
Louisiana State University Louisiana State University 

LSU Digital Commons LSU Digital Commons 

LSU Historical Dissertations and Theses Graduate School 

1985 

An Engineering Approach to Model-Order Reduction and Its An Engineering Approach to Model-Order Reduction and Its 

Application to Controller Design. Application to Controller Design. 

Alexius Ogbusua Kalu 
Louisiana State University and Agricultural & Mechanical College 

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses 

Recommended Citation Recommended Citation 

Kalu, Alexius Ogbusua, "An Engineering Approach to Model-Order Reduction and Its Application to 

Controller Design." (1985). LSU Historical Dissertations and Theses. 4134. 

https://digitalcommons.lsu.edu/gradschool_disstheses/4134 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It 
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU 
Digital Commons. For more information, please contact gradetd@lsu.edu. 

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_disstheses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/4134?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication 
and microfilming. While the most advanced technology has been used to pho
tograph and reproduce this manuscript, the quality of the reproduction is heavily 
dependent upon the quality of the material submitted. Pages in any manuscript 
may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which 
may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain 
missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note ap
pears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sec
tioning the original, beginning at the upper left hand comer and continu
ing from left to right in equal sections with small overlaps. Each oversize 
page is also filmed as one exposure and is available, for an additional 
charge, as a standard 3 5 m m  slide or in black and white paper format.*

4. Most photographs reproduce acceptably on positive microfilm or micro
fiche but lack clarity on xerographic copies made from the microfilm. For 
an additional charge, all photographs are available in black and white 
standard 3 5 m m  slide format.*

*For more information about black and white slides or enlarged paper reproductions, 
please contact the Dissertations Customer Services Department.

IMversHyMfcronlms
International





8610644

Kalu, Alexius Ogbusua

AN ENGINEERING APPROACH TO MODEL-ORDER REDUCTION AND ITS 
APPLICATION TO CONTROLLER DESIGN

The Louisiana State University and Agricultural and Mechanical Col. Ph.D. 1985

University 
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Mi 48106





PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. 
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages_____

2. Colored illustrations, paper or print______

3. Photographs with dark background_____

4. Illustrations are poor copy______

5. Pages with black marks, not original copy______

6. Print shows through as there is text on both sides of page_______

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements______

9. Tightly bound copy with print lost in spine_______

10. Computer printout pages with indistinct print_______

11. Page(s)_____________lacking when material received, and not available from school or
author.

12. Page(s)  ___________seem to be missing in numbering only as text follows.

13. Two pages numbered . Text follows.

14. Curling and wrinkled pages____

15. Dissertation contains pages with print at a slant, filmed as received x /'

16. Other  ____________

University
Microfilms

International





AN ENGINEERING APPROACH TO 
MODEL-ORDER REDUCTION AND ITS APPLICATION 

TO CONTROLLER DESIGN

A Dissertation

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and Mechanical College 
in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy

in

Engineering Science

fey
Alexius Ogbusua Kalu 

B.S., The University of Texas, 1980 
M.S., Louisiana Tech University, 1982 

December, 1985



ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Dr. Philip D. 

Olivier, my major professor, for his assistance during the project.

Dr. Olivier let me see his notes, and helped in resolving some 

problems that arose during the development of the Algorithm. His 

contribution to the completion of the dissertation is invaluable.

I have to mention my indebtedness to Dr. John C. Courtney, Dr. Roger 

L. Burford, and Dr. Magd E. Zohdi, all of who were members of my Ph.D. 

Committee, for reading the scripts and pointing out some latent 

errors. Many thanks are also due to Dr. J. Aravena for his criticisms 

and for serving on my Ph.D. Committee.

Special thanks are extended to my friend, Mr. Ibibia K. Dabippi 

for his encouragement, advice and support during my stay at L.S.U.

Many thanks to my brother Mr. 0. Kalu Ulu of Nigerian National 

Petroleum Company for all his help and for representing my interest in 

other matters while I was involved with this research. I also wish to 

mention my gratefulness to my parents Rev. James 0. Kalu and Mrs.

P. Udo Kalu for their love and support during this project. Most of 

all I will like to thank the good God for my perseverance.

Finally, I wish to acknowledge with thanks the efforts of Ms. 

Debra A. Kimble for typing the dissertation.



TABLE OF CONTENTS
Page

List of Tables .................................................  v

List of Figures ............................................  iv

List of Symbols ...................   vi

Abstract ................      viii

Chapter I: INTRODUCTION AND LITERATURE REVIEW

1.1 General .............................................. I

1.2 Order Reduction .......................................  2

1.3 Review of Existing Literature .........................  4

Chapter II: MODEL-ORDER REDUCTION CRITERIA

2.1 General ................................................ 12
2.2 Implications of the Relative Stability Constraints .... 13

2.3 Implications of the Order-Difference Preservation .....  17

2.4 Implications of the Zero Frequency Response
Constraint ............................................. 20

2.5 The Need for the Preservation of Response 
Characteristics at s-*-°°.................. ...........  21

2.5 Versatility of Procedure ..............................  22

Chapter III: DEVELOPMENT OF THE NEW ALGORITHM FOR
MODEL-ORDER REDUCTION

3.1 General......................................    23
3.2 Preserving the Steady-State and High Frequency

Response Characteristics ..............................  25

3.3 Relative Stability Constraints ........................ 27

3.4 Other Soft Constraints  .............................  31

3.5 The Algorithm.........................................  33

3.6 The MIMO Case .........................................  35

iii



PLEASE NOTE:

Duplicate page num bers. Text 
follows. Filmed as received.

University M icrofilm s International



Table of Contents (cont'd)
Page

Chapter IV: DETERMINATION OF OPTIMAL ORDER

4.1 General ................................................ 38
4.2 The Polynomial As a Multiple Regression Model ........  40

4.3 Criterion for Goodness of Fit .........................  41

4.4 Criterion For the Selection of Optimal Order by 
Minimizing the MSE .....................    44

4.5 Criterion for the Selection of Model Order Using 
Simultaneous Hypothesis Tests .........................  46

Chapter V: ANALYSIS OF PROCEDURE

5.1 General ................................................ 50

5.2 Obtaining a Stable Estimate ...........................  51

5.3 Minimum Order Estimate ................................  53

5.4 Minimum Required Order of the Plant’s Numerator 
Polynomial ............................................. 54

5.5 Maximum Number of Points That Can Be Matched .........  56

5.6 Application to MIMO Systems ...........................  60

5.7 Other Considerations ......................   61

Chapter VI: ILLUSTRATIONS AND EVALUATION OF PROCEDURE

6.1 General.........    64

6.2 Order Reduction Examples .............................  65

6.3 Validating the Mathematical Criteria for Selecting
the Optimal-Order Estimates ...........................  75

6.4 Application of the Estimate in the Design of
Controllers ............................................ 82

Chapter VII: CONCLUSIONS .........................................  85

CITED REFERENCES ................................................ 87

BIBLIOGRAPHY ......................    91

APPENDIX A ......................................................  93

iv



LIST OF FIGURES
Page

Figure 2-1 Illustrating the Relationship Between (%, and
the Nyquist Criterion ............. -..............  14

Figure 2-2 Two Systems with Common Phase Crossover Frequency
and Gain Crossover Frequency .......................  16

Figure 4-1 Polynomial Regression as a Special Case of
Multiple Regression ................................  42

Figure 6-1 Comparison of Responses of Plant and 3rd-0rder Models 72

iv



LIST OF TABLES

Table 6-

Table 6-:

Table 6- 

Table 6-'

Page
L Responses (Log Magnitude) of H (s) as a Function

of Frequency  ....... ?.....   77

I Deviations of the Responses of From the
Responses of H (s) at Various Frequencies ......... 79P

} Values of the Criterion of Equation 4 - 1 2 ...........  81

» Values for the Hypothesis Test .................... 81

v



LIST OF SYMBOLS

Symbols Units

s = Complex Variable 88 a + jco

j = "I
a) = Cyclic Frequency

H(s) = Transfer Function

M(s) = Transfer Function Matrix

K = Position Error P
88 Velocity Error

K * Acceleration Error a
K = Feedback Gain Matrix 
2R = Coefficient of Determination 

E(s) 88 Sum of Errors 

0 = Angle of Asymptotes 

<f> = Phase Angle

rad/sec

degrees

degrees

Notations

Rn *= n-dimensional space 

Im {.} 88 Imaginary Part of 

Re {.} * Real Part of .

[#] = Listed Reference #

F* 88 The Complex Conjugate of F 

Fcfl̂  = The F-Statistic (calculated) 

Y 88 Average Value of Y



Notations (cont'd) Units
Y = Estimated Value of Y 
„T . „ „ .A “ Transpose of Matrix A

degree O  = degree of
A = State-Space Realization Matrix A for H (s) 

P P
Ap = State-Space Realization Matrix A for Hp(s)

Subscripts: 

p = Plant quantity 

R = Reduced-order Quantity 

o = Initial Value

a ® Level of Confidence for the F-Test. 

Abbreviations:

CFE = Continued Fraction Expansion 

MIMO = Multiple Input Multiple Output 

SISO = Single Input Single Output 

argH(jw) = Arguement of H(jw)

Ap(s) = Magnitude of H^(s) 

A^(s) = Magnitude of H^(s)

dB

dB

vii



ABSTRACT

A new method of approximating a high-order system by a lower- 

order model in the frequency domain is developed. A reduced-order 

model of a transfer function obtained by the new method is compared 

with a reduced-order model obtained by another existing method to 

illustrate the power of the technique. Furthermore the approximant 

constructed by this new method is used to design a control system, 

which is applicable to the plant, to show its usefulness. The thesis 

also suggests some mathematical criteria for selecting the order of 

the approximant.

This technique is particularly attractive because of its simplic

ity and versatility. Furthermore, it is applicable to a large group 

of practical Single Input-Single Output systems' transfer functions.
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CHAPTER I
INTRODUCTION AND LITERATURE REVIEW

1.1 General

A typical industrial system involves components from several 

engineering disciplines. For instance, just the reactor of a nuclear 

power generating plant involves chemical, electrical, electronic, 

hydraulic and mechanical components. Engineers and scientists are 

frequently confronted with the task of studying such complex physical 

systems. One of the first steps in studying any real world systems is 

the development of a mathematical model of the phenomenon being 

studied. In doing this engineers (and scientists) are guided by the 

thought that an oversimplified model will lead to conclusions which 

are invalid in the real world. Consequently, any study of a complex 

system involves complex mathematical description - high order differ

ential equations or polynomials - in most cases.

The economic importance of the analysis and other studies of a 

plant to the industry cannot be over emphasized. It is the key to 

optimal performance, productivity and investment decisions, to mention 

a few. In some cases the mathematical models that represent the 

system are so complex that they defy solutions. In some other cases 

they may be solvable but so cumbersome that the economic advantage of 

the study could be outweighed by the cost of it in terms of human 

effort and time. To overcome this problem it is often desirable to
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approximate a high-order dynamic system by a low-order model so that 

simplified studies can be carried out.

In this thesis, a procedure for obtaining an adequate low-order 

approximation to a high-order system is developed. Much emphasis is 

given to model adequacy while effort is made to make the procedure 

very computationally efficient. The procedure developed is applicable 

to both Single Input-Single Output (SISO) systems and Multiple Input- 

Multiple Output (MIMO) systems with some limitations.

The results obtained from the use of this new procedure are com

pared with those from other well-known methods to show its effective

ness and advantages. The usefulness of the method is also demon

strated by the use of the reduced-order model to design a controller 

which can adequately control the high-order plant.

There is a conflict between estimate 'fidelity*, which is a 

measure of how much the estimate resembles the original plant, and 

estimate simplicity, which is determined by the order of the estimate. 

It therefore follows that for any given high-order system there is an 

optimal order of the reduced-order estimates. A method of obtaining 

such optimal order is presented in this thesis.

1.2 Order Reduction.

Model order reduction involves a trade off between model order 

and the degree to which the characteristics of the plant are neglected 

by the model. Because the relative importance of various plant 

characteristics is highly dependent upon the application, it is diffi

cult to conceive a universal model reduction algorithm. Nevertheless



3

certain model order reduction algorithms can be considered more effi

cient than others. This judgement can be based on their relative 

simplicity and the amount of plant characteristics they can preserve. 

The main purpose of model order reduction is to obtain a simpler 

'true1 image of the plant so that studies about the plant can be 

simplified. Consequently, it is probably best for an order reduction 

algorithm to focus more on plant characteristics preservation while 

striving for simplicity. This philosophy calls for certain con

straints to be imposed on the model parameters such that model retains 

all the important characteristics of the plant.

A high fidelity model may be achieved if the model and plant have

(1) the same steady-state error constants; (2) high frequency 

responses which are asymptotically the same; and (3) transfer func

tions that match at some arbitrary frequency values. Any effort to 

achieve the above objectives forces the model parameters to have 

certain values which results in a unique estimate of the original 

plant. That is, mathematical relations between a set of unknowns 

which constitute the parameters of the low-order model and the para

meters of the high-order plant are developed. These relations must be 

such that the two models satisfy the above outlined requirements. 

Again, it is not enough to have an adequate estimate but also a simple 

estimate. Therefore the set of unknown parameters must be of those 

parameters constituting a reduced model of predetermined order, 

alternatively, the method of determining the unknown" must be such 

that they could be chosen for any order of interest.

Also an order reduction algorithm should be approached from an 

engineering perspective rather than just as a mathematical exercise.
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An engineering approach would be to obtain a reduced-order model by a 

process based on a set of simple design principles. Measures of rela

tive stability (gain margin and phase margin) are often used as design 

criteria. A model order reduction process which insists, therefore, 

that the plant and the low-order model have the same gain margin and 

phase margin should be useful for engineering applications.

1.3 Review of Existing Literature

A common and quite legitimate complaint directed toward multi

variate control literature is that the apparent strength of the theory 

is not accompanied by strong numerical tools. Practically every 

linear system text gives a discussion of minimal realization. The 

textbook algorithms are far from being satisfactory, however, serving 

mainly to illustrate the theory with textbook examples. Thus, simpli

fication of dynamic systems with large order has received increased 

attention in recent years. Even so the problem has not been solved 

since the answer to the question "Do methods of system reduction exist 

which produce reduced systems suitable for control system design 

purposes?" is definitely not clear. Also, it is not clear how small 

the approximate model can be and still accurately represent the 

original plant.

Numerous methods for approximating high-order systems now exist. 

Comprehensive lists of references may be found in Genesio [1] (1976), 

Decester [4] (1976) and Marshall (1978). A good number of the exist

ing methods are algebraic and are very computationally attractive. 

