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Abstract
We have a project currently underway that attempts to use 3D
workstations to provide insight into programs, their structure
and their execution, through the use of a variety of user-defin-
able displays. We offer a variety of different presentation styles
and utilize a variety of different layout methods and heuristics.
This paper describes the underlying engine that we have devel-
oped to support this range of presentations.

1.  Introduction

This paper describes the visualization engine supporting a system for viewing
abstract data, particularly information about programs. Our eventual goal is to pro-
vide a system where the programmer can specify what information should be dis-
played and how it should be displayed with a minimal amount of work and where the
displays provide the maximum amount of information in an intuitive context. We are
designing a framework to accomplish this. This framework is based on the package
described in this papers for abstract 3D visualization, PLUM. In addition, we have
implemented a package for hierarchically browsing of the data, PEACH, and a pack-
age, TWIG, for mapping from arbitrary data structures representing program infor-
mation into the graphical representation structures required by PLUM. We are
currently working on a package that provides the programmer with a visual lan-
guage for specifying both the information to display and the visual representation to
use in displaying this information.

Most current work on information visualization concentrates on a specific presenta-
tion strategy and forces the user to adapt to that strategy. Our efforts are unique in
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integrating a wide variety of 3D presentation styles in a common framework and in
allowing these style to be combined and nested to offer the user the most flexibility
in defining the “proper” view for the particular application. While most of the presen-
tation methods we currently offer are not new, our combinators, parameterization,
graph layout, automatic animation, and overall architecture provide a unique envi-
ronment for their presentation.

Program visualization is the graphical display of information about a program.
While there have been many program visualization efforts, these have been limited
in both scope and application because the amount of information to be included is far
more than can be displayed. Practical program visualization must provide tools to
select and display just the information of interest. This is what we are attempting to
do in the tools we are building on top of PLUM. Just as important, it must provide
quality visual displays that look “nice” and offer a user-friendly interface for brows-
ing and querying, and it must make use of the capabilities of modern workstations
including 3D graphics to provide as much information as possible in an intuitive dis-
play. These latter criteria are what we have attempted to achieve in PLUM.

A practical program visualization system can be achieved by focusing on abstrac-
tions [22]. Abstractions can be specified as queries on a heterogeneous object-ori-
ented database. The basic idea of looking at programs through a database was
explored by Powell and Linton [16]. This work assumed a single relational database
of program information. We start with program information from various sources.
These are united using an extensible object-oriented database schema and a feder-
ated database. Both textual and visual query languages are provided for this
schema. The result of the query is a set of objects. These are stored in an in-core
object-oriented database as the source for visualization.

The visualization of program information can be viewed as the definition of appropri-
ate graphical output for a set of abstraction objects. This is done in two steps. The
first step is to map the abstraction objects into objects describing a graphical presen-
tation such as a layout containing nodes and arcs. At this level, no information about
position, layout, routing, etc. needs to be provided. To make these mappings declara-
tive, the target space of presentation objects must be well defined. One of the tasks
that we have undertaken is to develop a catalog of approaches to 3D presentation of
structured data to explore this space. We also provide the mechanisms needed to
integrate these approaches and to add new approaches easily.

The second step is generating a display from the resultant set of presentation
objects. This involves automatic layout and constraint satisfaction. This also
involves supporting incremental modification of the display through animation.

Practical program visualization also involves dealing with large numbers of objects.
Our framework deals with this in a variety of ways. The primary techniques use the
hierarchies inherent to the program data to collapse information into a usable dis-
play and allow the user to selectively view or ignore items. These browsing capabili-
ties are provided by PEACH. To facilitate complex displays and insure timely
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response, the graphics package underneath PLUM provides for graceful degradation
of the quality of the presented graphics as the time needed to redraw a frame
increases. The combination of these technologies and the simple architecture of
PLUM allows the current implementation to handle 50,000 objects without too much
difficulty. We expect the next version of the system will increase this by an order of
magnitude.

2.  Background

While there has been substantial work on program or software visualization [17],
most of this work has been directed toward providing specific visualizations such as
a call graph or a class browser, and little has been directed toward a generic frame-
work. The work that is closest to our approach includes our earlier efforts on data
and program visualization, work related to the display of user data structures, work
directed at graphical editing, work on systems for algorithm animation, and visual-
ization efforts that attempt to use a single paradigm for a variety of applications.

Our previous work addressed the issue of 2D visualization of abstract data [18,20].
This work supported our work on visual languages in the GARDEN system [19]. It
was used to display a variety of different visual languages including Petri nets, stat-
echarts, finite automata, flow charts, and data flow diagrams, as well as arbitrary
user data structures. The package was later used in the FIELD environment to sup-
port browsers for call graphs, class hierarchies, and make dependencies [21]. The
package had three parts. The first, GELO, provided a framework for abstract 2D dis-
plays. The second package, APPLE, provided an automatic mapping facility from
user data structures into GELO graphic objects. The final component, PEAR, pro-
vided graphical editing capabilities. It offered a user interface for manipulating the
resultant diagrams, and provided callbacks to the application for editing operations.

GELO was not the first system that attempted to display user data structures. Early
work in this area by Brad Myers allowed the user to program a display using a
graphics library to code the display for each type [14]. Later work by Baskerville
attempted to integrate simple displays into a debugger [1]. Recent efforts along these
line include VIPS [9], and the commercial data structure display facilities provided
by Centerline’s C environment and by SGI’s Codevision. This work is all fairly spe-
cialized in that it attempts to provide standard displays of data structures. Myers’
efforts allowed the user to design the data structure display, but required the user to
do this design procedurally.

PEAR demonstrated for us the utility of providing a general purpose graphical editor
as part of a user interface toolkit. This has also been recognized by a number of other
groups and there have been a variety of generic graphical editors that can display
abstract program data. One of the earliest such editors was Unidraw developed as
part of Interviews [12]. This editor used object-orientation to provide an extensible
framework for editing somewhat similar to that we provide in PLUM. Later exam-
ples include Go [6] and a variety of graph drawing widgets for Motif. The Garnet
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environment provides a slightly different basis for editing [15], a powerful low-level
environment based on constraints that can be used to build a higher level graphical
editor.

