD|

−4ac2(N− 1)+ 2c

≥
−|d+ 2cD|

−2ac2
(D.4b)

Furthermore, it is easy to see

|B∗| ≤ ∑
j

∣

∣

∣

∣

∣

∣

d j +
D j

a(N−1)

2ci−
1

a(N−1)

∣

∣

∣

∣

∣

∣

≤ ∑
j

|d j|+ |
D j

a(N−1) |

2c

≤ ∑
j

d̄−max{|D̄|, |D|}/a

2c

=
d̄−max{|D̄|, |D|}/a

2c
·N (D.5)

Let C̄ := di
2ci

and C∗ :=
di+

Di
a(N−1)

2ci−
1

a(N−1)

. Direct calculation gives

C̄−C∗ =
di + 2ciDi

−4ac2
i (N− 1)+ 2ci
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≤
|d̄+ 2cD|

−2c2aN
(D.6a)

C̄−C∗ =
di + 2ciDi

−4ac2
i (N− 1)+ 2ci

≥
−|d+ 2cD|

−4ac2(N− 1)+ 2c

≥
−|d+ 2cD|

−2c2aN
(D.6b)

Let Ē :=
1

2ci

Ā
and E∗ :=

1

2ci−
1

a(N−1)

A∗
, then we have

E∗ ≤ 1
2cA∗

≤
2c̄− 1/a

2c
·

1

N
(D.7a)

E∗ ≥
1

2c̄−1/a

A∗
≥

2c

2c̄− 1/a
·

1

N
(D.7b)

and

Ē

E∗
− 1 =

A∗

Ā

2ci

2ci−
1

a(N−1)

− 1

≤ (1−
1

(−2ac̄+ 1)N
)− 1

≤ −
1

(−2ac̄+ 1)N
(D.8a)

Ē

E∗
− 1 =

A∗

Ā

2ci

2ci−
1

a(N−1)

− 1

≥

(

1+
c̄

ac2N

)(

1−
1

−acN

)

− 1

≥
c̄

ac2N
+

1

acN
(D.8b)

Therefore, there must be

Ē−E∗ ≤

(

−
1

(−2ac̄+ 1)N

)

2c̄− 1/a

2c
·

1

N
(D.9a)

Ē−E∗ ≥

(

c̄

ac2N
+

1

acN

)

2c

2c̄− 1/a
·

1

N
(D.9b)

The optimal solution of (9) and (11) can be represented as

p̄i =

(

∑
j

D j + B̄

)

Ē− C̄

p∗i =

(

∑
j

D j +B∗

)

E∗−C∗

First, we have
∣

∣

∣

∣

∣

(

∑
j

D j +B∗

)

(Ē−E∗)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑
j

D j +B∗

∣

∣

∣

∣

∣

|Ē−E∗|

≤

∣

∣

∣

∣

∣

∑
j

D j +B∗

∣

∣

∣

∣

∣

M3

N2

≤ (

∣

∣

∣

∣

∣

∑
j

D j

∣

∣

∣

∣

∣

+ |B∗|)
M3

N2

≤ (M1N +M2N)
M3

N2

=
M3(M1 +M2)

N
(D.10)

where

M1 = max{|D|, |D̄|}

M2 =
d̄−max{|D̄|, |D|}/a

2c

M3 = max

{∣

∣

∣

∣

(
1

−2ac̄+ 1
)

2c̄− 1/a)

2c

∣

∣

∣

∣

,

∣

∣

∣

∣

(
c̄

ac2
+

1

ac
)

2c

2c̄− 1/a

∣

∣

∣

∣

}

(D.11)

The difference between p̄i and p∗i is

|p̄i− p∗i |

=

∣

∣

∣

∣

∣

(

∑
j

D j + B̄

)

Ē− C̄−

(

∑
j

D j +B∗

)

E∗+C∗

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

(

∑
j

D j + B̄

)

Ē−

(

∑
j

D j +B∗

)

Ē

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

∑
j

D j +B∗

)

Ē−

(

∑
j

D j +B∗

)