These include, for example, the Pade' class of methods like the 

continued fraction expansion [5] (CFE), time Moments [6] and Pade'
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approximations [7]. It has been shown [8] that, under certain mild 

conditions, these methods yield the same Pade' approximants; the 

direct Pade* approximation being the more general one. However, being 

mostly approximations about a single frequency point (s = 0), the 

algebraic methods yield poor overall frequency response character

istics. Furthermore, some of the Pade* methods may produce an unsta

ble reduced order model even though the original high order plant is 

stable. To deal with this problem another algebraic approach - the 

Routh approximation method [9], [10], has been introduced.

Routh approximation methods have their own weaknesses too.

Ashoor and Singh [11] have shown that for some systems the Routh 

approximant may be much superior to the Pade' approximants whereas 

Shamash [7] has shown that for certain other systems, the Routh 
approximant [9] may be much inferior. Thus none of the above classes 

of algebraic approximations can be applied with any certainty. Much 

other work on order reduction revolves around these two classes of 

approximation - being only extensions, modifications, or alternative 

versions of either of them.

There is still another group of order-reductions methods based on 

error minimization. This includes the work by Eltelberg [11], Obinata 

and Inoka [12], [13]. The proponents of these methods claim that 

their greatest advantage over other approximation methods lies in the 

fact that the equation error (residual) depends linearly on the 

unknown quantities. But Eitelberg points out that there may be disad

vantages in the application of some aspects of the works of Obinata 

and Inoka [12], [13]. Almost all the existing methods based on error 

minimization have been disapproved by some scholars for one reason or
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the other-indicating that this class of reduction methods are still 

not applicable with any certainty.

Most of the above methods are applicable to SISO Systems only, 

and so only a few of them are adaptable to nonlinear systems. How

ever, it does not seem a formidable task to extend any method intended 

for SISO Systems for application to MIMO Systems. Furthermore, some 

authors have developed approximation methods which are exclusively 

applicable to Multivariable Systems. A. popular technique [15], [16], 

[17] is the Eigenvalue Preservation Method. One of the early 

complaints against this method is its failure to preserve the d.c. 

steady state gain. Hicken and Sinha [18], have shown that the method 

of aggregation implicitly implies eigenvalue preservation.

Other methods of order reduction include Moments Matching Tech

niques [19], [20], [21] and orthogonal projection (geometrical) 

techniques [22]. Other more general methods include the Singular 

pertubation technique [23] and the uniform approximation technique 

[24].
Most of the above system reduction methods are of a mathematical 

nature and hardly address engineering problems. Obtaining a good 

approximation of the system response to particular inputs should not 

be the only goal of a reduction technique. More important is the 

application of the reduced order model to engineering design. The 

first efforts in this direction were made by Aoki [25], Sannuti and 

Kokotovic [23], and Milanese and Negro [27], It was noticed by Lambo 

and Rao [28] that Davison’s model [15] was a special case of aggrega

tion, so that Aoki's analysis could be applied. Disappointingly, 

similar results could not be obtained using the moment matching
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methods and the above eigenvalue preservation methods. This casts 

doubt on their reliability. Although Aoki's method is computationally 

efficient it cannot be used to design static compensator’s for the 

original plant. An effort by Hickis and Sinha [18] to bridge this gap 

results in a formidable computational task.

Methods of reduction based on simple design principles have been 

suggested by Marshall [31] recently. He included in his set of con

straints a requirement that the model and plant have the same gain 

margin and phase margin. But as attractive as Marshall's reduction 

techniques seem, they do not differ very much from many of the others 

in that the philosophy is to preserve some of the dominant modes.

This requires that the poles of the open loop transfer function be 

known. This may involve a tedious mathematical task for system of 

very high order. Furthermore, no set or rules (or algorithms) is laid 

out for any class of transfer functions. In some cases part of the 

procedure is the design of a compensator which will make the estimate 

meet the prescribed requirements. In some other cases Marshall [31] 

starts the reduction process from the response curve, such as polar 

plot, of the original system. It may be observed that not only do his 

methods require a lot of information about the plant responses but 

they also lack generality.

As alluded to earlier, many of the existing methods have been 

criticized by different scholars. There is so much comment on ordei’ 

reduction techniques and rebutals in the literature that in some cases 

the arguments become subjective and the choice is left to the reader. 

Trying to settle the problems involved in the eigenvalue preservation
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method, for instance, resulted in what Towil [29] described as a 

"running battle" between Davidson and Chidambara.

There is just as much effort to improve the techniques as there 

are criticisms about them. Most critics follow their comments with a 

suggestion for improvement. A brief but closer look of some of the 

more general methods in the literature follows.

Reduction methods based on retaining only the eigenvalues of the 

original systems close to the origin are referred to as the dominant 

eigenvalues while neglecting these eigenvalues farthest from the 

origin are common. The philosophy is that by retaining the dominant 

eigenvalues of the original systems the dominant time constants of the 

original system which govern the system behavior will be retained in 

the reduced model. This implies that the overall behavior of the 

approximate system will be very similar to the original system. The 

proponents of these methods argue that the above assumption is true 

because the contribution of the eigenvalues far away from the origin 

to the system response are important only at the beginning of the 

response, whereas the dominant eigenvalues have significant contribu

tion throughout the whole of the response and, consequently determines 

the type of system response.

The main disadvantages of this approach are: it requires the

determination of the poles of the original system which may pose 

computational problems for very high order systems or for systems with 

widely separated poles. Also these methods cannot be applied to 

systems where there are no dominant poles or where the dominant poles
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are difficult to identify, example [39], a system with poles at -1, 

-l±j 27, -1.5. Another complaint against the dominant mode concept is 

that it does not preserve the d.c. steady state gain.’

Another class of model reduction technique in the frequency 

domain is the Pade' approximation method mentioned before. In these 

methods the Taylor series expansion about s = 0 for the original and 

reduced models are matched up to the maximum number of terms. These 

methods are particularly useful, the authors claim, where the original 

system has no clearly dominant poles or where the dominant modes are 

difficult to identify and thus the methods based on the dominant 

eigenvalue concept discussed in the previous paragraph cannot be 

employed.

A very serious problem with this approach is that it may result 

in an unstable reduced model even when the original system is stable, 

in which case the reduced-order model is worthless. Furthermore, 

since the Pade' approximations are approximations about a single 

frequency point (s-»-0), they may yield poor response characteristics 

at several other frequencies.

To deal with the stability problem in Pade* methods, a number of 

methods based on the idea of selecting the denominator of the reduced- 

order model, which will ensure stability, a priori have been sug

gested. The numerator coefficients are then used to match terms in 

the Taylor series thus producing the so-called partial Pade' approxi

mation. Unfortunately, [44] the partial Pade* approximation

‘ Marshall’s method [31] does not suffer from this problem.
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results in a worse overall frequency response characteristics than the 

full Pade' approximation does.

The problem of poor overall frequency response characteristics 

that results from the algebraic (Pade* class) methods has been chal

lenged by Bistriz and Langholz [45]. Instead of matching the Taylor 

series expansion about a single frequency point ( s -*■()) o r about two 

frequency points (s+0, s -*■«») as in the modified Pade' approach, 

Bistriz and Langholz manipulate two Chebyshev polynomial series, one 

representing the original high-order system and the other representing 

the approximating low-order model. They prefer to regard their 

approach as a generalization of the classical Pade' approximations, 

with the Chebyshev polynomial series expansion being over a desired 

frequency interval instead of a power series about a single frequency 

point. But in their work [45] only low-pass amplitude approximations 

were considered. Also the stability question was not specifically 

addressed. Furthermore, this approach lacks the simplicity of the 

Pade' methods.

The next group of reduction methods in frequency domain - the 

Routh approximation methods - were introduced basically to circumvent 

the stability problem resulting from the Pade' group of methods. The 

general philosophy is to seek an approximant which has equal sign 

changes (in its Routh array) to the original system's Routh's array.

No other constraints are imposed on the reduced-order model, thus 

though stable estimates are produced from stable high-order plants 

using this approach, the estimates in many cases are much inferior to 

those obtained via the other methods. Furthermore, it has been
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found that [38] there exists a high degree of nonuniqueness in the 

Routh methods.
The above three general approaches represent most the efforts to 

reduce the order of a system in frequency-domain available in the 

literature. The other methods mentioned are reduction techniques in 

time-domain. These methods seem to be more of mathematical exercises 

instead of solutions to engineering problems. A common defect of most 

of the available techniques is their lack of simplicity. There is 

still a need for a technique which has engineering implications and is 

conceptually simple.



CHAPTER II
MODEL-ORDER REDUCTION CRITERIA

2.1 General

If an order-reduction technique is to be applicable to control 

system design or/and analysis problems it should meet certain criteria 

other than the loose requirement, namely, that it produces a low-order 

estimate which has approximately the same response characteristics 

with the original high-order system. These criteria consist of the 

constraints the technique imposes on the reduced-order model forcing 

it to preserve certain characteristics of the original system which 

are vital for certain engineering applications.

The constraints imposed on the reduced-order model by the re

duction technique introduced in this thesis are: -

(1) That the approximant have the same gain margin and phase 

margin with the plant.

(2) The order difference, d-n, be preserved, where d is the 

order of the denominator polynomial of the transfer 

function and n the order of the numerator polynomial.

(3) That the reduced-order model have the same response 

characteristics with the plant as s + 0.

(4) That the reduced-order model have the same response 

characteristics with the plant as s-*oo.

It shall be shown in this chapter that these constraints have serious 

engineering implications and are thus essential requirements. It will
12
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also be seen that an approximant which satisfies all these require

ments will have an overall frequency response characteristics similar 

to those of the plant.
Some of the commonly used control system design techniques in the 

frequency domain are the Nyquist and the Root Locus approach. Since 

the reduction procedure introduced herii is in the frequency domain the 

above approaches shall be used as the bases for justifying the con

straints imposed on the approximant by the new reduction technique.

2.2 Implications of the Relative 
Stability Constraints

The Nyquist stability criterion is a very valuable tool for 

determining the degree of stability, or instability of a feedback 

control system. This criterion is stated algebraically as [2]

N = Z - P (2-1)

Where N is the number of clockwise encirclements of the -1 + jO point

by the Nyquist locus, P is the number of poles of the open loop trans

fer function H(s) having positive real parts, and Z is the number of 

roots of the characteristic equation 1 + H(s) = 0 having positive real 

parts. For a stable system
Z = 0 (2-2)

and thus the criterion of Equation (2-1) becomes

N = -P (2-3)

Consider the Nyquist diagram of figure 2-1. The number of 

encirclements, N, of the point -1 + jO can be determined by knowing 

the points at which the Nyquist locus crosses the negative real axis. 

Also the direction of the locus can be determined by knowing the point
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at which the locus intercepts a circle of unit radius (with center at 

the origin) which passes through the point -1 + jO. This gives the 

angle H(s), makes with the negative real axis when its magnitude is 

unity.
Consider, then, two different open loop transfer functions Hp(s) 

and Hd (s) whose Nyquist diagrams cross the real axis at the same 

points and intercept with the unit radius circle at the same point, as 

shown in Figure 2-2. Their Nyquist diagrams must then encircle the -1 

+ jO point equal number of times and will also have the same direc

tion. The frequencies at which the Nyquist locus crosses the negative

real axis are called the phase crossover frequency oô  and the 

frequency at which the magnitude of H(s) is unity is the gain cross

over frequency û . Thus any two transfer functions whose gain margin 

and phase margin are equal will have identical stability provided they 

have equal number of poles P with positive real parts. The applica

tion of this to model order reduction can be summarized in the follow

ing theorem.

THEOREM I

Given a transfer function H^(s) which has P poles in the right half 

plane (RHP); if a reduced-order transfer function HR(s) can be 

constructed such that

(1) H (s) has P poles in the RHP

(2) H (s) and H„(s) have same to- andp  K  11

(3) II (s) and H (s) have the same w, then any K that yieldsp  R  1

stable KH„(s) will yield a stable KH (s)  ft P
1 + KH„(s) 1 + KH (s)ft P
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Two Systems with Common Phase Crossover 
Frequency and Gain Crossover Frequency
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similarly any that yields stable e^H^Cs) will yield a stable

1 + e ^ C s )

e*H (s)P
1 + e^H (s) P

Theorem I shows that the preservation of gain margin and phase

margin will result in an estimate which can be useful in design of

controllers, specifically simple gain compensator and simple phase

compensator. More importantly, the preceeding discussion shows that

the preservation of gain margin and phase margin will guarantee that

HD (s) will be stable if H (s) is stable provided Hp(s) has no K p K
poles on the RHP. If this is the case then one would expect HR(s) to 

be useful in other applications particularly if certain other charac

teristics of Hp(s) are preserved in HR (s). Thus preservation of the 

relative degree of stability is a necessary condition.

2.3 Implications of the Order-Difference
Preservation

The purpose of this section is to show that constructing the 

estimate HR (s) such that
dR - nR = d - n (2-4)

contributes to the estimate having similar response characteristics 

with the plant Hp(s); where nR and dR are the order of the numerator 

and denominator of H (s), respectively, and n and d are the order of 

the numerator and denominator of Hp(s), respectively.

The general strictly proper transfer function
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n J n-1 Ja s  + a  .s + . . . + a
H p (s) -  d - T -------- 7 7 ^  ; d  > n  (2’ 5)v b ,s + f , ,s + ... + b sd d-1 m

may be written in factored form as

K(l+sT )(1+sT, )...(1+sT )
H (s) = —  S !>-------- a—  , (2-6)
P s ( 1 + s T 1 ) ( 1 + s T 0 ) . . . ( 1 + s T ,  )1 L a—m

where m denotes the system type. Substituting s « ju), then

K/D° ; m = 0
Lim H (jw) = ‘

^  oq/^m90° ; m *f 0
(2-7)

Lim H (jw) = 0 -(d-n)90° for all m. (2-8).p

Thus the angle at which the polar plot (Kyquist locus) approaches the 

axis as co-*-00 is a function of the difference d-n. The following 

conclusions can be drawn.

Theorem II.
Given a transfer function H (s) with numerator polynomial ofP

order n and denominator polynomial of order d then a reduced-order 

model Hn(s) constructed such that the difference between the orders of 

its denominator and numerator polynomials is d-n will have a Nyquist 

path which approaches the axis at the same angle as Hp(s), as w-*-00 .

Next it will be shown that the shape of the root locus, another 

important design technique, depends in part on the difference d-n.

For any point on the s-plane to lie on the root locus of Hp(s), that 

value of s must satisfy the following [2].