Another area in which a general display mechanism supports a variety of applica-
tions is algorithm animation. The BALSA system provided a high-level graphics
library where different animations could be easily coded [3]. The TANGO system fol-
lowed this up by providing a formal framework consisting of an animation algebra
where the animations could either be coded procedurally or by demonstration [27].
More recent work on ZEUS added color and sound and is now incorporating 3D visu-
alizations [4,5]. While these efforts are suitable for a variety of different animations,
they concentrate on providing high-quality displays of smaller amounts of informa-
tion and generally expect the developer to do a substantial amount of work in imple-
menting the animation.

There have been other efforts aimed at providing generic display facilities for a vari-
ety of applications. Flynn and Maier have worked on the specification of displays for
objects from an object-oriented database [8]. While this work is related to abstraction
visualization, their graphical displays are quite limited. The SeeSoft work at Bell
laboratories has applied a single file visualization technique to a variety of different
applications [7]. We have incorporated their ideas on file display into our system as
one of the presentation mechanisms we provide.

3.  Moving From 2D to 3D

With the exception of some of the more recent work on algorithm animation and
some simple experiments, almost all of the work on program visualization has
involved 2D presentations. We wanted to determine whether the expense and com-
plexity of using three dimensions could significantly improve program visualization
and affect program understanding. To do this, however, we needed to determine how
to use the extra dimension.

While there has been much work in 2D displays, the number of different strategies
for visualization has been quite limited. Most displays are simple graphs containing
boxes and arcs. Some of the work done on algorithm animation for BALSA, TANGO,
and ZEUS uses more abstract techniques, but these are tightly integrated with a
particular algorithm and representation and are hard to generalize for program
visualization. Other limited work involving non-graphs includes the file viewers
from Bell Laboratories and some of the work of Jeffrey on visualizing ICON execu-
tion [10].

Most of the solutions that we and others have devised for utilizing 3D for data visu-
alization involve extending what is normally a 2D representation into a 3D one. This
is desirable since it maintains a 2D philosophy and presentation, allowing the
viewer to see all the data at once while also allowing the additional dimension to be
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used for a variety of purposes. There are a variety of techniques that can be used
here.

Several of these techniques do a 2D layout and then extend the graph into the third
dimension using some property of the data. For example, we provide layout methods
that assign the Z coordinate of each node based on a data value such as the amount
of run time spent in the routine represented by the node or the number of lines of
code that are represented by the node. Another layout method we provide groups all
nodes that have a common parent at the same Z coordinate. For a call graph, func-
tion nodes are grouped by the file they appear in and thus all nodes from a single file
are placed at the same Z coordinate. A third method we have employed involves
tagged layouts. Based on work of Wen [28], we draw the contents of a file as a tag
node with the file name and then a graph of the nodes within the file that is angled
off the tag node at an appropriate angle. This emphasizes the tag and allows the
view to see the graph as primarily tags. At the same time, the viewer can fly around
the resultant layout and look at the details in the layouts themselves. A fourth tech-
nique is seen in the file views from Bell laboratories. Here the different lines of the
file can have an associated height and the result of the display is a surface in three
dimensions. Similar methods have been used in the ZEUS algorithm animation sys-
tem and in the VOGUE performance monitoring visualizations [11]

Another method for extending a 2D layout into three dimensions is to allow the user
to select a set of nodes and to place these at the front. All other nodes are then placed
at a Z coordinate that is determined by the number of connections needed to reach
one of the selected nodes. This has the effect of making the selected nodes at the
front large, making nodes that are closely related to these relatively large, and mak-
ing nodes that are unrelated or only loosely related to them relatively small. (This
follows since nodes with increased Z coordinates are seen as farther away from the
viewer and hence are smaller.) What this method achieves is a local fish-eye [25,26]
based on the user selection without perturbing the original graph.

Other methods take the 2D layout and provide a 3D organization of the information.
For example, cone trees or cam trees, developed at Xerox, provide a 3D representa-
tion of a traditionally 2D tree structure [23]. Similarly, the perspective wall provides
a perspective, 3D view of a 2D elongated graph layout [13]. Other layout methods
that have been developed at Xerox that work similarly include an extension of the
perspective wall to a perspective cone and a spiral layout where components are
placed on a spiral moving away from the viewer. The cities layout developed at Sili-
con Graphics is another example of a 2D layout moved into 3D space.

Other solutions to moving from 2D to 3D space attempt to actually use the full capa-
bilities of three dimensions without attempting to preserve a full 2D view from some
perspective. A simple example of this is the use of 3D scatter plots where a node is
placed in each dimension according to some associated data. Another simple exam-
ple is to look at a 3D array as a 3D object as is done in Silicon Graphic’s Codevision.
We provide a similar but more generic presentation strategy. Here each node can
specify its location and size in each of the dimensions. This can be used, for example,
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to represent the contents of heap memory over time where the Y coordinate repre-
sents memory pages, the X coordinate represents the offset within a page, and the Z
coordinate represents time.

More complex examples include using the third dimension to represent time. We
have a series of presentation methods that show execution data in this way. For
example, we can take a call graph in the front plane and use Z to represent time
moving away from (or toward) the user. Each function that is called results in a box
that is placed in back (front) of the corresponding call graph node and that extends
from the Z dimension representing the entry time to the Z dimension representing
the exit time. The boxes are actually shrunk slightly for each level of call nesting so
that recursive calls appear as a sequence of nested boxes.

Another visualization technique that makes effective use of three dimensions is to
provide several different 2D visualizations simultaneously. This has been done to
some extent in both ZEUS for tree displays and in VOGUE for class-membership dis-
plays. One of the presentation methods we provide, for example, allows the user to
select one hierarchy to be displayed in the XY plane, one hierarchy to be displayed in
the YZ plane, and a third hierarchy to be displayed in the XZ plane. We place nodes
so that each of the hierarchies can be seen if viewed directly on and so that the user
can see connections between the different hierarchies by viewing the result from dif-
ferent perspectives. A similar strategy has been proposed and used by others.