Ē

∣

∣

∣

∣

∣

+
∣

∣C̄−C∗
∣

∣

= |Ē(B̄−B∗)|+

∣

∣

∣

∣

∣

(

∑
j

D j +B∗

)

(Ē−E∗)

∣

∣

∣

∣

∣

+
∣

∣C̄−C∗
∣

∣

≤
c̄

Nc
max

{

|d̄+ 2 ¯cD|

−2ac2
,
−|d+ 2cD|

−2ac2

}

+M3(M1 +M2)
1

N

+max

{

|d̄+ 2cD|

−2c2a
,
|d+ 2cD|

−2c2a

}

1

N
(D.12)

It is easy to see that |p̄i− p∗i | ≤
α
N

holds for a large enough

positive number α . Because P≤ p̄i≤ P̄ and−α
N
≤ p∗i − p̄i≤

α
N

,

where

P =

(

D+
d

2c̄

)

c

c̄
−

d̄

2c

P̄ =

(

D̄+
d̄

2c

)

c̄

c
−

d

2c̄

as a result, we have

2P−α ≤ 2P−
α

N
≤ p∗i + p̄i ≤ 2P̄+

α

N
≤ 2P̄+α (D.13)

For a given ε > 0, we choose a large enough number N0 :=
1

(c̄αmax{|2P−α |,|2P̄+α |}+α d̄)ε
. Then for arbitrary number N > N0,

there is

1

N

∣

∣

∣

∣

∣

∑
i∈N

fi(p∗i )− ∑
i∈N

fi(p̄i)

∣

∣

∣

∣

∣

≤
1

N
∑

i

∣

∣ci(p∗i )
2 + dipi− ci(p̄i)

2− di p̄i

∣

∣

≤
c̄

N
∑

i

|p∗i + p̄i||p
∗
i − p̄i|+

d̄

N
∑

i

|p∗i − p̄i|

≤ (c̄αmax{|2P−α|, |2P̄+α|}+α d̄)
1

N
< ε (D.14a)

This completes the proof.
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APPENDIX E

PROOF OF PROPOSITION 5

Proof. Suppose that 0 < |a1|< |a2|, and p1∗ is the NE of (5)

with a = a1, and p2∗ is the NE with a = a2. According to

Proposition 1, p1∗ and p2∗ are the unique optimal point of

problem (9) under a = a1 and a = a2, respectively. Due to

optimality,

∑i∈I
fi(p2∗

i )−
∑i∈I (p2∗

i −Di)
2

2(N− 1)a1

≥ ∑i∈I
fi(p1∗

i )−
∑i∈I (p1∗

i −Di)
2

2(N− 1)a1

(E.1)

which means

2|a1|(N− 1)
[

∑i∈I
fi(p2∗

i )−∑i∈I
fi(p1∗

i )
]

≥

[

∑
i∈I

(p1∗
i −Di)

2− ∑
i∈I

(p2∗
i −Di)

2

]

(E.2)

If we have

∑i∈I
fi(p1∗

i )< ∑i∈I
fi(p2∗

i )

then

2|a2|(N− 1)
[

∑i∈I
fi(p2∗

i )−∑i∈I
fi(p1∗

i )
]

≥ 2|a1|(N− 1)
[

∑i∈I
fi(p2∗

i )−∑i∈I
fi(p1∗

i )
]

≥

[

∑
i∈I

(p1∗
i −Di)

2− ∑
i∈I

(p2∗
i −Di)

2

]

(E.3)

which means

∑i∈I
fi(p2∗

i )−
∑i∈I (p2∗

i −Di)
2

2(N− 1)a2

≥ ∑i∈I
fi(p1∗

i )−
∑i∈I (p1∗

i −Di)
2

2(N− 1)a2

(E.4)

and is contradict to the assumption that p2∗ is the NE under

a= a2 (also the optimal solution of problem (9) under a= a2),

which completes the proof.