Magnitude Condition:

|h ( s ) J  = 1, for all values of K (2-9)
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Angle Condition:

■E(l+2h)180°; K > 0argH (s) = < (2-10)
p * h360 ; K < 0

where K is the loop sensitivity and
h = 0, ±1, ±2,...±(d-n-l). (2-11)

Now the characteristic equation of the system is given by

B(s) - 1 + H (s) = 0 (2-12)P
Therefore

K(s-Z.)(s-Z„)...(s-Z )
H (s) =      = -1 (2-13)
p (s-P1)(s-P2)...(s-Pd)

The asymptotes that the loci approach as s approaches infinity can be

determined by evaluating the limit of Hp(s) as s
n

K Z (s-Z ) 
i=l I K

Lim H (s) = Lim 1 d (  = “T~" = -1 (2-14)
s ->oo P s ->oo | S (s-P.) \ S

3=1 3
Therefore the angle condition of Equation (2-10) becomes

 ̂ -K = / s d“n = (l+2h)180° (2-15)
or

(d -n Ys = (l+2h) 180° (2-16)

That is, the angle of the asymptotes the locus approach as s 

approaches infinity are given by

fl = <1+2h>180° (2-17)
d-n

and they are d-n asymptotes. This condition leads to the following 

theorem.
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Theorem III.
Given a transfer function Hp (s) with numerator polynomial of order n 

and denominator polynomial of order d then a reduced-order model H^(s) 

constructed such that the difference between the orders of its denomi

nator and numerator polynomials is d-n will have the same number of 

asymptotes on its root locus as does Hp (s). These asymptotes also 

have the same angles as those of Hp (s).

2.4 Implications of the Zero Frequency
Response Constraint
Static accuracy is an important characteristic of a feedback con

trol system. The designer always strives to design the system to 

minimize error for a certain class of inputs. It therefore seems 

important that the accuracy of the approximant be similar to that of 

the plant if the approximant is to be used for studies about the 

plant.

The relation between the resulting system error, E(s), for a 

given input R(s) is given by [2]

E(s)  ___1
TbT

The steady state error is given by

R(s) 1 + Hp (s) (2-18)

Lim e(t) _ Lim sR(s)
ess t 00 s -► 0 1 + H (s)P

The usual inputs of interests are 

Position input: R(s) = 1/s
2Velocity (or ramp) input: R(s) = 1/s

3Acceleration input: R(s) = 1/s

and sometimes higher order derivative inputs R(s) = 1/s*-

(2-19)
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where i is a positive integer. The general form of the steady- 

state error can be expressed as

e Lim \  s Q / s 1)
ss s -*■ 0 1 + Hp(s) (2-20)

or

ess ~ 1 + Lim 5s1-1H <s)7 = Lim t i_1H (s)l (2-21)
s -*■ 0£ ** y  s ->■ o f J

i-1The quantity Lim s H (s) is called the error constant denoted by K^, 
s 0 ^ rthus

K. = Lim • 
s 0

s H (s)P
J

(2-22)

and the steady-state error is given by

1ess K± (2-23)

Where the subscript i indicates the type of input, for instance, for a
ovelocity input (R(s) = 1/s ) is denoted by Kv# and for an input 

R(s) = 1/s4 is denoted by K^.

From Equation (2-22) it can be seen that for transfer functions 

whose values are equal at s=0, the constant will be the same. The 

implication of this to order-reduction is as follows.

Theorem IV
If an estimate, H^s), of a high-order transfer function H^(s) is 

constructed so that H^(0) = H^(0) then H^(s) and H^(s) will have the 

same error constants.

2.5 The Need for the Preservation of Response 
Characteristics as s ->-<*>.

As previously indicated plotting the root locus of a system is 

greatly facilitated if one can determine the asymptotes approached
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by the various branches as s takes on large values. This implies

determining the value of H^Cs) as s approaches infinity. To use HR(s)

for studies about H (s) one would like it to have similar root locusP
and one of the necessary conditions for this is HR(co) = Hp(oo).

Similar reasoning holds when one looks at the Nyquist plot of a 

system. One of the assumptions of the Nyguist criterion [2] is that 

Lim H(s) -*■ 0 . Thus to evaluate the stability conditions of HR (s),
S ->-°o
which will be used for designs compatible with H^Cs), one would 

require among other things that Lim HR (s) = Lim H (s).
S -*■ oo S -V oo ^

However, it should be noticed from Theorem II that the preserva

tion of d-n implicitly results in the preservation of response at 

s = oo . Thus a reduction process may not insist on the latter if it 

can guarantee the former.

2.6 Versatility of Procedure

Lastly, the model order reduction technique should be versatile.

One of the requirements of Theorem I, for instance, is that Hp(s) and

Hd (s) have equal number of poles with positive real parts. Suppose a

reduction algorithm produces an estimate that does not meet this

requirement, then there should be part of the whole process that

forces H„(s) to meet this requirement so that Theorem I will be appli- K
cable.

Furthermore, the reduction process should be able to allow the 

engineer to preserve any part of the plant's response characteristics 

as his intended application may dictate. For instance, it might be 

more important to match the low frequency responses of H^Cs) and HR(s) 

if the reduced-order model is to be used for low pass filter designs.



CHAPTER III
DEVELOPMENT OF THE NEW ALGORITHM 

FOR MODEL ORDER REDUCTION

3.1 General
The high-order system here referred to as the plant is repre

sented by its transfer function H^Cs) if it is a SISO system or by its

transfer function matrix M (s) for a MIMO system. The basic problemP
is to obtain another transfer function HR (S) (°r another transfer 

function matrix M^(s)) of lower order such that controllers designed 

for h r (s) (or M^s)) will adequately control Hp (s) (or Mp (s)) respec

tively. The philosophy is to seek a reduction procedure which is both 

conceptually simple and computationally efficient, and will result in 

a reduced-order model which has identical performance characteristics 

with the plant.
Many methods of reduction require a prior knowledge of the poles 

of the plant. This involves the factorization of a high-degree poly

nomial which is a formidable task. To use the reduction method intro

duced here one does not have to perform this task since knowledge of 

the plant's poles is not required. Also much of the existing litera

ture in model order reduction may be difficult to understand becuase 

of the level of mathematics employed. The reduction method developed 

in this thesis does not require any more knowledge of mathematics than 

elementary algebra and thus can claim simplicity.

The reduction process in this work is done in the frequency 

domain. The comparisons of plant and estimate performance

23
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characteristics are also done in the frequency domain. The con

straints, therefore, imposed on the estimate are that it has the same 

frequency specifications and similar overall frequency response. Some 

of the most commonly used design criteria in the frequency domain are 

the gain margin and the phase margin. Consequently, a mathematical 

process which will lead to an estimate whose gain margin and phase 

margin are the same with those of the original plant shall constitute 

a part of the reduction procedure. Another essential part of the 

reduction procedure consists of the mathematical process which will 

force the resultant model to have the same steady state response and 

high frequency response with the plant.

There should be little or no doubt (as was shown in Chapter II) 

that if a reduction method can preserve the above mentioned plant per

formance characteristics it will yield an adequate estimate of the 

plant for design purposes. As mentioned in Chapter II the procedure 

should be versatile enough to allow the exact matching of plant and 

estimate response at any frequency of interest. This will enable one 

to emphasize those plant characteristics which are most significant 

according as the application for which the model is intended. In this 

chapter is developed a reduction procedure which guarantees exact 

matching of plant and estimate steady-state response, asymtotic 

matching of high frequency responses, and the same gain margin and 

phase margin. Furthermore the procedure is capable of exact matching 

of plant and estimate response at any frequency. This is useful in 

finetuning the reduced-order model to have an overall frequency 

response similar to that of the plant.
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3.2 Preserving the D.C. Steady-State and High 
Frequency Response Characteristics

Consider a strictly proper transfer function Hp (s) * N(s)/D(s) 

where, H(s) ̂ R n and D(s)^R^; d > n.

H (8) = 1  =  1  <3-!)V ' D(s)/N(s) P1(s) + H^s)
Where P.(s) is the quotient polynomial of 1/H (s) and HL (s) is a£ P i-
strictly proper transfer function given by

D /_ N R l (S)
1 = -■ ■ ■ (3-2)1 N(s) U  i }

Where R^(s) is the remainder polynomial of l/H^Cs). Since H^(s) is 

inherently strictly proper it vanishes as s -*■ This phenomenum can

be summarized in the form of a theorem, viz:

Theorem V

Given any H^(s) which is strictly proper, H^Cs) -*■ as s + ®.

Where Pj(s) is the quotient polynomial of l/H^Cs).

The stipulation of Theorem V assures us that retaining the quo

tient of 1/H (s) in the reduced-order model H_(s) will result in the P R
asymptotic matching of H (s) and H_(s) at high frequency responses.P K
Thus, as far as satisfying the high frequency response requirement is

concerned H^(s) is arbitrary and can be chosen for convenience with

respect to satisfying other constraints in the reduction process.

The transfer function H^(s) (Equation (3-2)) can be expressed as

the sum of its d.c. steady-state component and its frequency dependent 

component, thus:
H^s) = H^o) + H2(s ) (3-3)
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W h e r e ,
H 2 ( s )  = HjCs) - H^o). (3-4)

Obviously H2(s) is not strictly proper. It is of the form

H2(s) = s H 3 ( s )  (3-5)

where H3(s) is a strictly proper transfer function with no poles at 

the origin.

Equation (3-3) can then be rewritten as:

Hj(s) = Hj(o) + s H 3 ( s )  (3-6)

and Equation (3-1) which is an expression for the plant transfer func

tion H (s) becomes P
H ( s ) ____________ 1____________________  n
P " P1(s) + H^o) + s H 3 ( s )  { J ~ / J

Defining another polynomial, P2(s), of the same order with P^(s):

P2(s) = Px(s) + H1 (o) (3-8)

The plant transfer function H (s) then becomesP
H (s) = _______ 1_______  . (3-9)

P2(s) + sH3(s)

Since H3(s) does not have poles at zero then sH3(s) vanishes for s

equal to zero and what is left of H (s) for s equal to zero isP
y°> - • (3-io)

The above derivation can be summarized in the following theorem: 

Theorem VI
Given a strictly transfer function H^(s) = N(s)/D(s),

H (s) , >— * ■ as s o. Where P, (s) is the quotient polynomialp' P^Cs) + H^o) 1

°f . , Hj(s) = Rj(s)/N(s), and R^(s) is the remainder polynomial
P S

of 1/H (s).P
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The above theorem assures us that retaining the sum of the quo

tient of 1/Hp(s) and the d.c. steady state component of Rj(s)/N(s) in 

the estimate guarantees that the zero frequency responses of H^Cs) and 

Hn (s) are exactly matched. It should be noted with interest that the 

preservation of the d.c. steady-state response which is a consequence 

of Theorem VI requires that P^(s) be retained in the reduced model 

which is also a requirement for the asymptotic matching of the high 

frequency responses (as a result of Theorem V). The reduction process, 

thus, so far is decoupled in the sense that the satisfaction of one 

constraint does not destroy nor weaken an already satisfied require

ment. Since both Theorems V and VI allow us the freedom to choose 

Hg(s), the consequences of these theorems can be summarized as 

follows: any strictly proper transfer function

V s) ■ P2(s) I s K 3 (s) 1 s  r e l a t e d  t o  H p (s) b y

V o )  - y ° >
H„(°°) = H ( ° o )K p

and H (s) - H_,(s) for other values of s by appropriately choosing P R
H^(s). Thus the application of Theorems V and VI ensure exact 

matching of d.c. steady-state responses and an asymptotic matching at 

high frequency responses which are typical points for evaluating and 

comparing system responses in the frequency domain. These conditions 

are also met by the Pade' methods [5, 6, 7].

3.3 Relative Stability Constraints

As was indicated earlier, if the reduced-order model is to be used 

for design purposes which will be applicable to the plant, then it



28

should have the same specifications with the plant. Commonly used 

design specifications in the frequency domains are the gain margin and 

the phase margin. The estimate can therefore be expected to be adequate 

for design purposes if it is forced to have the same relative stability 

with the plant, namely the same gain margin and phase margin.

In the previous section it was discovered that any transfer func

tion Hp(s) given by

’  P ( . )  I  sH 3 ( s )  « - “ >

will have the same d.c. steady-state response and high frequency

response with the plant Hp(s) for any Hg(s) provided H^Cs) has no

poles at zero. Furthermore, it was concluded that, by appropriately

choosing H_(s) H_(s) ^ H (s). In this section the requirement thatj K p
the plant H (s) and the estimate H (s) have the same gain margin and P K
phase margin shall be used to determine an appropriate H^(s) which 

makes Hp(s) - H^Cs).

Equation (3-9) is of the form

H (s) = P2(s) + s N 3 ( s )

D3(s ) and

can be rewritten as

V S) = P2(s) + (s/{P3(s) + H 4 ( s ) } }  (3-12)

where Pg(s) is the quotient polynomial of — -—  , H^(s) _ ^(s) an<j
H3 ( s )  N3 ( s )

R3(s ) is the remainder polynomial of 1/H3(s) = D3(s)/N3(s).

Thus H^(s) is strictly proper.
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H (s) _
+ _____________ -____  °_____  (3-13)

1 P3(s) + H4(s) + F(s) - F(s) * U  U )

The function F(s) is chosen to be of the form*

F(s) - As + B (3-14)

Therefore

and

That is ’,

and

F(ja>) = jAa) + B (3-15)

F(-ja>) = -jAw + B (3-16)

F(jw) + F*(jM) = 2B (3-17)

F(jcj) - F*(j0)) = j2coA (3-18)

Equation (3-17) gives
B = Re {F (j «)} (3-19)

and from Equation (3-18)
A. = ~ Tm-CFCjco) } (3-20)

to

consequently,

F(s) _ Im{F(jto) }s + Re{F(jto)} (3-21)

If F(s) is chosen such that F(juir) = H^Qw^) and F(-jwTr) = (—j

then Equation (3-13) can be written as

* The function F(s) = As + B can be easily added to or subtracted 

from any polynomial or transfer function.