4.  PLUM Structure

In order to experiment with 3D visualizations, we needed to develop a framework
that allows all the above presentation styles. The framework we chose is object-ori-
ented, using different flavors of objects to represent the different presentation meth-
ods. This framework is also hierarchical so that different visualizations can be easily
combined. For example, the time-based views of a dynamic call graph takes as sub-
objects the original call graph nodes representing the called functions, and arcs rep-
resenting the actual calls. It operates by determining the position of each of the
dynamic call nodes based on the position of the corresponding node in the original
call graph and the entry and exit times. Using an object-oriented approach also
makes extensibility easy. New classes of objects can be defined to reflect new presen-
tation styles. Moreover, a presentation style can be specialized by subclassing the
object that represents it.

PLUM presentation objects are characterized by a flavor that denotes the type of
object. Each object has an associated set of properties that parameterize the presen-
tation. These are grouped into the object’s style. Each object has components that
represent subobjects and constraints that contain additional information about how
to draw the presentation.

Objects are parameterized to allow each flavor to yield a set of similar presentations,
to allow customization of the presentations for the user, and to allow data to be asso-
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ciated with objects and then used in determining the presentations. The parameters
are defined in terms of properties of the objects or of their components. A common set
of properties is shared by all objects. These include stylistic properties, sizing infor-
mation, and a priority setting. The priority value is a general means for specifying
that an object is important and should be emphasized in the display. Different
graphical objects treat this differently. The style properties include color (foreground,
text, and line), font (family and size), line style, fill styles, and transparency. While
colors are normally specified by name, the foreground color of an object can also be
specified in terms of hue, saturation, and brightness. This allows data values to be
associated with color. The sizing properties allow the object’s size to be scale indepen-
dently in the three dimensions. This is useful for explicitly controlling the size of the
object, for example making the size proportional to a value associated with the
abstraction data. Common properties also allow an object to flash, specifying the on-
off time and the alternate foreground color for flashing. This is used most often for
selected objects. The management of properties in PLUM is discussed in detail in
section 6..

Objects can have both components and constraints. Components are used to describe
other objects that are children of the given object. Each component specifies the com-
ponent object, has a type, and has an associated set of properties that describe the
relationship between the parent and the child. A simple component represents a
node in a layout. This component specifies the object that is to be drawn and, option-
ally, the relative or absolute location of that object if it is predefined. Another simple
component is an arc. The object associated with an arc component must be an arc
object. The component specifies the from and to nodes for that arc. Another example
occurs in a tiling. Here a tiled component specifies the object to be drawn and gives
the coordinates of the tile containing that object. Finally, for a file object the compo-
nent specifies the range of lines in the file that the subobject occupies.

Constraints are containers for additional information that is to be associated with an
object. For tiled objects, they represent constraints on the tiling. They are also used
in file objects to describe the different properties of the component objects that
should be reflected in the display.

PLUM computes a layout in three phases. It assumes that the application has set up
a tree of objects, components, and constraints. The first phase computes the desired
size of each of the objects. This is the size, determined by the object itself, that it
would ideally like to be drawn. This is done bottom up, with each node of the tree
first asking its component nodes to determine their size and then using the resultant
information to determine the size of the node itself. The next phase involves layout.
This is generally done top-down. Each object is responsible for determining the
actual size and position of each of its components. The actual size generally will cor-
respond to the desired size that the component specified. However, the size can also
be larger or smaller depending on the needs of the parent object. Positions are
defined relative to the center of the parent object. Once the object determines the
size and position of its components, it has each of the components compute the size
and position of their components. Having this pass be top-down allows an object to
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know its actual size before it has to lay out its components. The third phase involves
actually drawing the components. This is typically done top-down as well since the
parent object provides background for the children.

PLUM is designed to provide 3D visualizations on a 2D display. In order for 3D infor-
mation to be conveyed to the viewer from a 2D display, the presentation must pro-
vide animation. PLUM provides animation in two forms. First, it allows the user to
fly around the resultant display using the mouse and keyboard, animating the move-
ment of the display as the camera position (which represents the user perspective)
changes. Secondly, it provides automatic animation between frames. Animation is
described in section 8..

5.  Graphical Presentation Objects

The basic objects offered by PLUM can be divided into three categories. The first cat-
egory defines basic objects. These are object that have a concrete screen representa-
tion. These include:

• Data Objects. These represent a box in 3-space that contains a shape and an
optional text string. The shape can be either 2D or 3D. The current set of shapes
include rectangles, rectangular prisms, squares, cubes, diamonds, triangles point-
ing in each of the four directions, a triangular prism, n-sided regular polygons,
ellipses, circles, cylinders, spheres, boxes containing polygons, and lines. Addi-
tional properties of data objects include the basic size when no text is included
(the size with text is dependent on the size of the text string and the font size), the
ratio of width to height and width to depth (to make squares, cubes, etc.), the opac-
ity of the object, and whether the object should be solid, outlined, or both. Data
objects have no constraints and support only light objects as components.
Figure 1 shows an example of a 3D call graph display generated using PLUM.
Each container box represents a file and each smaller box represents a routine.
Arcs represent call connections between functions in a file or calls from routines of
one file to those of another. In this diagram data objects are used for each of the
function boxes as well as for the labels on each of the file boxes. The figure as
shown is a scaled screen dump and is somewhat distorted in the process of trans-
lation from a pure 3D model to the screen and from the screen onto paper. In addi-
tion, the quality of the 3D text in our current implementation is limited by the
underlying graphics package.

• Arc Objects. These represent connections between two objects. An arc object
always appears as a component of some other object, typically the common parent
of what it connects. The properties associated with an arc object specify the loca-
tion where the arc connects to the source and target objects, the type and style of
arrows, and whether the arc should be splined or not. Arc objects support compo-
nents in the form of labels. Each label can be placed anywhere along the arc. Fig-
ure 1 contains several examples of arc objects, green arcs for connections within a
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file box and red group arcs for connections between files. The line thickness of each
arc denotes the number of connections it represents or, optionally, the log base 2 of
the number of connections.
Arc objects are drawn after layout and routing has occurred. Either layout or rout-
ing can insert pivot points into an arc. Certain layout schemes, such as the level
graph layout used in figure 1, insert pivot points to insure that arcs do not pass
through nodes. Arcs can also be splined to avoid the sharp turns shown in the fig-
ure. Unfortunately, we do not have splines working in the underlying graphics
interface at this point.