APPENDIX F

PROOF OF PROPOSITION 7

Proof. The KKT conditions of the MRP sharing problem is

2ck
i pk

i + dk
i + µ

′

i = 0,∀k ∈ Ki (F.1a)

λc + µ
′

i +η
′

i = 0 (F.1b)

2aλc + bi+ aµ
′

i + Iaη
′

i = 0 (F.1c)

∑
k

pk
i + aλc+ bi = Di (F.1d)

Iaλc +∑
i

bi = 0 (F.1e)

The KKT condition of problem (16) is
[

2ck
i −

1

(I− 1)a

]

pk
i + dk

i

+
Di

(I− 1)a
−

∑
j∈Ki, j 6=k

p
j
i

(I− 1)a
= −ξ

′
(F.2a)

∑
i

∑
k

pk
i = ∑

i

Di (F.2b)

→: If (p∗,b∗) is the NE of the sharing problem for MRP

(13), then it satisfies the KKT conditions (F.1). Sum up the

(F.1d) for all i and substitute (F.1e) into it, (F.2b) is met. With

(F.1b)×Ia-(F.1c) and (F.1d), we have

a(I− 2)λc +∑
k

pk
i + aλc−Di +(I− 1)aµ

′

i = 0 (F.3)

For another MRP u, we also have

a(I− 2)λc+∑
k

pk
u + aλc−Du +(I− 1)aµ

′

u = 0 (F.4)

(F.3)-(F.4) gives

∑
k

pk
i −Di+(I− 1)aµ

′

i = ∑
k

pk
u−Du +(I− 1)aµ

′

u (F.5)

Together with (F.1a), we have

[

2ck
i −

1

(I− 1)a

]

pk
i + dk

i +
Di

(I− 1)a
−

∑
j∈Ki, j 6=k

p
j
i

(I− 1)a
= constant

In consequence, (F.2a) is met and p∗ is also the optimal

solution of problem (16).

By (F.1c)− a× (F.1b), we have

η
′

i =−
aλc+ bi

(I− 1)a

so that ∑
i

η
′

i = 0.

By (F.1a) and (F.1b), we have

λc +η
′

i = mdi(pi) (F.6)

Sum up (F.6) for all i tells that

λ ∗c (p∗) =
1

I
∑

i

mdi(p∗i )

and

b∗i (p∗) = Di−∑
k

pk∗
i − aλ ∗c (p∗)

←: if (p∗,b∗) is the optimal solution of problem (16), then it

satisfies the KKT conditions (F.2). If we let

µ
′

i = −(2ck
i (pk

i )
∗+ dk

i )

λc =
1

I
∑

i

mdi(p∗i )

η
′

i = −(µ
′

i +λc)

bi = −(aλc +∑
k

(pk
i )
∗) (F.7a)

It is easy to verify that (F.7) satisfies KKT condition (F.1),

and thus, (p∗,b∗) is the NE of the sharing problem (13), which

completes the proof.
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APPENDIX G

PROOF OF PROPOSITION 8

Proof. We consider a special situation, where all the ci,∀i
equal to a same value c, and each prosumer possess the same

number of resource, which is KI . IKI is a fixed value equals

to N.

With the KKT condition (F.2), we have

2cpk
i + dk

i +

Di− ∑
k∈Ki

pk
i

(I− 1)a
= −ξ

′
(G.1a)

∑
i

∑
k

pk
i = ∑

i

Di (G.1b)

Denote 2cpk
i + dk

i as mdk
i . It is obvious that for all k ∈Ki,

mdk
i are equal, and so we use mdi to represent mdk

i for all k.

Sum up (G.1a) for all i and k, we have

2c∑
i

∑
k

pk
i +∑

i
∑
k

dk
i +

KI(∑
i

Di−∑
i

∑
k∈Ki

pk
i )

(I− 1)a
+Nξ

′
= 0 (G.2)

Together with (G.1b), it is easy to find that ξ
′

is independent

of I and ∑
i

mdi + Iξ
′
= 0. Assume that the optimal marginal

disutility is md∗i , then according to (G.1a), we have

Dl− ∑
k∈Ki

pk∗
i

(I− 1)a
=−md∗i − ξ

′∗ (G.3)