! F*(joo) is the complex conjugate of F*(jw) and is given F*(jto) = 

F*(-jw).
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H (s) = V S) +
P3(s) + w^)} s + Re{Hz,(jw7T)}+ (s2 + w ^ H ^ s )

w tt (3-22)

such that for s = jo%,

H (J<%) = 1_________________

_

 / x
P P.(i^) ,________ .1_________  (3-23)

P3(jW7r) + H^jw*)

where is the phase crossover frequency of the plant H^(s) and H3(s) 

is chosen to be
(iVH^Cs) = S H4(s) ~ I m ^ C j ^ s  -oyie^Cjw^)} (3-24)
"  5 ( S 2  +  0$ )

Equation (3-23) is a demonstration of the fact that as long as the

estimate HD (s) is of the form shown in Equation (3-22) then it must 

have the same characteristics with the plant H^(s) at s = More

over this characteristic is preserved for any value of Hj.(s). This 

suggests that one can manipulate H3(s) at will without destroying the 

already built-in characteristics in the model.

H3(s), a strictly proper transfer function can be written as

1 D c(s)/Nc(s) Pc(s) + H£(s ) (3-25)
— 5 5 = 5  bH5 (s)

where P3(s) is the quotient polynomial of 1/H,.(s) and H^(s) =

Rr(s')/Nc(s); Rc(s) is the remainder polynomial of 1/H_(s). Defining 
5 5 5 J

another polynomial P^(s) of the same order with P3(s).

P^(s) = P3(s) + Im {H^(j u^) >s + Re^Qto^) }, (3-26)
0%
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Equation (2-22) becomes

H (s) _ 1_________________ ________
P “ P2(s) + _________ s____________  (3-27)

P4 (s) +1r 2 2( s z + < )

'
P5(s) + H 6 (s) 

* *
By the same argument for which Equation (3-22) was constructed it

follows that

H (s)______ 1_
P P2(s)

p4(s) +) (s2 + 0>|T)
5(s) + Im{Hg(j c^)} s + Re{H6(jo)1)}+ (s2 + w2)Ha

W1 (3-28)

Consequently, for s = ju)̂  this equation becomes

Hp ( j ^ )  1
1

Vj(V + ) (% " wi) (} (3_29)
P̂ juij) + HgQcOj)

Where is the plant's gain crossover frequency. If HR(S) is tlie 

form of Equation (3-28), therefore, it will have the same gain margin 

and phase margin with the H^(s), and will also have the same d.c. 

steady-state response and similar high frequency responses with Hp(s). 

By appropriately choosing H (s), Hp (s) - H (s).cl A. p

3.4 Other Soft Constraints
The logic by which Equation (3-22) was constructed (from operat

ing on H4 (s)) and Equation (3-28) was constructed (from operating on 

Hg(s)) can be used to match the responses of ^(s) and Hp(s) at any
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frequency by manipulating the appropriate transfer function. This 

reasoning is thus generalized in the following theorem:

Theorem VII

Given any transfer function H (s) there exists a transfer func-X

tion H (s) such that H (s) = s + Re h  (jjjj) + (s^ + uĵ )H (s).
cl X  X  Si

03

Some of the essential plant performance characteristics are pre

served in the model of Equation (3-28). Viz: HR(o) = Hp (o);

H r (oo) =  H p (oo); HR (WTr) = HpCoij,.); and ^ ( u ^ )  = HpCtOj). These condi

tions which must be satisfied if HpCs) is to be used for design pur

poses which will be applicable to Hp (s) may be referred to as 'hard' 

constraints. These conditions are also satisfied by Marshall’s method 

[31]. But to improve the fidelity of the estimate more characteris

tics of the plant H^s) should be included in the estimate H^Cs).
r  ss.

This process of fine-tuning may be referred to as ’soft' constraints.

This section discusses the use of Theorem VII for fine-tuning.

In Equation (3-28), H (s) is arbitrary with respect to satisfying any
Si

and all of the four constraints listed above. But for Equation (3-28) 

t o be a true equality,

„,e  (s) = “ ih6(b) ’  a - V i V 1- ‘  “ i Re{H6(J“i)}a — o 2
(sZ + o)p

This suggests a reasonable way of choosing H (s). However, if one iscl

interested only in satisfying the hard constraints then H (s) = 0 orcl

H (s) -  1 is an obvious choice, a
The implication of Theorem VII is that the replacement of H (s) 

by H (jI3) will result in exact matching of Hp(s) and Hp(s) at the fre

quency oo. And ofcourse to maintain the equality sign of Equation
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(3-28) another transfer function H (s) must also be added, where
IH (s) must satisfy a relation similar to that of Equation (3-24). Incl

this manner one can match the plant and estimate responses at any 

desired frequency and still have the opportunity to further fine-tune 

the estimate. Theorem VII can be used to construct the estimate for a 

specific application. By matching the response characteristics of 

Hp(s) and HR (s) at desired frequencies.

3.5 The Algorithm

It will be observed that the preservation of any plant charac

teristics (or matching the responses of Hp(s) and H^(s) at any fre

quency consists essentially of adding the value of the (arbitrary) 

remainder transfer function at the particular frequency to the already 

built-in quantifies. At any stage a new H (s) results which makes theX

equation a true equality. This Hx (s) is then used to match responses 

at any other desired frequency.

Also, in the procedure, the transfer function Hx (s) is always 

expressed as H (s) = 1/[D (s)/N (s)]. This is done not only to yieldX X X
a new remainder for further response matching but also to preserve, in

the last analysis, the order difference (d-n) of H (s).P
A summary of the steps used in obtaining the reduced-order model

HL(s) is as follows.K
Given H (s) = N(s)/D(s), the purpose is to obtain another trans- P

fer transfer function HR(s) (of lower order than Hp (s)) such that

H r (o ) = Hp (o) , 

hr (°°) = Hp (°o),
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STEP 1: 

STEP 2:

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6:

STEP 7: 

STEP 8:

STEP 9: 

STEP 10:

STEP 11: 

STEP 12:

STOP:

(a) NO:

(b) YES:

Hr K >  "  Hp K > *

Hr ((0j) - HpCojj),
and Hp(s) - Hp(s).

Find P^(s): the quotient polynomial of D(s)/N(s)

Find Hj(o) = R(o)/N(o): R(s) is the remainder poly

nomial of D(s)/N(s).

Calculate ^(s) = Pj(s) + H^(o)

Calculate Hj Cb) = Hi^s  ̂ " Hj(°)
Find H3 ( s )  =  H 2 ( s ) / s  =  N 3 ( s ) / D 3 ( s )

Find P3(s); the quotient polynomial of D3(s)/N3(s) 

NOTE: H^(s) = R3(s)/N3(s) where Rg(s) is the

remainder polynomial of D3(s)/N3(s)

Find

Calculate

P4(s) = p3(s) + (ju^) Js J/oĵ  + RelHgCjw^)}
Calculate H3 (s) using Equation (3-24), see page 30. 

Find Rg(s) quotient polynomial of D^s)/N^Cs) 

NOTE: H, (s) = R.. (s)/N_(s) , where Rc(s) is theo J J J

remainder polynomial of D3(s)/N3(s).

Find HgUuj)
Calculate

P6(s) = P5(s) + {ImOlgCju^HsJ/wj + RefHgCjojj)}

Do you need to fine-tune or match H-̂ (s) 

and Hp(s) at any other frequency?

Then go to STEP 13.

Then go to STEP 15.
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STEP 13: Calculate H^(s)

1

/ 2 ^ 2  ̂(s + oĵ )

P6(s) + (s^ + 0)2)Ha (s)
NOTE: For (a) H (s) is arbitrary

SL

STEP 14: If (a) STOP.

STEP 15: Calculate H (s) using Equation (3-24), see page 30.

STEP 16: If (b) apply Theorem VII on H (s) and continue.
SL

An application of this algorithm is illustrated in the example of 

Section 6.2.
The implementation of this algorithm does not guarantee a stable 

reduced-order model from a stable plant. The method of making the 

reduced-order model stable is discussed in Section 5.1.

3.6 The MIMO Case

The above outlined procedure is useful for reducing a strictly 

proper transfer function. It is complete for a SISO system.

A MIMO system is represented by its transfer function matrix 

Mp(s) whose elements are the constituent transfer functions: viz the

transfer functions which describe the relations between the various 

outputs and the inputs. The number of rows of Mp(s) corresponds to 

the number of system outputs while the number of columns corresponds 

to the number of control inputs. Precisely, Mp(s) is of the form
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Mp =

Hn (s) H12(s) * * * Hlm(s)

H21(s ) H22(s ) * * * H2m(s)

H (s) H (s) * * * H (s) n 1 n 1 nm

(3-30)

For an n - input, m - output system. (s) is the transfer function

which relates the input U^(s) to the output Yj(s).

The procedure of section 3-5 is used to reduce each of the elements

of Mp(s). But this might lead to a transfer function matrix M^(s)

whose elements are of lower order than the corresponding elements of

Mp(s) but whose state-space realization matrix is of a higher order

than the state space realization matrix A of H (s). This situationP P
may arise if some of the transfer functions in H^(s) have common fac

tors in their denominators.

This problem is not a serious one for a certain class of transfer 

function matrices because the state-space realization is not necessary 

for the determination of their stability conditions which need to be 

known (and sometimes adjusted) durihg synthesis. These transfer func

tion matrices are those that are diagonal dominant. It has been 

shown [46] that using the concept of diagonal dominance of matrices in 

the field of complex numbers a MIMO system can be treated, to a cer

tain extent, like a set of independent single-input/single-output sub

systems or channels. An important consequence of this idea is sum

marized in Theorem 5.20 in Sinha's book [46].

Theorem:

"If a rational transfer function matrix G(s) = g ^  (s) , i,j 1, ..., 

m, is diagonal-dominant for every s on the contour D in the (complex
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frequency) s-plane, then the number of encirclements of the origin by 

the Nyquist plot of det(G(s)} is the sum of the numbers of encircle

ments by the Nyquist plots of the diagonal elements of G(s)." Where m 

is the order of G(s). This theorem leads to the following Nyquist 

criterion for diagonal dominant MIMO systems [46] 

m
E Nq = -P (3-31)
i=l

for asymptotically stable closed—loop system. Where P denotes the 

number of right-half plane poles of G(s) and N q ^  the number of times 

the diagonal element q ^  encircles the (-1+jo) point.

Thus the application of the algorithm of section 3.5 to this type 

of transfer function matrix can lead to a useful reduced-order matrix 

provided the diagonal dominance is preserved.



CHAPTER IV 

DETERMINATION OF OPTIMAL ORDER

4.1 General

Very little attention has been given to the problem of selecting 

the order of an estimate which will best represent the original system 

and still be sufficiently simple. Recently, Mahapatra [32] suggested 

a criterion for selecting the model order. His method however is 

applicable only to Davidson's [15] Model Simplification Technique. 

Since then his method has been modified by Rao et al [33] to improve 

its applicability to all cases of Davidson’s Simplification Technique. 

In a different correspondence [34] Mahapatra introduced an alternative 

version of his order selection, another effort which was again augu- 

mented by those of Rao et al [35].

Developments of these criteria involve knowledge of the eigen

values of the original system. Mahapatra suggests that the choice of 

the optimal order can be made by prespecifying the maximum allowable 

error. In this thesis, instead of having to know the eigenvalues of

H^Cs) a curve fitting approach is used to determine what order of K
HR (s) that will retain all the desired characteristics of Hp(s).

Also, instead of prespecifying the maximum allowable error, a 

hypothesis test is used to determine whether any further reduction in 

order is allowable without incurring an unacceptable level of error.

In comparing the relative merits and demerits of Pade' and Routh 

approximants, in a recent work [36], Ashoor and Singh discovered that

38
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the mismatch In many of the k time moments of the estimate of order k 

with those of the original plant results in the model being a poor 

representation of the initial time response. Similarly, many mis

matches of the Markov parameters indicates that the model will have a 

poor time response. Their work reveals that retaining k-terms (some 

time moments and some Markov parameters) in some instances resulted in 

good approximants and in very bad ones in other instances. From this, 

one draws the inference that to arbitrarily aim at matching k terms 

may not generally lead to a good approximation. What is obvious is 

that if many terms (multiple number of k terms) some of which are time 

moments and others Markov parameters, are matched a good approximation 

results. However, how many time moments and how many Markov para

meters would correspond to the optimum choice for the model for a 

given transfer function is still to be investigated.

The curve fitting approach used in the establishment of a cri

terion for selecting a model order in this work is also based on the 

fact that a good model is one that matches the plant at' more points 

than the other models. However, instead of matching the time moments 

which are the power series expansion of the transfer function about 

s = 0  and the Markov parameters which are the power series expansion 

of the transfer function about the point s = 00, the steady-state 

responses of the actual transfer functions are compared at various 

frequencies.

One approach is to consider the estimates as assumed models of an 

unknown process. A. test of goodness of fit is then used to estab

lished which estimate models it best. Since, however, the models are
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already known to be in the form of ratios of polynomials the problem 

degenerates to that of determining how many terms (regressors) must be 

included in the model to best describe the process. This problem 

can therefore be addressed as a multiple regression problem. Conse

quently to resort to this approach one must first convince himself 

that a polynomial is a special case of a multiple regression. Once 

this is established all the assumptions, laws and tests applicable 

to multiple regression can be employed freely.

4.2 The Polynomial As a Multiple
Regression Model
The standard multiple regression equation is of the form:

Y = a + bX + cZ + e (4—1)

This equation is linear in the variables (X, Y, Z) as well as in the 

parameters (a, b, c). The variables X and Z are usually independent 

and Y is said to be regressed on X and Z better known as the regres

sors.
The process of modeling involves determining the estimates of the 

parameters, a, b and c. Examining the least squares method of deter

mining a, 8 and c, will show that the estimating equations will be 

linear in the estimates a, 6, and c provided a, 8 and c appear in a 

linear fashion.

Consider a process that can be best described by a mathematical

model of the form „
Y = a + bQ + cQ + e (4-2)

Although this model is nonlinear in the variable Q, it is nevertheless

linear in the parameters a, b,c; hence there should be no problem with

ordinary least squares.
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Equation (4-2) shows that Y is related to only one independent

variable Q, but the fit involves regressing Y on two regressors, Q and 
2Q . If the various powers of the independent variables of a poly

nomial are treated as regressors, the polynomial then represents a 

multiple regression model. When one variable is used to obtain sev

eral regressors, as in this instance, one may wonder if multicollin- 

earity becomes a problem. This is not necessarily true as can be seen 

from the illustration below.
2Let the regressors Q and Q of Equation (4-2) be represented by X 

and Z respectively. Although Z^ and are functionally dependent 

(i.e. one is the square of the other), they are not linearly dependent 

(i.e., one is not, say, three times the other). Geometrically, the

points (X^, do lie on a curve [37], as shown in Figure 4-1; how

ever, the important point is that they do not lie on a line. Thus the 

problem of complete multicolinearity is avoided. From a mathematical 

point of view, the physical or economic source of the X.. and Z^ values 

is irrelevant; just as long as X and Z are linearly independent.