FIGURE 1. Call graph display showing data, arc, tiled and layout objects
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Arc objects are always created as components of some other object. An arc is cre-
ated by specifying the objects that represent its two end points. PLUM then auto-
matically determines the parent object for the arc by finding the first common
parent of these two end points that allows arc objects as components.

• Light Objects. These represent points of light that can be turned on or off inside
an object. The point of light has a specified size and color. A property setting
allows the light to be turned on or off. Another setting allows for flashing lights.
These can be used, for example, to put lights in each function node and then to
turn the lights on in those functions that access a variable selected by the user.

The second category of presentation objects are those that provide layout services,
i.e. placement and sizing of their component objects. These include:

• Tiled Objects. These represent connected groupings of objects and are 3D exten-
sions of the 2D tilings we used extensively in GELO. Each tiling consists of a 3D
block that is subdivided into 3D rectilinear regions or tiles. The tiling assumes an
integer coordinate space and each tile is specified by providing the object con-
tained in the tile and two diagonally opposite corners of the tile in this coordinate
space. Simple tiled objects are used in figure 1 for the file boxes. Each file box is a
tiling containing two components, a data object containing the name of the file and
a layout object containing the routines defined in that file.
The tiled object determines the layout of the tiled components by solving a system
of constraints. The variables of the system represent the sizes of each of the com-
ponents. These constraints are defined by the desired sizes of the components, the
requirement that the coordinate space represented by the components be consis-
tent, and by additional constraints that can be associated with the tiling. The
standard constraints are done separately for each coordinate. For X, for example,
they consider each line along the X axis through the tiling and assert that the sum
of the sizes of the tiles along this line must equal the X size of the object. This cre-
ates an equation for each (Y,Z) pair that indicates a different set of tiles. The addi-
tional constraints linearly relate two dimensions, assign a particular dimension a
constant size, or specify the degree of flexibility for each component. The various
constraints are mapped into a set of linear equations that solve for the positions of
each tile coordinate. Without these additional constraints, the system is generally
underconstrained. The number of variables is three times the number of tiles (one
for each dimension since we are solving for the size of each tile). The number of til-
ing-implied constraints for each dimension is at least the number of distinct tiling
coordinates in that dimension minus one. Since each tile adds at most one new
coordinate in each dimension, the number of equations has to be less than or equal
to the number of variables.
If the system is under constrained when all the constraints are considered, then
additional implicit constraints are added to make the sizes of the resultant objects
be proportional to the sizes of the specified tiles. If the system is over constrained,
then the explicit additional constraints are prioritized and are eliminated in
groups until the system is solvable.
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Tiled objects are drawn by drawing a box to contain the tiling and then drawing
the components represented by the tiles. The box can be drawn showing edges or
faces or both. If faces are shown, the box is generally drawn so that the front-fac-
ing faces are culled or transparent so that the tiles inside the box can be seen and
the box serves as a background to the tiles.
Figure 2 shows a simple tiling. This consists of a label (tree.c) in a tile from (0,0,1)
to (1,1,2) and the body (here a layout containing the one node labeled main) in a
tile from (0,1,0) to (2,2,2). The tiling is drawn with red edges and a white faces.
The front faces are culled so that the white color serves as a background for the til-
ing.

FIGURE 2. Example of a simple tiling
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• Layout Objects. These represent a rectilinear region that contains two types of
components, nodes and arcs. The object is responsible for doing a layout of the
nodes within the region using the connection information specified by the arcs.
The properties supported by layout objects control this layout. The layout is done
by applying some heuristic, settable as a property, to assign relative positions for
each component. These relative positions correspond to a 3D array of blocks, each
of which can contain one object. The layout object uses this relative positioning to
compute the position of each row, column, and rank in the 3D matrix and uses
these computed positions to assign actual positions to the various components.
The layout heuristic is also responsible for finding pivot points for routing the
arcs. Additional properties of the layout allow the setting of the amount of white
space between rows or columns, whether all elements of a given row, column, or
rank should be the same size or not, whether objects should be centered within
their relative block or not, and the amount of space to leave around the outside of
the layout. A variety of different heuristics are provided. These are discussed in
section 7. on page 21.
Layout objects are drawn in three steps. First a box is drawn to contain the layout.
This can be hollow (i.e. only the edges of the surrounding box are drawn) or it can
be a solid box. In the later case, it is drawn with the front faces culled so that the
box provides a background for the layout. Second, shadows are drawn at the users
option. Shadows can be turned on and off in each plane using properties. If shad-
ows are drawn, properties are used to specify the color (generally gray) and the
transparency of the shadow objects. Figure 1 contains several examples of layout
objects. The main component of each of the file boxes is a 2D layout object whose
components are the local arcs and the data objects for the routines in that file. The
whole call graph is drawn using a 3D layout object. The components here are the
group arcs and the tilings that represent the files.

• Sized Layout Objects. These are a subclass of layout objects where data values
associated with the objects can be used to specify the object size in any dimension.
The properties associated with these objects, in addition to those allowed by stan-
dard layout objects, allow the application to define a property name and range for
each of the dimensions. This value of the named property is then used to deter-
mine the actual size of the component objects. An additional property for each
dimension allows the data to be interpreted in a log scale. The current browser
uses these objects to allow size to reflect different statistics about functions such
as total run time spent in the function or function size.

• Tagged Objects. These consist of a tag object, generally a label, connected to
another object, the contents, using a hinge-like mechanism. They reflect a general-
ization of a visualization proposed by Wen. The hinge can have a size, can be
attached either to the right or below the tag object, and can be set at any angle.
The angle, where to attach the hinge, and the hinge size are all properties of the
tagged object. An additional property shrinks the contents object to the size of the
tag. Tagged objects are used in 3D displays to make the tag clearly visible to the
viewer from the front while eliding the information associated with the tag. This
information can be seen by causing the contents to be rotated forwards or by flying
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around in 3D space. Figure 3 shows a call graph where tagged objects are used to
represent the files. In this case there is a small gap between the tag and the layout
object, the layout object for the non-selected items is shrunk to the size of the tag
and at a 90° angle, and the layout for the selected items is full size and at a 0°
angle.