The objective function (16a) can be rewritten as

π := π1 +π2

where

π1 = ∑
i

∑
k

[c(pk∗
i )

2
+ dk

i pk∗
i ] = ∑

i
∑
k

(md∗i )
2− (dk

i )
2

4c

π2 =−

∑
i
(Di− ∑

k∈Ki

pk∗
i )

2

2(I− 1)a
=−

(I− 1)a

2
∑

i

(md∗i + ξ
′∗)2

Then we have

π1 = ∑
i

∑
k

(md∗i )
2− (dk

i )
2

4c

=
KI

4c
∑

i

(md∗i )
2−∑

i
∑
k

(dk
i )

2

4c

=
KI

4c
∑

i

(md∗i + ξ
′∗)2 +

N(ξ
′∗)2−∑

i
∑
k

(dk
i )

2

4c
(G.4)

The first term of (G.4) is variational and the second term is

a constant. So the change of π1 is related with KI
4c ∑

i

(md∗i +

ξ
′∗)2, the change of π2 is related with − (I−1)a

2 ∑
i
(md∗i + ξ

′∗)2

and the change of π is related with
KI−2ac(I−1)

4c ∑
i
(md∗i +ξ

′∗)2.

Obviously,
KI−2ac(I−1)

4c
is always positive for all I > 1.

Next, we define an equal partition such that π is decreasing.

Assume that there is I multi-resource prosumers, and the

optimal output is pk∗
i . Then we introduce competition and

allocate the resources owned by one prosumer and its demand

to Z ∈ Z
+ prosumers such that I

′
= ZI and KI = K

I
′ , and

satisfies ∀i,∀z1,z2 ∈ {1, ...,Z}

(D
′

Z(i−1)+z1
−

K
I
′

∑
k=1

pk∗
Z(i−1)+z1

)(D
′

Z(i−1)+z2
−

KI
′

∑
k=1

pk∗
Z(i−1)+z2

) ≥ 0

Z

∑
z=1

D
′

Z(i−1)+z = Di

Then

π I∗ = π I∗
1 −∑

i

(Di−
KI

∑
k=1

pk∗
i )

2

(I− 1)a

= π I∗
1 −∑

i

(
Z

∑
z=1

D
′

Z(i−1)+z
−

Z

∑
z=1

K
I
′

∑
k=1

pk∗
Z(i−1)+z

)2

(I− 1)a

≥ π I∗
1 −∑

i

Z

∑
z=1

(D
′

Z(i−1)+z
−

K
I
′

∑
k=1

pk∗
Z(i−1)+z

)2

(I− 1)a

≥ π I∗
1 −∑

i

Z

∑
z=1

(D
′

Z(i−1)+z
−

K
I
′

∑
k=1

pk∗
Z(i−1)+z

)2

(I
′
− 1)a

≥ π I
′
∗ (G.5a)

(G.5) tells us that the objective function π decreases with

I. When I grows, the coefficient of π1 (which is KI
4c

) decreases

while the coefficient of π2 (which is
−(I−1)a

2
) increases. If

∑
i

(mdi + ξ
′
)2 decreases with I, then obviously π1 decreases

with I. Otherwise, if ∑
i

(mdi + ξ
′
)2 increases with I, π2 in-

creases with I. If π1 also increases, then π I∗ < π I
′
∗, which is

contradict to (G.5). In conclusion, we always have the social

total cost π1 reduces with I, which means introducing effective

competition can improve social welfare.

Moreover, as
K−2ac(I−1)

4c
is always positive and reaches

the minimum when I =
√

−2ac/N. If
√

−2ac/N ≤ 1, then
K−2ac(I−1)

4c
increases with I > 1, which tells that ∑

i

(mdi+ξ
′
)2

is decreasing in I, so that

Var(mdk∗
i , I) =

1

N

I

∑
i=1

KI

∑
k=1

(mdk∗
i + ξ

′
)2

=
KI

N

I

∑
i=1

(mdi + ξ
′
)2

≥
K

I
′

N

I
′

∑
i=1

(mdi + ξ
′
)2 =Var(mdk∗

i , I
′
)

This completes the proof.
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