Thus, the laws of multiple regression apply to the polynomial of Equa

tion (4-2) as long as the regressors are defined appropriately. Simi

larly, it can be shown that a transfer function (which is a ratio of 

polynomials) is a special case of multiple regression models if the 

regressors are appropriately defined.

4.3 Criterion for Goodness of Fit
Many criteria exist for evaluating goodness of fit. One of the

most commonly used in multiple regression is the coefficient of
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Y

/ Fitted Regression 
/ / Plane / / ♦Observed Value

♦ Fitted Value

Q = X

Figure 4-1

Polynomial Regression as a Special Case 
of Multiple Regression [37] .
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2determination, R . This coefficient is defined by:*
a —  )

y ( y  _  y )2 i _ Variation of Y explained by all regressors
= £ _ “ )2 total variation of Y

1 (4-3)
2Thus R is seen to provide an overall index of how well Y can be 

explained by all the regressors. Consequently, since the matter of 

interest here is how many regressors (i.e. the order of the model)

that will best "explain" the behavior of the plant, the problem is
2that of determining the order K for which R is a maximum. Obviously

2there is a trivial solution which is, K = d for which R = 1 (where d

is the order of the plant). This situation is similar to the disap

proved* method of Mahapatra [33] in which his criterion suggests that 

the optimal reduced order is the order of the original plant.

The selection of the optimal order can be done by the process of

stepwise regression, given the argument of the last section. One of

two criteria can be used to determine when the addition of any more 

regressors is no more necessary.

(i) Simultaneous hypothesis tests.

(ii) Minimizing the Mean Squared error (MSE).
2Both of these methods shall be developed in this chapter using the R 

criterion for goodness of fit for the later.

* 0 - R2 - 1
‘ In a correspondence [32] Mahapatra derived a rule for selecting 

the order of the estimate. In a note [33] Rao et al have shown that 
Mahapatra*s trule is not general and furthermore leads to the trivial 
solution of optimal order being the order of the plant.



4-4 Criterion For the Selection of Optima 
Order by Minimizing the MSE

would be a good measure of how well H_(s) fits H (s). But the posi-K p
tive errors might offset the negative errors thus leading to a wrong 

conclusion if Equation (4-4) is used as a criterion. One way of over

coming this sign problem is by comparing the sum of the squares of the 

errors

rather than the sum of errors. This is the bases of the so called 

least squared estimate LSE which asserts that to obtain the best esti

mate one should minimize Equation (4-5).

It is evident that the reliability of the above criterion 

increases as the number, n, of errors summed in Equation (4-5) 

increases. Also it is desirable to keep the bias and the variance 

both low. Thus a more appropriate criterion for selecting the best

described by E ^ ( s ) , a ratio of polynomials. Consider also an estimate

iv s v ¥ iv

due to this estimation at every value of s. Where A^(s) and
f \ * tr ✓ X  __ mi. _» _ ____

can be zerjf, negative, or positive. If several measurements of 
/ '(A ( s } - A_(s)) are taken (at various values of s), one would expect 

P  > &

that the sum of the errors

e(s) (4-4)

E(s) = e^(s) = Z{Ap(s) - Aĵ (s)} ̂ (4-5)
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estimate is to minimize the mean squared error MSE given by*

P{A (s) - A^(s)}2 (4-6)
MSE = _  P *

n - k - 1
Thus to determine how many regressors to retain (i.e. the order

of the estimate) one might think of stopping the reduction process

when Equation (4-6) is a minimum. This also results in the trivial

solution which says that K = d is the optimal order.
2 2It will be recalled that R , (0 <. R < 1), is a measure of how

well the k regressors (the estimate H^(s)) explain (describes) the
2data (the plant Hp(s)). Consequently 1 - R is a measure of the unex

plained variations. The degrees of freedom in the unexplained varia

tion are n - k - 1. It should be expected that a good criterion for
2goodness of fit is minimizing 1 - R . And for the same argument by

which the minimization of the MSE was preferred to LSE, this criterion

is replaced by a superior one namely:

2minimize ____ 1 - R  (4-7)
(n - k - l)2

It has been shown by Wonnacott and Wonnacott [37] that the criterion of 

expression (4-7) yields approximately the same result as minimizing the 

mean squared error MSE.
2From Equation (4-3) the coefficient of indetermination 1 - R is 

given by:
_  2 _  2 ^  _  2 

7 Z(Y.-Y) E(Y -Y) - E(Y -Y)
1 - R = 1 -----  - -

£(Y -Y)2 Z(Y -Y)2
(4-8)

*The MSE is an unbiased estimate of the variance.
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But   rt A _  o A o
Z(Y± - Y) = Z(Y1-Y)Z + Z(Yi - Yi)/ . (4-9)

Therefore 0
2 ^(Y - Y )2

1 - R -------  V -  . (4-10)
2(Yi - Y)

2Equation (4-10) shows that 1 - R is proportional to the residual
2variation ^CY^ - $^) . The criterion of expression (4-7) may there

fore be rewritten as:

E(Y - f )2
minimize-------------- ------------- -— - (4-11)

(n - k - 1)
Thus to obtain the optimal order, letting Y.̂  = Ap(s)^ and Y^ = A^(s)i

the rule is: Stop reducing the order of model when

2{A (s) - ^(s) }2 (4-12)
 *---------- S------  ; k < d

(n - k - 1)Z
is a minimum, where k is the other of HR (s) and n is the number of 

frequencies for which the variance is obtained.

4.5 Criterion for the Selection of Model
Order Using Simultaneous Hypothesis Tests

Suppose one assumes that the error due to estimating increases as 

the estimate order decreases. That is, suppose the reduction process 

is such that more information about the system is lost the more one 

tries to approximate it with a smaller system. Then the philosophy 

might be to stop reduction when the error due to the reduction process 

becomes statistically discernible (significant). The question that 

arises then is "discernible at what level?".
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This is a question of engineering judgement. How much error that 

is tolerable depends on the application, and the purpose of the engi

neer; otherwise one might choose to fall back on the customary level 

of 5%.
Consider a transfer function H^Cs), of order d, and two estimates 

of Hp(s), Hj^(s) and H^Cs). Let the orders of HR^(s) and HRr(s) be q 

and r, respectively, where d > q > r. Suppose the error due to the 

estimate HR^(s) at a particular frequency is e^(s) given by

eq (s)i = I V s)i ■ AR q (8)J  (4" 13)
and the error due to the estimate H^Cs) at that particular frequency

is er(s);£ given by

er (s)i =lys)i - ARr(8)il (4"14)
The increase in error due to the reduction from model of order q to 

model of order r is

A©i = er (s)i - eq (s)i (4-15)

Thus a good test of the significance in reduction will be one that 

compares the sum of the error increases EAe^ (or a function of it) at 

all n frequencies where the errors were measured to some standard 

value. The chi-squared goodness of fit test has been shewn to be 

appropriate for this purpose. Kendal and Stuart [47], 1985, have 

shown that the function

J.A

. - 2 1

n
1 (e (s) j  - e (s)j)Z7 'vT' f(^ej)Z"?

(4-16)
(er(s)i - e (s)1)2.

5 f
V s>i

* / J
i=l /i-U

is a chi-squared distribution with n-1 degrees of freedom. It may be 

observed that the larger the increase in error gets the larger t is. 

Consider then the null hypothesis H :
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There is no significant increase in error due to the 

reduction in order from q to r.

Hq is tested against the alternative hypothesis H^:

There is a significant increase in error due to the 

order reduction from q to r.
2The null hypothesis may be rejected if t ^  Xa n_j in which case the 

model H^r(s) of order r is compared to the next lower order model (of 

order r-1).
If the null hypothesis is false then the model of order q should 

not be reduced any further. The decision rule may therefore be stated 

as: stop reduction when t of Equation (4-16) satisfies

<= *  * L - i  • ( 4 - 17)

Where is the selected level of confidence to determine the discerni- 

bility of the increase in error, and n is the number of measurements.

However, it is not always true that lower-order estimates produce 

more mismatch errors than higher-order estimates. In fact some lower- 

order estimates may preserve more information about the plant than 

higher-order ones. This might be due to the fact that the lower-order 

model might consist of the 'right' set of regressors which models the 

plant best. It is therefore desirable to generalize the hypothesis 

test of the last paragraph so that it can be used to compare any two 

estimates as to determine the better one. This can be done by rede

fining the null hypothesis and rewriting the decision rule, bearing in 

mind that a lower-order estimate which has statistically equal error 

as a higher-order estimate is preferred to the higher-order one. 

Consider, then, the null hypothesis Ho:
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There is no significant difference between the error due to

Hj^(s) and error due to H^r(s).

If H is true (under the condition prescribed before) then the o
lower-order model IL, (s) is considered better. If H is false, thenRr o
the following rule is used to select the superior model:

If Z(er(s)1 - eq (s)1) < 0; ^ ( s )  is superior.
If Z(er(s)i - eq(s)1) > 0; ^ ( s )  is superior.

The decision rule for selecting the best-order model using the hypo

thesis test can be summarized as follows: 
oFor t < X , select the lower-order model HD (s).a , n - l  R r2For t > X i select the higher-order model Hn (s)a»n-l Rq

if S(er (s)i - e (s)^ > 0; 
select the lower-order model H^(s) 

if Z(er(s)i - eq (s>i) < 0.
The selected model is then compared with another model until the 

'best' model is obtained. This procedure offers an alternative to the 

one developed in Section 4-4.



CHAPTER V 
ANALYSIS OF PROCEDURE

5.1 General
The algorithm developed in Chapter III is applicable to a large 

class of transfer functions. These transfer functions must have a 

certain structure to allow a complete implementation of the algorithm. 

However this structure is possessed by most practical systems thus it 

may be applied to a good number of practical situations.

This chapter analyzes the algorithm-pointing out its limitations, 

usefulness, and those properties that the transfer function must have 

to ensure complete implementation. Though the algorithm developed for 

the reduction of a transfer function (SISO system), in section 3.6 its 

limited application to MIMO systems was discussed. In this chapter 

the problems that might be encountered in its application to MIMO 

systems that are not diagonal dominant will be discussed.

Another important point is that nothing in the development of the 

algorithm guarantees that a stable estimate will be obtained if the 

plant exhibits that property. In the next section a way of obtaining 

a stable estimate is discussed, and this forms part of the whole 

reduction process. Lastly, the limit to the number of times Theorem 

VII (Chapter III) can be applied in the reduction of a given transfer 

function is discussed.

50
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5.2 Obtaining a Stable Estimate

One of the requirements of Theorem I (Section 2.2) is that the

plant and its approximant have the same number of poles in the

right-half-plane. Generally, the algorithm of section 3.5 does not 

guarantee this condition. Nor is it certain that the reduced model 

will be stable if the plant is. However the algorithm allows one a 

good deal of freedom to make the necessary adjustments. The use of

this freedom to obtain a stable estimate is the subject of this

The development of the algorithm ensures that for any choice of H (s),S
an estimate H„(s) satisfies all the hard constraints.K

At the end of the algorithm, i.e. after matching H (s) and Hn(s)
P  k

at desired frequencies, a good initial choice for H (s) is H (s) = 0.Si Si

In this case Equation (5-3) will yield

section.

Consider the transfer function of Equation (3-28) given by

1

(s2 + u^) (5-1)
P4(s) +

(P6(s) + (s2 + <dj)Ha(s)

where Pr(s) is as shown in Step 12 of the algorithm.5
P6(s) = P5(s) + ImfegOla^)} s/uj1 + Re{H6(ja)l)} (5-2)

From Equation (5-1),

P4(s) P6(s) + (s2 + o>2)Ha(s) + s2 +
P (P2(s)P4(s) P6(s) + (s2 + a)12)Ha(s)

+ s Pg(s) + (s2 + w 2)Ha(s)
+ P2(s)(s2 + co2)}.

(5-3)



Suppose the estimate of Equation (5-4) is unstable. That is, suppose 

the equation

P2(s)P4(s)P6(s) + sP6(s) + P2(s)(s2 + w 2) = 0 (5-5)

has positive roots. Then H (s) in Equation (5-3) may be chosen to be

H (s) = K(s) . (5-6)a
Provided H (s) has no poles at ± jo).. The resulting estimate fromfl J.
Equation (5-3) is

P,(s)P,(s) + k(s).(s) + s2 + oj2 
HR ( S ) ------------------------------ * --------- ^------------------------* ------------------------------ IT   ( 5 _ ? )

{P2(s)P^,(s)P6(s) + k(s)2(s)P^(s) + P2(s)(s + 0)̂ )
+ sPg (s) + k(s)2(s)}.

To obtain a stable estimate, the Routh-Hurwitz criterion is used to 

choose what value of K stabilizes H (s) of Equation (5-7). SimilarlyK
from the Routh array of the denominator polynomial

Dr ( s )  = P2(s)P4(s)P6(s) + k(s)2(s)P4(s) + P2(s)(s2 + w2)

+ SPg(s) + k(s)2(s)
the values of k(s) which makes any number of elements on the first

column negative can be determined. Thus the estimate HR (s) of

Equation (5-7) is in the general fora. It will be noticed that since

H (s) is arbitrary then for any value of k(s) Hn(s) will still retain a K
the preserved characteristics of H^(s). For convenience k(s) may 

initially be chosen to be a constant k. If no constant k can 

stabilize the system then simple functions such as k(s+a) are tried 

until values of k, and a which stabilize the system are obtained.
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In the development of Theorem I a stable system (Z = 0) was

assumed. The reason is because most practical systems are designed to

be stable. In fact [2] many practical systems are in the minimum

phase category. However, for an unstable plant, H^Cs), if it is

required to obtain an estimate H (s) with the same number of RHP zeros

in its characteristic equation as H^(s) has, the outlined procedure is

used to find what values of k(s) which will result in the required

number of sign changes in the Routh array of the polynomial

N„(s) + D_(s). Where N^Cs) is the numerator polynomial of H_(s) inK K K K
Equation (5-7).

5.3 Minimum-Order Estimate

Some order reduction techniques [44] are capable of producing

approximants of order two. The minimum order estimate obtainable from

the algorithm developed in this thesis is a third-order estimate.