• Time Sequences. One of the uses of 3D is to show the history of execution (or any
other time-based property of programs) in the Z dimension. Time sequence objects
are one way that we have developed for doing this. These consist of a base compo-
nent which identifies an X-Y position for each object and a set of elements. Each
element consists of an object, a from time and a to time, and a reference to an
object in the base component. The element is drawn using the X and Y position

FIGURE 3. Call graph display using tagged objects
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and size of the referenced base component and using the time properties to set the
position and size in the Z dimension. Properties of time sequence objects specify
the relative size for a given unit of time and the direction of time. Properties of the
component objects are used to specify nesting levels. This is used for recursive
function invocations where boxes would be contained in each other. Each increase
in nesting level causes the corresponding box to be drawn slightly smaller so that
the element boxes nest properly.
A time sequence object is drawn by first drawing optional shadows and then draw-
ing the component objects. Shadows, if desired, are drawn as if a light were com-
ing from the top of view, with the shadows appearing in the X-Z plane. Properties
allow the setting of the shadow color and transparency. Figure 4 shows a top-down
view of a dynamic call graph display using a time sequence object. The layout

FIGURE 4. Dynamic call graph display using a time sequence object
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object at the front (bottom) is a 2D representation of the call graph. The yellow
boxes behind (above) this object represent dynamic instances of the elements of
the call graph. Here time flows backwards (from bottom to top) in Z.

• 3D Trees. This 3D representation for a tree is based on cone and cam trees devel-
oped at Xerox. Here the children of a node are arranged in a planar circle under-
neath their parent. While the children are placed at equal intervals around the
circle, the radius of the circle and the distance from the parent to the circle are
determined based on properties of the parent object. The radius of the circle is
determined by finding the minimum radius that will easily contain all the chil-
dren based on the children’s sizes and then multiplying this by a scale factor spec-
ified as a property. The distance from the parent is computed based on properties
that specify the angle from the parent to the circle and the minimum allowable
height. A property is also used to determine the orientation of the tree. If the up
direction is set to Y then the result is a cone tree. If the up direction is set to X, the
result is a cam tree.
Tree objects are drawn by drawing the components and then connecting the chil-
dren components to the parent. The connection can be done either as a cone from
the bottom of the parent to the top of the children or as lines from the parent to
each of the children. The orientation of the circle can be changed by setting a prop-
erty that causes a selected component to come to the front. An example of a tree
layout is shown in figure 5.

The third category of presentation styles includes styles that control both layout and
presentation. These include:

• Scatter Plots. These consist of a rectilinear region with components placed based
on three values. Scatter plot components can be arbitrary objects. The scatter plot
object computes the range of values in each dimension and finds the associated
location for each component. It then places the components accordingly. The prop-
erties associated with the scatter plot control the basic size of the region and the
size of the components. Figure 6 shows a scatter plot display of a call graph that
provides information about the routines. The X dimension reflects the amount of
run time spent in the routine (as determined by profiling); the Y dimension repre-
sents the length in lines of the routine; and the Z dimension represents the num-
ber of other routines that call the routine.

• File Objects. The central focus for programming is the source code and many visu-
alizations relate directly to files. Based on SeeSoft ideas developed at Bell Labs, a
file object presents an abstract view of a file that can be augmented with addi-
tional information to reflect properties associated with regions in the file. A file is
represented as a planar region where each line of the file corresponds to one line
in the region. If the region is too long, it is divided into columns and the columns
placed side by side. The lines are used to represent information about the corre-
sponding portion of the file. Each line can be drawn full width or can be drawn to
reflect the indentation and line length of the corresponding text. The latter mode
allows identification of program structures, block comments, etc. and allows a pro-
grammer who is familiar with the code to associate the representation with the
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text. Each line can also be associated with a height and a color value, allowing
both color and depth to be used to convey information about that line in the graph-
ical representation. Properties associated with file objects allow the setting of the
file name, the width of each line, how the line should be drawn, the width of the
border around the lines, the number of lines in a column, and the mapping from
data values to depth and color. Figure 7 shows file objects being used in a call
graph display.
File objects use both components and constraints. Components are used to
describe parts of the file that should be treated as units and that can have associ-
ated values that are to be reflected in the presentation in terms of color or depth.
Each component is identified by a start and end line and an underlying object.
While this object isn’t drawn, its properties are used in determining how to draw

FIGURE 5. Tree layout
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the corresponding part of the file. Constraints are used to describe the properties
that are to be reflected for each component. Each constraint specifies the style
property that is affected (i.e. color or depth), the default value, the range of valid
values and a scale factor.

• Plot Layout Objects. These objects allows the application control over both the
layout and sizing of the component objects. It assumes that all the components are
to be placed inside a cube of a specified size. Each component can be assigned a
size in zero or more dimensions and can be assigned a relative position in any of
the axis. If sizes and positions are fully specified for each object, the resultant dis-
play is a generalized array. This is useful, for example, in putting up a display of
blocks in memory where the Y dimension reflects the page of memory the block
occurs in, the X dimension reflects the location within that page, and the Z dimen-
sion reflects the lifetime of the block.
If sizes are left unspecified, then the component is assigned a standard size based
on the number of objects and the size of the overall cube. If positions are left
unspecified, then the plot layout object uses a relaxation-based optimization strat-
egy to place nodes. First an initial position is determined. If the object had been
drawn before, the previous positions are used here, otherwise nodes are assigned
arbitrary positions. Then the layout object makes optimization passes over the

FIGURE 6. Scatter plot display of run time vs. length vs. static entries for a call graph
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objects, adjusting the positions to try to separate unrelated objects and group
related ones where relationships are determined by the arcs connecting the
objects. The maximum number of optimization passes is set as a parameter, but
the optimization stops if the layout stabilizes, which it generally does after about
fifty passes. Each pass consists of making objects repel each other using an
inverse square force determined by the standard objects size and a parameterized
scale factor, and then having related objects attract each other using a force that is
proportional to the square of the distance between them where the scale factor is
determined by the object size and a object property. A third, optional portion of
each pass, allows objects to be attracted or repelled from the walls of the cube
based on an object property. This approach is currently O(n2), which means it is
not practical for large layouts.

FIGURE 7. Call graph display showing file objects
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Plot objects are drawn by drawing the containing cube, either so that it is hollow
of so that the interior is visible, and then drawing the components. Properties
allow the arc components to not be drawn, allowing arcs to be used only to specify
relationships for layout, and allow node objects to be drawn without text. This
allows a plot object to be used to simply express relationships spatially without
crowding the diagram with text and arcs. The user can query what each node cor-
responds to by moving the mouse over that node. Figure 8 shows an example of a
plot layout object.

FIGURE 8. Sample plot layout object of a call graph
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6.  Styles in PLUM

Properties serve a variety of functions in specifying the various types of presentation
objects. They control the graphical presentation of the objects, specify parameters
that control the layout, and provide data to be used in the presentation. As such, it
was important that PLUM provide a powerful and convenient mechanism for speci-
fying properties.

The basic notion is based on styles. A style is a collection of properties each of which
is an attribute-value pair. Properties are grouped into styles as a matter of conve-
nience. It is often the case that a set of different objects will share a common set of
properties. Styles allow this set to be specified once and then simply associated with
each of the objects. Styles are designed to support standard definitions like this
while still allowing properties to be overridden for individual objects. They also are
designed so that styles from different sources can be easily merged. This allows a
style that is specified for selection to be merged with the default style for an object.
Finally, styles are designed to allow the setting of default properties for each flavor of
presentation object and for drawing.

Styles are implemented as objects where values are determined by object-oriented
delegation rather than inheritance. Each style contains a mapping from attributes to
values, a pointer to a parent style, and a pointer to an alternate style. The mapping
is used to contain the local settings of values for the style. These local settings repre-
sent properties that are overridden or defined explicitly in this style. The parent link
denotes the style that this style is overriding. If a property cannot be found in the
mapping, then the parent style is used recursively to determine the value of an
attribute. The alternate style link is used when styles are merged. If a property is
not defined in either the local mapping or the parent style, then it is looked up recur-
sively in the alternate style. If two styles are to be merged, a new style is created
with the higher priority style specified as the parent link and the other style speci-
fied as the alternate link.

Styles are used for representing selected presentation objects. Selections are useful
when editing (the user selects an object and then an operation on the selected object)
and for automatic highlighting (the system could select the currently executing
object to provide run time animation). PLUM provides for application-defined selec-
tions. Each selection is defined by a selection name and two styles, one for the object
that is selected and one for its children. Before a presentation is drawn, a selection
style is computed for each presentation object. This is done top down from the root
object, with each object providing the default selection style to its children. The
default selection style is originally empty. If the object is not selected, it passes the
selection style it is given to its children. If the object is selected, then its selection
style computed as the merge of style associated with the selection with the inherited
selection style. Moreover, the style that it passes to its children is the merge of the
style it inherited with the child style of the selection. This scheme allows multiple
selections of an object where the different selection styles are merged together.
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Objects have several styles associated with them. In addition to the selection style
that is computed by the system, they have a base style that is generally defined by
the object to specify default values for object-specific properties, a user style for nor-
mal settings, an override style for priority settings, and a child style to indicate set-
tings for their subobjects. The user and override style and properties in these styles
can be defined by the application. In order to determine the value associated with an
attribute for an object, PLUM considers each of these styles. It first looks the
attribute up in the override style. If it is not found there, it looks it up in the selec-
tion style that is computed as described above. If it is not found there, it looks it up
in the user style. This ordering allows selections to generally override properties of
objects while allowing the application to specify object properties that should not be
changed by selections. If the attribute is not defined in the user style either, then the
child style of the object’s parent object is used. This allows objects to specify default
settings of properties for their children that are different from the standard defaults.
Next, if the property is not found in any of these styles, the base style for the object
followed by the system base style is used. Finally, if the attribute hasn’t yet been
found, a system-wide default style is considered. This style is used to specify defaults
for the properties that all objects share and that must be specified such as color.

7.  Layout Methods in PLUM

Most of the work done by the presentation objects involves layout, i.e. placement of
subobjects. A variety of different layout strategies are evident, some attempting to
use layout to convey information, e.g. using depth to indicate the amount of time
spent in a routine or using Z to represent time. Others just attempt to make the lay-
out look “good” according to some abstract criteria.

The simplest layout method is used for layout objects and sized layout objects. These
methods allow arbitrary nodes and arcs and simply attempt to do graph layout in
3D, typically while presenting a 2D view from the front of the display. Graph layout
has been extensively studied in two dimensions [2]. The problem is one of placing
nodes and arcs to produce an aesthetically pleasing graph. This is generally trans-
lated into more specific problems such as reducing arc length and the number of
crossings or of emphasizing symmetry. While we provide a variety of approaches in
our 2D layout packages, the algorithm of choice for program data has been one based
on level graphs [24] since it tends to emphasize hierarchy and since it generally pro-
duces a reasonable looking result.

Moving graph layout algorithms from two to three dimensions is not trivial. The first
problem is determining what “looks good” in three dimensions. Because 3D graphics
imply that the user is going to move around and look at the graph from different per-
spectives, assumptions based on the user’s view may not be valid. For example, the
heuristic of minimizing crossings is meaningless. Given any two arcs in three-space
that do not intersect, we can find a perspective where they do not cross and a second
perspective where they do cross. Since most arcs will not physically intersect in three
space, the number of crossings will vary with the perspective.
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A second problem is that 3-space offers many more degrees of freedom. In two
dimensions there are two alternatives to laying out a level graph, representing the
levels as either rows or columns, and the resulting graphs are identical except for
orientation. In three dimensions one has three alternatives for how to represent lev-
els. Moreover, once the leveling is done, each level can be potentially represented by
a plane and hence by an arbitrary 2D layout. One could, for example, apply a 2D
level graph algorithm to the remaining nodes, i.e. do leveling twice. Alternatively,
the algorithm could place the nodes in a circle as in cone trees.