Consider the general form of the reduced-order model

P,(s)P.(s) + KP,(s) + s2 + (*)2
H_(s) = --- *----*-------- *------------- -  . (5-7)

{P2(s)P4(s)P6(s) + KP2(s)P4(s)
+ P2(s)(s2 + o^) + sP 6 (s) + K P 2 (s )}

Since H (s) is strictly proper, P„(s) must be a function of s, aP 1
polynomial with at least one term having a power of s greater than

zero. Precisely the degree of P2(s) is equal to d - n; d > n.
2 2Therefore the term P2(s)(s + w^) in H^(s) *s of the degree r, where

r satisfies
r = 2 + d - n (5-8)

and thus r >. 3.
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5.4 Minimum Required Order of the
Plant’s Numerator Polynomial
In order to implement all the essential steps of the algorithm it 

is necessary to have polynomials of sufficiently high order to allow 

for the calculations of the polynomials P2(s), P^(s) and Pg(s) which 
ensure that the approximant satisfies the hard constraints. Each of 

these polynomials is obtained in part by a long division process which 

must result in a remainder polynomial which in turn becomes the 

divisor of the next stage of the continued fraction process and the 

former divisor then becomes the dividend. The present stage divisor 

must then be of sufficient degree so that a remainder polynomial of 

sufficient order will be produced to continue the process. The 

divisor for the first stage division is N(s) - the numerator 

polynomial of the plant. N(s) must then be of sufficiently high 

degree to meet this requirement.

Consider again the transfer function

Following the process by which the algorithm was developed in Chapter 

III, Equation (3-9) can be written as

1

(3-1)

H (s) ~ P (s) + P 2 (5-10)

where the degree of N^(s) is 1 less than that of the polynomial N(s). 

The transfer function 1/ D ^ s ^ N ^ s )  is given by

D3(s ) V d 5(s) (5 -1 1 )
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where

R,(s)
— --- . - Im

N 5 ( s )  I N 3 ( s )  CN3 (jOJ7r) i

R3(jw7r)_s
- RejV W j

(N3(j 60̂ )3
(5-12)

Dc(s)
2 * ^ S + m“tt

Equation (5-12) is of the form

(s2 + w 2)N (s) R,(s)
 ----------- £--- =  (as + b) (5-13)

D5 ( s )  N 3 ( s )

Since R3(s) is the remainder polynomial of D3(s)/N3(s), the degree of 
R3(s) must be less than the degree of N3(s).

For the process to continue (to calculate Pg(s)) N3(s)/D3(s) must 
be strictly proper. This condition is inherent as shown below. From 

Equation (5-13) one gets
(s2 + Wrf)N5(s)N3(s) = R3(s)D5(s) - (as + b)D,.(s)N3(s) (5-14).

Since the degree of Rg(s) is less than that of N^s), Equation (5-14) 

can only be true if

degree {D3(s)} - degree {N3(s)} = 1 (5-15)

Thus N3(s)/D3(s) is strictly proper.
Now suppose R-j(s) is zero, that is D3(s)/N3(s) has no remainder 

then the process breaks down since N3(s)/D3(s) will be zero, in Equa
tion (5-13). Suppose again that R3(s) is a constant say c. Then 

N3(s) has the possibility of being in the form
N3(s) = ds + e (5-16)

and Equation (5-13) becomes

(s2 + w 2 ) N 5 ( s )  c  - (as + b)(ds + e)
(5-17)

D,.(s) ds + e
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or

(s2 + w 2)(ds + e)N^(s) = cD^(s) - (as + b)(ds + e)D^(s) (5-17)

where a, b, c, d and e are constants. Thus N^(s) must be at least a 

first degree polynomial. But the degree of N(s) the numerator poly

nomial of the plant satisfies

degree {N(s)} - degree {^(s)} = 2 (5-18)

Also once the polynomials P2(s), P^(s) and Pg(s) are included in the 
construction of the estimate, the estimate will satisfy all the hard 

constraints.

It can therefore be concluded that in order to obtain an estimate

which satisfies all the hard constraints the plants transfer function

must be strictly proper, must be of order 3 or higher and the numera-
»tor polynomial must satisfy'

degree {N(s)} >. 3 (5-19)

5.5 Maximum Number of Points 
That Can Be Matched

It was asserted that Theorem VII can be used to get exact 

matching of the response characteristics of Hp(s) and Hĵ (s) at any 
frequency w. This theorem is necessarily used to preserve gain margin 

and phase margin. How many more times it can be used to achieve exact

matching at other frequency points depends on the order of the plant

because the order of the estimate thereby constructed increases as the 

number of points at which H (s) and H„(s) are matched increases.p  R

degree {.} denotes the degree of the polynomial.



The reduction process yields an expression, for the transfer 

function, of the form

H (s) .  -----------------------------------  — -------------  (5-20)
P

P2(s) + ---------------- 2-----2"
s + U)_

P,(s) +' 2 2s + 0)1 
P6(s) +  ------------2---- J

S +  0)?
Po(s) +8VD/ 2 2 s + UK

Pl0(s) +  1

P (s)+(s" + u‘)H.'(s)

Where is the phase crossover frequency, o)j = the gain crossover 

frequency and Wg ••• are the particular frequencies at which

it is chosen to match the response characteristics of H^(s) and H^(s)
I

using Theorem VII. H (s) is arbitrary and as was pointed out in sec-d f
tion 5.2 is always chosen to be zero initially. Setting H (s) = 0, 

Equation (5-20) yields
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Consider an estimate construction process In which the responses of 

Hp(s) and H^(s) Is to be matched at only two frequency points, and 

The estimate obtained from Equation (5-21) is of the form

V s)pfi(s) + s2 + w2H (s) = -----------*----6----------— T1_ ---------- (5_22
P2(s)P4(s)P6(s) + P2(s) (s +(0j) + sP6(s)

If three frequency points cô  oŝ and w 2 were used the estimate 
obtained will be of the form

P (s)P (s)Pfi(s) + P, (s)(s2 + a>2) + P-(s)(s2 + (*)2)
H (s) = — 4----$----§------- *---------- 1----  * — ----------- (5_23)

{P2(s)P4(s)P6(s)Pg(s) + P2(s)P4(s) (s +Wj)

+ P2(s)P8(s)(s2 + to2) + sP6(s)Pg(s) + s(s2 + W 2)}

Matching responses at four frequency points , tô , 0)2 and the 

estimate obtained, from Equation (5-21), is

{P4(s)P6(s)Pg(s)P10(s) + P4(s)P6(s)(s2 + 0)2)
+ P4(s)P10(s)(s2 + W J) + P 4 (s ) P6 ( s ) ( s2 + ( % 2 )

+ (s2 +(%)(s2 +(*)?)}
Hr(s) =  ------------------------------------------------ 2 2" (5“24){P2(s)P4(s)P6(s)Pg(s)P10(s) + P2(s)P4(s)P6(s)(s^ + w p

+ P2(s)P4(s)P1Q(s2 + w 2) + P2(s)P4(s)Pg(s) (s2 + w 2)
+ P2(s)(s2 + a%) (s2 + 6 02) + sP2(s)Pg(s)P10(s)

+ sP6(s)(s2 + W 2) + sP10(s)(s2 +(02)}

Similarly, by using five frequency points U)̂ , u)j, (*)2» 0)g and u)4 one 
obtains the estimate given by
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{P4(s)P6(s)P8(s)P10(s)P12(s) + P4(s)P6(s)Pg(s)(s2 + to2)
+ P4(s)P6(s)P12(s)(s2 + w2) + P4(s)P10(s)P12(s)(s2 + W2)

+ P4(s)(s2 + W2)(s2 + to2) + Pg(s)P10(s)P12(s) (s2 + w2)
+ Pg(s)(s2 + C02)(s2 + to2)

+ P (s)(s2 + to?) (s2 + to2)}
Hr (s) - ___________________ _ __________   I __________  (5-25)

{P2(s)P4(s)P6(s)Pg(s)P10(s)P12(s)
+ P2(s)P4(s)P6(s)P12(s)(s2 +to2) + P2(s)P4(s)P6(s)Pg(s)(s2 + to2)
+ P2(s)P4(s)P10(s)P12(s)(s2 + toj) + P2(s)P4(s)(s2 + W3)(s2 + to2)

+ P2(s)Pg(s)P10(s)P12(s)(s2 + toj) + P2(s)Pg(s)(s2 + to3>(s2 + w2)

+ P2(s)P12(s)(s2 + to2>(s2 + to2) + sP6(s)Pg(s)P10(s)P12(s)
+ sP6(s)Pg(s)(s2 + to2) + sP6(s)P12(s)(s2 + to2)
+ sP10(s)P12(s)(s2 + to2) + s(s2 + to2)(s2 + to2)} .
The polynomial P^(s) is the quotient of D(s)/N(s) and thus is of 

degree d - n. The polynomial P2(s) is obtained by adding a constant 
to Pj(s) thus

degree (P2(s)} = degree (Pj(s)} = d - n (5-26)

The polynomial P4(s) is obtained by adding a first degree polynomial 
to P3(s), the quotient of ©3(3)/^(s). Since degree {03(3)} - degree
{^(s)} = 1, the degree {?3(s)} = 1 and hence degree (P4(s)} = 1. It

was shown in section 5.4 (see Equation (5-15)) that the degree of 

P^s), the quotient of D ^ ^ / N ^ s )  = 1, thus the degree of Pg(s) is 
also unity. In the same manner it can be shown that all the 

polynomials P (s), x >2, appearing in the expressions for the 

reduced-order transfer function are first degree polynomials.
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Examining the transfer functions of Equation (5-22) through 

(5-25) it will be observed that the order of any of the transfer 

functions is given by the degree of the term in the denominator which 

is a product of all the P's. Consequently, the order of the T.F. of

Equation (5-22) is 2 + d - n; the order of the T.F. of Equation (5-23)

is 3 + d - n; the order of the T.F. of Equation (5-24) is 4 + d - n; 

and the order of the T.F. of Equation (5-25) is 5 + d - n. Thus, in 

general, the lowest order model that can be constructed when the 

response characteristics of plant and estimate are matched at y 

frequency points has an order r given by

r = y + d - n . (5-27)

Since the purpose of the whole exercise is to obtain a lower-order 

model the number of frequency points y to be used must satisfy the 

relation

y = r + n - d; y £ d  (5-28)

where,

d - r > 0, (5-29)

r is the desired order of estimate.

5.6 Application to MIMO Systems

In section 3.6 it was poined out that the application of the

algorithm to the individual transfer function of the transfer function

matrix M^(s), may result in a transfer function Matrix M^(s) whose

elements have lower order than the corresponding elements of M^(s) but

whose state-space realization matrix A^ is of higher order than the

state-space realization Matrix A of H (s). Since this method ofP P
order-reduction does not require the knowledge of the poles of the



61

transfer functions, It is not possible to find the monic lowest common

multiple of the denominator of the constituent transfer functions of

M (s), so that this could be used as the common denominator of the P
elements of M (s) to circumvent the problem.P

The application of this method to MIMO system is therefore 

restricted to diagonal dominant systems, as was explained in Chapter 

III, for practical purposes. The method will preserve the diagonal 

dominance if all the elements of H^(s) are reduced by the same degree.

5.7 Other Considerations

In section 5.3 it is shown that the minimum-order estimate 

obtainable using this technique is an estimate of the third-order. It 

is also discovered in section 5.4 that the technique is applicable 

only to transfer function whose numerator is a third degree polynomial 

or higher. Given that the transfer function must be strictly proper, 

it was then concluded that the technique is applicable to fourth-order 

transfer functions. Also, considering the fact that a third-order 

system cannot be reduced to any lower-order system using this 

technique one concludes that this technique is useful for reducing 

transfer functions of the form

„ _ N(s)
h p ( s )  -

where D Ed, N Rn;

n _> 3, 
d ^  4.

This limitation cannot in any way be considered serious because it is 

almost trivial to reduce a third-order system as many examples in the
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literature did. The purpose of order reduction is to reduce the order 

of a highly complex system. A. third order system can hardly be 

considered highly complex. Thus this technique is applicable to a 

large class of systems that require approximation for easy studies.

Also, the majority of practical systems are of the minimum phase 

category. Thus the requirement of Theorem I that the system and 

estimate have the same number of poles with positive real part will 

often moderate to "the estimate has no poles on the right-half-plane". 

This makes the solution for K in the Routh array as discussed in 

section 5.2 even easier. Hence this technique may find a wide 

application in practical situations.

The criterion of Equation (5-27) will yield a large y, the number 

of frequency points that can be matched, if d the order of the system 

is high. In this case one has a good deal of freedom to construct an 

estimate which will preserve the systems characteristic response in a 

desired frequency range, according as the intended application.

The claim that the algorithm preserves the order difference d - n 

of the plant may be justified by examining the reduced-order transfer 

functions of Equations (5-22) through (5-25). It will be observed 

that the degree of the numerator of each of those transfer functions 

is equal to the degree of the first terms. That is, the degree of the 

numerator of the T.F. of Equation (5-22) is

degree ( H r (s )} = degree (P^(s)Pg(s)} = 2 (5-30)
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For the T.F. of Equation (5-23);

degree {HR (s)> = degree {P4(s)P6(s)Pg(s)} * 3 (5-31)

For the T.F. of Equation (5-24);

degree {HR(s)} = degree {P4(s)P6(s)Pg(s)P10(s)} * 4 (5-32)

and the numerator of the T.F. of Equation (5-25) is

degree HR(S) = degree P̂, (s)P6(s)Pg(s)P10(s)P12(s) = 5. (5-33)
In each case the difference (dD - nD) between the denominator degree

K K

and numerator degree is the degree of ?2(s) which is equal to d - n.
Finally, it should be noted that if an unstable estimate results 

from the algorithm, the application of the method of Section 5-2 to 

obtain a stable one produces an estimate of order higher than the 

unstable one. This new estimate, if desired, may then be reduced 

further.



CHAPTER VI
ILLUSTRATIONS AND EVALUATION OF PROCEDURE

6.1 General
The work presented in this dissertation may result in two main 

contributions, namely: (1) an alternative way of obtaining an esti
mate of a high-order transfer function which is much simpler than many 

of the existing methods; (2) mathematical criteria for selecting the 
optimal order of the estimate. The purpose of this chapter is to 

evaluate the usefulness and adequateness of these contributions. This 

is done both by comparing results from the present work to those 

obtained using other well-known methods, and by using examples to 

illustrate the usefulness of the new procedure.

To evaluate the usefulness of the new model reduction technique, 

reduced-order models obtained from this new technique are compared 

with those obtained using some of the numerous existing techniques, 

with the original, high-order, model as a reference. Further 

validation is done by the use of the estimate obtained via this new 

algorithm to design a controller for the high-order plant. It is 

hoped that these illustrations shall show some evidence of the 

advantages of this method over many others in the existing literature.