A third problem that arises is that we want to use the third dimension to convey
information and not just to provide more space for layout. This means that we have
to find layout methods that reflect properties of the underlying objects. For example,
layout methods must be able to assign a Z coordinate to a node based on its accumu-
lated run time or what file its in or how distant it is from a set of selected nodes that
the user is focusing on.

In PLUM we have implemented a flexible approach to 3D layout to experiment with
different algorithms and to gain experience with what works and what does not. Our
approach allows layout methods to work in various ways. Some methods, such as lev-
eling, work for one dimension and depend on another layout method to handle the
remaining dimensions. Other layout methods are comprehensive, working in all
three dimensions at once. Still others, such as local optimization, don’t compute the
layout in any dimension, but instead modify a layout that is already present. All the
layout methods allow values to be defined by the application or by the user. Each
coordinate can be given a default relative or a default absolute value. Relative values
identify the location in the array that is used by layout objects. These are typically
used to represent program assigned values. Absolute values can be used to exactly
reflect user manipulations of the underlying objects. All the layout algorithms are
also parameterized using properties.

The layout methods that handle only one dimension include:

• Level graph layout. This layout method handles a single dimension. It computes a
leveling of all the nodes that do not have that dimension previously defined and
assigns a value in that dimension based on the leveling. Once the leveling is done,
a secondary layout method, specified as a property, is applied to handle the
remaining dimensions. Properties specify the dimension to be used and whether
arcs should be considered directional or not. Other properties control the type of
leveling. Normally leveling starts at the root node and assigns each subsequent
node a level that is one greater than any of the nodes it is connected to. Bottom-up
leveling starts with the leaf nodes. For both of these the level of a node is the max-
imum of the levels of its predecessors plus one. In breadth-first leveling, the level
is assigned on the first visit to the node and not changed. A final property deter-
mines whether level heuristics should be applied to the arcs through the insertion
of pivot points for the arcs for each level that the arc traverses. This will insure
that arcs do not pass through nodes at the cost of having the arcs be crooked.
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• Level ranking layout. This method handles one dimension and assumes that some
prior dimension was handled by a level graph layout. It attempts to order the
nodes within a level by considering their position relative to the nodes above and
below it in the leveling. This is done by making multiple passes over the leveling,
alternating top-down with bottom-up, and assigning the positions within each
level to minimize arc length. The properties of level ranking layout specify the
dimension to work on, the dimension of the previous leveling, the layout method to
apply next for further dimensions, and the number of passes that should be made
over the graph.

• Unique value layout. This method handles one dimension, assigning a unique
value to each node in that dimension using a modified depth-first search algo-
rithm. This is useful, for example, to assign a unique Z position for each file group-
ing in a call graph layout. The properties here set the dimension to be used, the
subsequent layout method, and the first value to be used in the dimension.

• Value layout. This method handles one dimension based on data associated with
each node. It finds the maximum and minimum data values and then places each
node in a position relative to its value. Properties allow the position to be deter-
mined directly from the data or from the log of the data and allow the data to be
interpreted in increasing or decreasing order.

Figure 9a shows a random graph of 20 nodes drawn using level graphs in X, level
ranking in Y, and unique value in Z. Figure 9b shows the same graph using the node
number for a value layout in Z.

Other layout methods handle all remaining dimensions. These can be used as a top-
level method or as a secondary method to some of the above to fill in the remaining
values. They include:

• Depth first layout. This comprehensive (all dimensions) approach is quite simple.
It does a depth first search through the graph, visiting each node once. As each
node is visited it is placed as close to its parent as possible. Properties here deter-
mine whether arcs are considered directional for the depth first search, whether
the graph should be laid out in two or three dimensions, and what layout direc-
tions are preferred, i.e. down and then to the right.

• Breadth first layout. This is similar to depth first layout except that a breadth first
search is used in place of a depth first search.

• Averaged layout. This is a slightly more sophisticated version of the above. The
nodes are looked at in order, either the order they were defined in or a depth or
breadth first search order. When a node is considered, the locations of all nodes
connected to it that have been previously placed are averaged together to get a
target location. Then the new node is placed as close as possible to this target loca-
tion. The properties of this layout strategy determine the search order, specify
whether the layout should be two or three dimensional, and determine the pre-
ferred direction for the layout. An example can be seen in Figure 9c.
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• Orthogonal layout. This layout method attempts to display multiple hierarchies
simultaneously using the three dimensions. The primary hierarchy is displayed in
the XY plane. Secondary hierarchies can be displayed in the XZ or the YZ plane.
The individual hierarchies are laid out using a level graph approach. The method
works in one dimension at a time. First the primary hierarchy is used to deter-
mine levels in the Y direction. Levels can be determined using either top-down or

a) Leveling with unique Z b) Leveling with value-based Z

c) 3D averaged layout d) Optimized 3D average layout

FIGURE 9. Different layout methods illustrated on a random graph
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bottom-up leveling. Next the YZ hierarchy, if defined, is used to determine the Z
coordinate by leveling and then the XZ hierarchy is used to determine the X coor-
dinate. A node’s position in a hierarchy is determined by associating a hierarchy
type with each arc. Finally, any values that have not been defined by the above
leveling passes are set using a modified level ranking approach.

Finally, we currently provide one post-processing optimization:

• Local optimization. This is a post-processing approach that takes a complete lay-
out and applies an optimization algorithm to it. The optimization approach is to
assume a linear attractive force between connected nodes and an inverse square
repulsive force between nodes that are not connected. Then a relaxation algorithm
is employed to find the resultant positions of the nodes. Properties here specify the
method that provides the initial layout, the value of the attractive and repulsive
forces, and the number of passes to be made in the relaxation algorithm. Figure 9d
shows the optimized layout of Figure 9c.

8.  Animation in PLUM

One of the key features provided by PLUM is automatic animation. Animation is
necessary for 3D visualization on a 2D screen. PLUM provides animation in two
ways. The simpler is to allow the user to move the camera position so as to fly
through the object. The more complex allows arbitrary changes to the presentation
objects to be made.

The result of the draw phase in PLUM is a display list. This is a hierarchical set of
graphical commands such as transform, set property (i.e. color), and draw shape.
This list is then traversed to actually render the graphics. Changing the camera
position is done by changing one element in the display list and then retraversing it.
Where possible, this is done using double buffering to provide a smooth transition
from one frame to another.