Not much interest has been shown in the problem of optimal order 

selection. An extensive survey of the existing literature reveals 

that the number of suggestions in this matter [32], [33], [34], [35], 

[41], [42] is negligible compared to the contributions in model order

64
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reduction. In the literature criteria for selecting the low-order 

model are given and examples are used to show the computational 

processes and their results. But the resultant low-order models are 

not shown as to compare their responses to those of the original 

plants as to justify the claims. In this chapter the optimal-order 

model response is compared to that of the plant along side with those 

of some of the !non-optimal-order' reduced models as to justify its 

claims to optimality.

6.2 Order Reduction Examples.
An example which shows the calculations involved in the construc

tion of the reduced-order model is given in this section. This example 

will follow the steps of the algorithm and further is extended to 

include the case of ’fine-tuning'. The example selected has been used 

by other authors [17, 31] as to compare the results.

Consider a system represented by the transfer function

Hp(s) = N(s)/D(s)
{S5 + 6.93195s4 - 4.8805413s3 - 0.9768258s2

(s6 + 3.61115s5 + 2.1117625s4 + 0.4161319s3
+ 0.0256456s2 + 0.0001788s}

+ 0.18728s + 0.0014062}

which is strictly proper.
(6-2)

where
Pj(s) = s - 3.3208, and H^s) = RjCsJ/NCs)

Rx = 30.011924s4 - 14.814344s3 - 3.1632087s2
+ 0.6231468s+ 0.0046697

(6-3)

(6-4)
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N(s) - s5 + 6.93195s4 - 4.8805413s3 - 0.9768258s2

H rrrt - 0.0046697 _ - . „
1(0) “ 0.0014062 “ 3‘3208

+ 0.18728s + 0.0014062. (6-5)

(6-6)
Consequently,

H 2(s) =  H ^ s )  -  H j (0)

{ - 3.3208s5 + 6.9923038s4 + 1.3929577s3

- 0.1616344s2 - 0.0012274s) ---------- -------------- -— —  lb-/;
{ s5 + 6.93195s4 - 4.8805413s3 - 0.9768258s2

+ 0.18728s + 0.0014062}
and

H 3(s) = H 2 (s)/s

{- 3.3208s4 + 6.9923038s3 + 1.3929577s2

- 0.1616344s - 0.0012274) ^

{s5 + 6.93195s4 - 4.8805413s3 - 0.9768258s2
+ 0.18728s + 0.0014062}

P2(s) = P1(s) + Hj(0) » s (6-9)

1/ H3 (s) =  D 3 ( s ) / N3 (s)

{s5 + 6.93195s4 - 4.8805413s3 - 0.9768258s2
+ 0.18728s + 0.0014062}

{- 3.3208s4 + 6.9923038s3 + 1.3929577s2
(6-10)

- 0.1616344s - 0.0012274}

P3(s) the quotient of 1/H3(s) is
P3(s) = -0.3011323s - 2.7215003 (6-11)

H 4 (s) = R 3( s ) / N3(s)

14.'56848r3 + 2.7654357s2 - 0.2529777s - 0.0019342
{-3.3208s4 + 6.9923038s3 + 1.3929577s2

- 0.1616344s - 0.0012274}

(6-12)
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W J l 6 1 T 6

*R 3 ( s )  = 14.56848s3 + 2.7654357s2 - 0.252977s - 0.0019342 (6
is the remainder polynomial of l/H^Cs), and

N,(s) = -3.3208s4 + 6.9923038s3 + 1.3929577s2 
3 (6

- 0.1616344s - 0.0012274.

The plant’s (H^Cs)) phase crossover frequency (% is

w-jy = 0.08 rad/sec (6
Thus, for s = ji%,

0.019633 + iO.0276973 , y . „ , a . n , ,
~ 0.0102783 + jO.0165109 742268 “ j0.104415 (6

Therefore,
Im{**4 (J«*%) >s = -1.3051875s

WTT
and the real part of H4(j(%) is Re{H^(jo)7r)} = 1.742268. (6
Consequently, putting the value of Pg(s) from Equation (6-11) in

P4(s) = P3(s) + ImfH^jm^Js + Re{H4(jtq̂  (3
<%one gets

P4(s) = -1.6063136s - 0.9792323 (6-
The next step (Step 9 of the algorithm) is to calculate H^(s)

using Equation (3-24). From Equation (6-12)

{l.1654784s3 + 0.2212349s2 - 0.0202382s 

„ . v  - 0.00015471^tt®aCs) = , » 2
q {- 3.3208s + 6.9923038s + 1.3929577s

- 0.1616344s - 0.0012274}

Im{(H^(jta7T) }s = -0.104415s. (6
(j^Red^a^)} = 0.1393814. (6

Thus from Equation (3-24),

-13)

-14)

-15)

-16)

-17)

-18)

-26)

19).

-20)

-21)
-2 2)



68

{- 4.3342667s5 + 14.911991s4 + 3.5678201s3

2 2 + 0.01275669s2 + 0.0270314s + 0.0002043}
V s + W s ) ------------- 7------------- r--------- — ------ (6-23)

{- 3.3208s + 6.9923038s +1.3929577s

and

- 0.1616344s - 0.0012274}

{- 4.3342667s5 + 14.911991s4 + 4.204083s3

_ , v + 0.1275669s2 + 0.0270314s + 0.0002043}V S)--------------- J-------------g----- J------ (6-24)
{- 3.3208s + 6.9923038s + 1.3717046sH

- 0.1168837s3 + 0.0076875s2 - 0.0010345s

- 0.0000079}
P5(s), the quotient polynomial of 1/H,_(s) is

P5(s) = 0.7661734s + 1.0227491 (6-25)

and the remainder polynomial R^(s) is

R5 (s ) = - 17.10059s4 + 4.5143523s3 + 0.1434918s2
+ 0.0288373s + 0.0002168 (6-26)

Step 11 (of the algorithm) is the calculation of Hg(ja)j). Where,

H6 (s ) = R5 (s )/N5 (s )

{- 17.10059s4 + 4.5143523s3 + 0.1434918s2

+ 0.0288373s + 0.0002168} (6-27)
{- 4.3343667s5 + 14.911991s4 + 4.204083s3

+ 0.1275669s2 + 0.0270314s + 0.0002043} 

and u)j, the gain crossover frequency of the plant is

U)̂  = 2.27 rad/sec. (6-28)

Therefore
, . - 453.32218 + J52.739275403H6UtV  = 395.29202 - j310.35738

= - 0.774268 - jO.474486 (6-29).
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The next step (Step 12 of the algorithm) is to construct the 

polynomial Pg(s). To do this one requires:

Im{H6(jaj1)}s = _ 0< 2090247s (6-30)
o>i

and
RefMju).)} = - 0.774268 (6-31)D 1

Putting Equations (6-25), (6-30), and (6-31) in the Equation of Step

12 of the algorithm yields
P,(s) - 0.5571487s + 0.2484811 (6-32)6

At this stage enough data for constructing a good estimate, H^s),

of H (s) is available. According to Step 13 of the algorithm P V s) = --------------------- --------------------------  (6-33)
P2(s) + ___________ s______________________

P4(s) +  ^ 2— ^ 2------4 P6(s) + (sZ + uj )Ha(s)
substituting values from Equations (6-9), (6-15), (6-19), (6-28) and 

(6-32) in Equation (6-33) gives 

H r (s ) =   1____________________  (6-34)
s +- -1.6063136s - 0.9792323 + B 

Where,
s2 + 0.0064

B =--  5---------------  (6-35)
0.5571487s + 0.2484811 + (s^ + 5.1529)H (s)a

and H (s) is arbitrary if one does not wish to match H (s) and H„(s) a P K
at any specific frequencies other than at s = 0, s = jojp s = jô » 

s=j°°. Let H (s) = 0, then Equation (6-35) reduces to
Si

B =  gjjLP-.P-Mj-------- (6-36)
0.5571487s + 0.2484811

and Hg(s) becomes a third-order estimate of the system H^(s) given by
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0.1050445s2 - 0.944604s - 0.2368621
H (s) =        (6_37)

J 0.1050445s - 0.3874553s + 0.011619s

This estimate satisfies the following essential conditions: H^(0) =

= K p a V ’H ^ a ^ )  = H p O ^ )  and Hr3^°°^ = Hp(j°°>-
But this estimate is unstable, having two poles on the right-

half-plane, whereas the plant H^Cs) is stable, with no poles on the

right=half-plane. To stabilize the estimate Hp^(s) let Equation

(6-35) be of the form

B  --------------...* °-°06------- =---------- (6-38)
0.55714878 + 0.02484811 + K(sZ+5.1529)

Where K is a constant. This implies choosing the arbitrary transfer

function to be

H (s) = K (6-39)cl

In this case a fourth-order estimate is obtained and is given by.

{-(0.8949555+1.6063136k)s3 + (0.055284-0.979232k)s2

+(0.024321+8.2771733k)s + (0.0064-5.0458861k)}
H (8) = -----------        - (6-40)

* {-(0.894955+1.6063136k)s# + (0.6124327+0.0207677k)sJ

+(0.0491802+8.2771733k)s2 + (0.0064+0.1070139k)s}.

For Hj^(s) to be stable there must be no poles of Hp^(s) on the RHP. 

This is true if there is no sign change on the Routh array of the 

denominator of H^(s). The values of k which will satisfy this condi

tion are

k <-29.5 (6-41)

Let
k = -30 (6-42)

Then Equation (6-40) becomes
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{47.29445s3 + 29.43225s2 - 248.291s + 151.38298}
H (S) . ----------- ---------- _ ------------------     (6-43)

H {47.29445s - 0.0106sJ - 248.266s - 3.20402s}

which is stable and satisfies all the hard constraints that H ^ ( s)

satisfies. But what is required is a third-order estimate. Thus the

estimate HRZ,(s) is reduced to its third-order approximant using the

reduction procedure. A third-order estimate of this transfer function

is
0.97268s2 + 0.01225s + 0.01022

H (s) *= — --------- n-----------5-------------  (6-44)
J 0.97268s + 0.01792s + 0.00648s

or 2
s + 0.0125941s + 0.0105071

H n o ( ® )  =  3  2 2s + 0.0184233s + 0.00666 s
(6-45)

This estimate satisfies the conditions 1^(0) = Hp (0)» ®R3^ W7r̂ =
Hp (jtô ) > ^ ( j w j )  = Hp (jw1), ^(joo) = Hp (joo) and is also stable with 

poles at - 0.00872 + j0.0811. Consequently, HR3(S) - Hp (®)*
The response of H^fs) of Equation (6-45) is compared to those of a 

third-order estimate of Hp (s) obtained by another well-known method 

[31] and the plant Hp (s) to validate the new reduction algorithm. 

These responses are shown in Figure 6-1.

However, if it is demanded to exactly match H^s) and H (s) at
k  p

any particular frequency, H (s) must be calculated using a relation 

similar to that of Equation (3-24) and the reduction process con

tinues. The following example is used to illustrate the fine-tuning 

process. Suppose the purpose (the application for which the estimate 

is intended) requires that the estimate and plant be exactly matched 

at co = 10 rad. per sec. Then one would proceed as follows in cons

tructing the estimate:



Uli.i.
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WlH6(s) - Im{H6(jWl)} - UjRetHgCju.)}
Ha(s)  ----------------- -̂----- 2----------------  (6-46)

S + tdj

substituting values from equations (6-28), (6-30) and (6-31) gives

H (s)(s2 + 5.1529) = H,(s) + 0.2090247s + 0.774268 (6-47)cl D

and from Equation (6-27)

{- 2.0565326s6 + 0.5422996s5 + 10.614686s4 + 2.7985441s3
+ 0.1773084s2 - 0.0154913s + 0.001154}

H (s ) --------------        (6-48)
{-0.3467413s7 + 1.1929593s0 - 1.4503962s3 + 6.1574-54s*

+ 1.7352218s3 + 0.0527514s2 + 0.0111426s

+ 0.0008451}.
Next the quotient polynomial, P7(s), of 1/H (s) is calculated./ EL

P?(s) = 0.1686048s - 1.024687 (6-49)

and

where

1/Ha(s) = P?(s) + H?(s). (6-50)

H?(s) = R?(s)/N7(s),
R_(s) is the remainder polynomial of 1/H (s) and N_(s) is the numera-/ 3 /

tor polynomial of H (s).
EL

{0.2163964s5 + 4.2474776s4 + 1.102515s3 + 0.1263223s2

+ 0.0045365s + 0.0003374}
H (s)--------------     T------------- r  (6-51)

{2.0565326s0 + 0.5422996s3 + 10.614686s* + 2.7985441s3

+ 0.1773084s2 + 0.0154913s + 0.001154}

The next step is the calculation of the Imaginery Part and the real 

part of H7(jl0) used for calculating Pg(s) - the component that pre
serves plant behavior at u) = 10 (or s = jlO).

„ 42462.144 + i20537.17 _ _ n01/,0 . «linnc /*
H7(j10) -1950403.501154 + j51431.571 “ -°*021478 " j.011096 (6-52)
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Therefore

and

But

Im{H7(jlO) }s o _0>001096s 
10

Re{H7(jlO)> = -0.021478

(6-53)

(6-54)

8(s) - P7(.) + Il"<H7 » 10)).; + Re{H7(310)} (6-55)

Thus combining Equations (6-49), (6-53) and (6-54) gives

(6-56)

properly augumenting the previously obtained transfer function by

Pg(s) = 0.167.5088s - 1.046165.

P0(s) guarantees that the approximant will exactly match the plant’sO
behavior at s = jlO.

Emulating Step 13 of the algorithm the approximant so constructed 

is given by -

Hr (s ) = 1 (6-57)

Where H ' ( s )  is arbitrary and can be used to match H  (s) and Hr,(s) at any a p k
other desired frequency.

Let H'(s) = 0. Equation (6-57) then reduces to a
H r ( s ) (6-58)

P2(s) +(
P4(s) + 2 2 s + 0̂

P6(8) +C 2 . 2 "is + Wjr p8(s>
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Substituting values from Equations (6-9), (6-15), (6-19), (6-28), 

(6-32) and (6-48) a fourth-order estimate is obtained and is given by

3.3127217s3 - 7.653835s2 - 3.5684935s + 1.8707044
Hr4 (s) -------------- 4------------ 3------------- 2” -----   (6"59)3.3127217s - 9.804297sJ + 3.1971181sz - 0.0328367s

Hr4(s) satisfies the following conditions:

HR4(°) - y ° > > HR4<j<V - yjfc>TT>’HR4< j V  = H p O u p . H ^ a i O )
= Hp(jl0) and HR (̂j°o) = Hp(joo).

A. third-order modal of the system Hp(s) of Equation (6-1)

obtained using Marshall's reduction technique [31] is given by

2.5232982s2 - 2.2482588s + 0.2637553
V.(s) = ------------------ -----------------------  (6-60)

s’5 + 0.4252s + 0.0321114s

The response of this approximant is compared to those of H_._(s) andK j
Hp(s) in figure (6-1) to evaluate the adequateness of Hr^s).

6.3 Validating the Mathematical Criteria for 
Selecting the Optimal-Order Estimates

Many model-order reduction techniques are used to obtain an 

approximant of any desired order. Examples of this group include the 

eigenvalue retention methods [15], and the dominant poles methods 

[30], In some other methods such as the method using the Routh Sta

bility criterion [44] an approximant is further reduced to another 

approximant of lower-order until the desired order is obtained. In 

both cases it is important to know the lowest-order model estimate 

which preserves all the essential plant characteristics. The order of 

such estimate may be considered the optimal-order.
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To validate the order selection criterion of section 4.4 several

estimates of a high-order transfer function are obtained using the

same technique. Consider the transfer function [44] H (s) given byP

(35s7 + 1086s6 + 13285s5 + 82402s4 + 27876s3
+ 511812s2 + 482964s + 194480}

H ( s )  =  — —  --------------         _ _ ( 6 _ 6 1 )

v is + 33s + 437s + 3017s + 11870s + 27470s

+ 37492s2 + 28880s + 9600}
The reduced-order models of H (s) obtained via the method of Krishna-P
murthy and Seshadri [44] are: -

il086.0s6 + 10629.3s5 + 82402s4 + 261881.1s3

+ 511812.s2 + 476696.1s + 194480}
U  (s) —  y r c . _ (6 —  62)

{330 + 345.6s + 3017s + 11037.6s + 27470s

+ 36616.8s2 + 28880s + 9600}

{10629.3s5 + 55645.5s4 + 261881.1s3 + 463107.3s2

+ 476696.1s + 194480}
= ------ 7-------- 7-----------"7-----------     (6-63)

{345.6s° + 1963s + 11037.6s + 23973.4sJ

+ 3661.8s2 + 27963.3s + 9600}

{55645.5s4 + 173419.1s3 + 463107.8s2 + 439546.9s

+ 194480}
H (s) = — - ~ — ~ I (6-64)

{1963s + 6817.2s + 23973.4s + 31694s

+ 27963.3s + 9600}

173419.1s3 + 322069s2 + 439546.9s + 194480 
- _ _ _ (6-65)

6817.2s + 14847.lsJ + 31694s + 25199s + 9600
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TABLE 6-1
Responses (Log Magnitude) of H (s) as a 

Function of Frequency ^

equency
ad/sec)

Ap (s)(dB) 
k = 8

A^CsXdB) 
k - 7

A^CsXdB) 
k = 6

A^Cs) (dB) 
k = 5

.1 -17.14156 -11.33553 -25.6660 -75.37344

.2 -17.18194 -11.37406 -25.15655 -76.3015

.3 -17.24071 -11.40478 -25.67408 -77.28947

.4 -17.30774 -11.39231 -26.26669 -78.23486

.5 -17.37338 -11.31001 -26.95666 -79.04518

.6 -17.43135 -11.15076 -27.73315 -79.6623

.7 -17.48079 -10.93 -28.554 -80.07258

.8 -17.52658 -10.67984 -29.35952 -80.29979

.9 -17.57802 -10.43657 -30.08939 -80.38711
1 -17.64629 -10.22741 -30.69654 -80.37992
2 -19.8906 -9.355202 -31.49749 -79.16673
3 -22.67867 -10.81076 -34.01045 -75.98841

4 -24.85003 -13.73939 -36.49061 -73.69975

5 -26.57377 -16.02418 -36.01691 -72.31403
6 -28.0029 -17.46648 -35.11432 -71.6452

7 -29.22605 -18.40391 -35.12202 -71.95508
8 -30.29672 -19.29264 -36.14085 -73.1908

9 -31.24957 -20.2579 -37.72321 -74.90951

10 -32.10842 -21.22816 -39.46338 -76.72625

20 -37.89046 -27.82412 -52.08131 -88.8715

30 -41.35057 -31.48135 -59.23391 -94.87849

40 -43.82546 -34.02771 -64.24167 -98.42245



n

23

24

25

26

27

28

n

1
2

3

4

5

6
7

8
9

10
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12

13

14

15
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Frequency
(rad/sec)

50

60

70

80

90

100

Frequency
(rad/sec)

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
2

3

4

5

6

TABLE 6-1 (cont'd)

Ap(s)(dB) AR?(s)(dB) AR6(s)(dB)
k = 8 k = 7 k = 6

-45.75213 -35.98793 -68.10923

-47.32936 -37.5835 -71.26424

-48.66439 -38.92964 -73.93024

-49.82168 -40.09415 -76.23929
-50.84297 -41.1204 -78.27613
-51.75685 -42.03785 -80.09835

A^CsHdB) 
k = 4 
-6.158022

-5.747127

-5.367345

-5.126004

-5.099247

-5.296665

-5.663417

- 6.110021

-6.540886

-6.869236

-5.491518

-9.24528

-12.02183

-14.04564

-15.65181

A^Cs) (dB) 
k = 3
3.467913E-02 

-.2930943 

-.6993831 

-1.027133 

-1.12844 

-.9083664 

-.3705608 

.3586462 

1.051923 

1.461815 

-4.594183 

-8.91146 

-11.68982 

-13.75583 

-15.40831

(s) (dB) 
k = 2 
1.733785

1.725441

1.65413

1.475221

1.172375

.7581916

.2612111

-.2874831

-.8617848

-1.442699

-6.364435

-9.691539

-12.12427

-14.03235

-15.59975

(s ) (dB) 
k = 5 
-100.4693

-101.284

-100.711

-97.77137

-84.53912

-98.13281
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TABLE 6-1 (cont'd)

n Frequency
(rad/sec)

Aj^CsXdB) 
k o 4

AR3(s)(dB) 
k = 3

A^CsHdB)
k = 2

16 7 -16.99212 -16.78854 -16.92895

17 8 -18.14625 -17.97509 -18.08249
18 9 -6.540886 -19.01641 -19.10123

19 10 -20.06897 -19.94461 -20.01329
20 20 -26.04635 -26.0068 -26.02408
21 30 -29.55529 -29.53631 -29.54409
22 40 -32.04885 -32.03777 -32.04223
23 50 -33.98447 -33.97722 -33.98014
24 60 -35.56663 -35.56152 -35.5636

25 70 -36.90466 -36.90086 -36.90245

26 80 -38.0639 -38.06097 -38.06222

27 90 -39.08653 -39.0842 -39.08523
28 100 -40.00137 -39.99947 -40.00035

TABLE 6-2

Deviations of the Responses of Hj^s) From the 
of Hp(s) at Various Frequencies (n =

(̂rad/sec) IV"0 ' ^ 00! | V b)"4R6(b)| |Ap(b>-*R5(b)| 
0.1 5.80626 8.52444 58.23188

0.5 6.06337 9.58322 61.6718

.7 6.55079 10.4431 62.59258

1 7.41888 13.05025 62.73363

Responses
10)

| y s)~*iM(s)|

10.983538

12.274133

11.8173

10.777054
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TABLE 6-2 (cont'd)

F(6qd/nCy)  ̂AP(Ŝ ~Ar7(s) ̂ ̂ Ap(s)_AR6(s) I I Ap^-A^e) I I Ap^-A^s) I
5 10.54959 9.44314 45.74026 12.52813
7 10.82214 5.89597 42.72903 12.23393
10 10.88026 7.35496 44.6 12.03945
50 9.77213 22.3571 54.71717 11.76766
70 9.73475 25.26585 52.04661 11.75973
100 9.719 28.3415 46.37596 11.75548

requency
(rad/sec) 1 1 |Ap (s)-AR2(s)

0.1 17.176239 18.895345

0.5 16.24494 18.545755

.7 17.11023 17, ?19579
1 19.108105 16.203591

5 12.81794 12.54142

7 12.43751 12.2971

10 12.16381 12.09513

50 11.77491 11.77199
70 11.76353 11.76194

100 11.75738 11.7565
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TABLE 6-3
Values of the Criterion of Equation (4-12)

(n = 10)

k Value of Criterion

7 199.928

6 284.81459

5 1794.8463

4 55.727

3 58.30

2 43.464

TABLE 6-4
iValues for the Hypothesis Test' 

a = 0.01, n = 10, Xa n_2 “ 2i,6C5

q r t E(er(®)i “ eg(s)^) Choice
7 6 90.05 52.9197 "R7(s)
7 5 t > 473 438 Hr 7<s)
7 4 18.524 *

4 3 13.628 * Hgjts)
3 2 1.001 *

The 'best* estimate is H^^s).

! E ( e  (s) ,, -  e (s).) is  n o t  c o m p u t e d  r i q I

if H q  is n o t  r e j e c t e d  i.e. if t < 21.666.
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322069s2 + 334828.5s + 194480

14847.1s3 + 20123.7s2 + 25199s + 9600
(6-66)

334828.5s + 194480hr2(s)
20123.7s2 + 18116.2s + 9600

(6-67)

The magnitudes of H (s) and those of its approximants at variousP
frequency levels are shown in Table 6-1. The deviations of the 

approximants’ magnitudes from those of Hp (s) at some frequencies ar 

shown in Table 6-2. Using the criterion of expression (4-12) it is 

seen that the approximant of Equations (6-65) and (6-67) are good 

choices, and the optimal-order model is H_0(s).
Alternatively, using the hypothesis test of Section 4.5, the 

results are summarized in Table 6-4. It will again be seen that 

Hr2(s) is the best choice at 1% confidence level. It should be 

observed from Tables 6-3 and 6-4 that the criteria of Sections 4.4 and 

4.5 yield identical results. Both indicate that Hj^s) is the best 

choice and that the most inferior estimate is H__(s).

6.4 Application of the Estimate in the Design 
of Controllers

The following example shall illustrate the usefulness of the 

reduced-order model, obtained by the new method, in control system 

design.

A state-space realization of Equation (6-45) is of the form

0
0

1
0

- 0.006662

0
1

-0.0184233
(6-68)
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B r =  [ ° o iV
[0.0105071 0.0125941 1]

D r =  [ 0 ] .

(6-69) 

(6-70) 

(6-71)
Suppose It is required to design a stabilizing gain compensator 

K. Let the feedback gain K be such that the poles -3, -5, -10 are 

assigned to the system. Then the matrix K is given by

~kT
T “ 18 -

K2 = 95 -

h
150 -
_

T    t17.981

94.99

150
The control input U is given by

U  =  - K X r .

Where Xĵ  is given by

YR = V r

- [0.0105071 0.0125941 1] R1

R2

R3
Solving for Xĵ j

^  “ cr [CRCr |‘1yf
= [0.010507 0.012594 1]XYR 

Thus, from Equations (6-72) and (6-73)

0.010507

U - - [17.98 94.99 150] 0.012594 Y

(6-72)

(6-73)

(6-74)

(6-75)

R (6-76)

After taking the Laplace transform this yields

U(s) - -151.385YR (s). (6-77)
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Applying this control law to the plant Hp (s) of Equation (6-1) gives a 
forward path transfer function given by

151.3851^(8) (6-78)
The closed-loop system

151.385H (s)
G(s) = -----------    (6-79)

1 + 151.385H (s)P
is stable with a gain margin of 1.322 and a phase margin of 58°. This

shows that the original system can be controlled by the control system

designed using the estimate.



CHAPTER VII
CONCLUSIONS

The last decade has seen a lot of suggestions on how to 

approximate a high-order system by a lower-order model. Many of the 

suggested technique are of mathematical nature - not specifying any 

engineering implications. They cannot therefore be applied to engi

neering problems with certainty. The development of some of the 

methods such as the singular perturbational method has been mostly on 

an ad-hoc basis. All the theoretical implications of the method have 

not been fully explained or understood.

Also, no methods exist yet which can be used for all applica

tions. Some of the existing approximation techniques yield approxi- 

mants with overall frequency response similar to that of the plant but 

many of them lack simplicity. Finally, errors commonly committed by 

the techniques known today include mismatch of steady-state responses, 

producing an unstable estimate even though the plant is stable and 

lack of generality.

In this thesis an alternative method of model-order reduction in 

frequency domain is introduced which overcomes much of the deficien

cies of some of the other existing methods. The importance of pre

serving performance characteristics at zero frequency and high fre

quencies is pointed out. The engineering implications of constructing 

an estimate with the same degree of relative stability with the plant

85
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is discussed. The algorithm developed thus ensures that the method 

produces estimates that may be useful for engineering applications.

The method introduced here though efficient is both computation

ally and conceptually simpler than most others in the existing litera

ture. It does not require the knowledge of the poles a priori as most 

fairly efficient methods do. Furthermore the level of mathematics 

employed is very ordinary.

Particularly attractive is the versatility of the approach. The 

relative importance of system characteristics depend on the particular 

application, it is important therefore that a reduction technique 

allow the engineer to preserve any desired plant characteristic in the 

estimate according to the application that the estimate is intended 

for. The technique introduced here offers such opportunity. Finally, 

the limitations of the method cannot be considered a serious handicap 

since it is applicable to a large class of practical systems.

Another area of model reduction which has received far less 

attention is the determination of how small the order can be. A 

statistical approach to this order determination is suggested. The 

thesis gives two criteria for selecting the order, one of which 

depends on the engineering judgment of the user.

Finally, an example has been used to show the strength of this 

method. It is expected that this alternative and simple method of 

model-order reduction shall be useful to the engineering world.
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APPENDIX A

DEFINING THE REGRESSORS OF A TRANSFER FUNCTION

The illustration of Section 4-2 shows that an appropriate 

definition of the regressors of a polynomial results in a model with k 

regressors, where k is the degree of the polynomial, which is equal to 

the number of the roots of the polynomial. Similarly the transfer 

function which is a ratio of two polynomials can be treated as a 

multiple regression model having k regressors, where k is the order of 

the transfer function.

It has been established that from a mathematical point of view 

the physical or economic significance of the regressors are 

irrelevant. Thus for the purpose of comparing models using step wise 

regression approach, a uniform way of defining the regressors of the 

models (transfer functions) may be in such a way that the number of 

regressors equals the order of the model. The appropriateness of this 

can be seen if one examines the partial fraction expansion of the 

transfer function. It will be observed that there are exactly k terms 

in the partial fraction expansion of the transfer function, where k is 

the order of the transfer function and each term can be defined as a 

regressor given a total of k regressors as asserted.
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