PLUM is designed to be used by an application in an edit-display cycle. The applica-
tion first sets up a top level presentation object and then asks that it be displayed.
Then, in response to a user request or a program action, it either edits the current
presentation objects or creates a new top level presentation object. Editing can
involve setting new property values for the presentation objects, creating new pre-
sentation objects and attaching them as components of existing objects, removing
object components, adding or modifying constraints, or selecting or deselecting
objects. Once a series of edits is complete or a new top level object has been defined,
the application informs PLUM that the edit is complete. Unless told otherwise,
PLUM will attempt to animate the transition from the current display to the display
of the modified objects.

The first stage in this automatic animation process involves identifying what has
changed. Each presentation object maintains a flag indicating its current state. This
state can be RAW, SIZE_DONE, LAYOUT_DONE, DRAW_COMPUTED, and
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DRAW_DONE. This state indicates what information associated with the object can
be preserved. When a property is changed on an object, the state of the object is reset
accordingly.

The second phase occurs at the start of updating the display. Here PLUM attempts
to match old and new objects and to save the old display settings for matched objects.
Objects are matched using a compare routine that can be specialized to the different
flavors of objects. The basic routine checks if the two objects have the same flavor
and the same associated user data value. If two objects match in this sense, the com-
pare algorithm attempts to match components of the two. Components are matched
with a preference for order but will handle arbitrary insertions or deletions into the
list of components of the original object. This pass also can change the state of each
object according to whether it matches a previously known object (where the values
are copied) and according to the state of its children. Because the screen is to be
redrawn, no object is left in state DRAW_DONE or DRAW_COMPUTED.

Once the old and new objects have been compared, PLUM computes the new presen-
tation. When computing size, it will skip any objects whose state indicates that the
size has already been computed. Similarly, when computing layout it will skip
objects where the layout is already done.

The new presentation is then drawn by making passes over the resultant object
structure to compute the display list corresponding to each object. Each pass corre-
sponds to one animation frame. The pass is parameterized by a fraction which rang-
ing from 0 (old object) to 1 (new object). The drawing routines for each flavor
construct a draw object using properties that are gathered from the object. PLUM
provides facilities to inquire the size, the transformation, and properties such that
the value returned is a linear combination of the original and new value based on the
frame parameter. The property inquiry routines handle standard properties that are
known to be numeric (such as transparency) using linear interpolation. They handle
standard color properties by interpolating a color in RGB coordinates. All other prop-
erties are assigned the new value. The drawing routines (and the extra DRAW state)
are set up so that each frame other than the first can change the drawing by simply
editing the display list rather than recreating it entirely.

9.  Experience with PLUM

We have been working on PLUM and the related packages for abstraction visualiza-
tion for about two years. During that time we have rewritten most of PLUM at least
once in attempting to find the proper abstractions and interface. The current system
comprises about 25,000 lines of C++ code and is built on top of a machine-indepen-
dent graphics library provided by the Brown University graphics group.

Much of our experience with PLUM has been positive. The framework provided by
PLUM makes it easy to add new presentation styles. This is due to the use of hierar-
chy to simplify what each presentation has to do, the general notions of properties,
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components and constraints that are supported by the system. We have been able to
integrate a variety of different presentations into this framework in a natural way.
Adding a new presentation style can generally be done in a day or less, but addi-
tional time is often required to fine tune the graphical presentation.

The interface between PLUM and the application also seems to be the right one. The
application defines objects, components, and constraints. Styles and properties are
associated with objects. Properties can be set for components and constraints.
Because object, components, constraints, and styles are all generic, the size of the
interface that is required is quite small given the complexity of the system. The use
of automatic animation allows the application to compute the new presentation
without having to specify how it differs from the old. This often greatly simplifies the
application.

In addition to using PLUM as a back end for visualizing program information gath-
ered by the FIELD environment (i.e. call graphs, the class hierarchy, and profiling
information), we have also used it to display the results of program performance
analysis in a separate system. This tool, vprof, provides three different 3D displays:
a file view showing how much time is spent at each line and how often that line is
executed, a scatter plot of functions showing total instruction vs. local instructions
vs. real time, and an abstraction of the dynamic call graph showing where the pro-
gram spends its time. An example of the latter is shown in Figure 10. Here the size
of the block in XZ is proportional to the allocated run time; the position indicates its
place in the call hierarchy; the color indicates its ranking it terms of total run time;
its Z height up indicates the amount of real time spent in the routine; and the Z
height down indicates the number of times the routine was called. The total code
needed in vprof to provide the three interfaces was around 1000 lines.

The major drawback to the current implementation of PLUM is its performance.
This is partially due to the inefficient way we currently use the native graphics hard-
ware on the Suns, to the fact that we are using interprocess communications for com-
municating data from the application to PLUM, and to the size of the storage
structures created in the browser. Our current implementation is practically limited
to working with under 50,000 objects and displaying only a hundred simultaneously.
We are attempting to design the next generation system to handle a million objects.

10.  Conclusions

Practical program visualization requires a flexible back end that is capable of provid-
ing a wide variety of different visualizations. Different aspects of the program need
to be visualized in different ways. Moreover, different presentation methods will be
needed by the user to understand and gain insight into different program under-
standing tasks. The back end must provide advanced capabilities both to help the
user in viewing large amounts of data and to simplify the application interface.
These capabilities include a convenient user interface for flying around and viewing
the result, automatic layout and routing where appropriate, constraint-based layout



An Engine for the 3D Visualization of Program Information May 5, 1995 28

and presentation styles, and automatic animation from one frame to the next so that
the user does not lose context as the display changes. PLUM is our attempt to pro-
vide such a back end.

We feel that PLUM successfully meets these criteria. It provides a very simple pro-
gram interface based on objects, components, constraints and properties that can be
used by an application with a minimum of effort. This is demonstrated both in our
initial implementation to display FIELD program data, in a 1000 line program that
displayed a 3D representation of semantic nets, and in the 1000 lines added to our
performance tool to provide three different graphical displays. We expect to use the
system in several other visualizations and to release it to other researchers in the
future.

FIGURE 10. Performance display showing abstract dynamic call graph
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