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An engineering approach to modelling, decision
support and control for sustainable systems
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Engineering research and development contributes to the advance of sustainable agriculture both
through innovative methods to manage and control processes, and through quantitative under-
standing of the operation of practical agricultural systems using decision models. This paper
describes how an engineering approach, drawing on mathematical models of systems and processes,
contributes new methods that support decision making at all levels from strategy and planning to
tactics and real-time control. The ability to describe the system or process by a simple and robust
mathematical model is critical, and the outputs range from guidance to policy makers on strategic
decisions relating to land use, through intelligent decision support to farmers and on to real-time
engineering control of specific processes. Precision in decision making leads to decreased use of
inputs, less environmental emissions and enhanced profitability—all essential to sustainable systems.
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1. INTRODUCTION

Engineering is the application of scientific and
mathematical principles to practical ends. For agricul-
ture, science continues to deliver innovation from every
quarter, yet realizing practical value requires both
understanding of how novelty and change impacts on
the overall performance of the agricultural system and
new means by which innovations can be used optimally.

Agricultural systems and processes do not produce
single outputs. Though the primary goal is production
of grain, meat or eggs, there are many by-products and
outputs which provide inputs to other enterprises.
There are also wastes and emissions to water and air,
modifications to the soil and the rural community, and
by-products that could be used in other markets to
reduce fossil fuel demands. Farming is under pressure
to reduce emissions in a competitive market place,
which focuses attention on justifying the use of
inputs—maximum food for minimum inputs. Sustain-
ability sets economic arguments in the context of
environmental concerns and the social implications of
technology change. Simple rules to optimize inputs or
justify a new machine cannot take account of the effects
of complex changes in local environmental conditions
or the secondary effects of the process on the
environment through emissions or demands for
processed inputs.

The advent of hardware that can process data
rapidly allows complex descriptions to be analysed or
optimizations undertaken in time spans that match the
needs of customers/users. The advent of the associated
mathematics and software allows the conclusions to be
expressed in ways that meet concerns about
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uncertainty and the concept of supporting rather than
making decisions. New engineering methods to collect
difficult data permit control of complex real processes.

Engineering provides at least three important
contributions as follows.

— Quantitative approaches to defining the whole
system, so that the interacting effects of component
production methods are assessed as a whole and
future solutions considered in the light of economic,
social and environmental impacts and policy goals.

—New tools and techniques, including machines,
sensors and management methods, which enhance
agricultural sustainability.

— Modelling methods and decision support tools at the
level of specific processes, giving increased precision
in process control.

Engineering is therefore a necessary partner with
biological and other sciences in the improvement of
agricultural systems and development of sustainability,
providing the route to draw technologies together to
achieve specific goals.

This review paper will highlight agricultural engin-
eering science that illustrates the bridge from under-
standing to practice. Our purpose is to demonstrate
that engineering delivers robust and relevant inno-
vations across a range of systems and processes. An
underlying concept is increased management precision
whether at the policy, strategy, tactical or process level.
The first part of the paper considers modelling whole
systems mathematically, so that the performance of a
process is evaluated and strategic decisions about
machinery or management made. The systems
approach provides models that address strategic issues
on land use and the impacts of regulation, and also
models for decision support. The latter provide
sophisticated inputs to decision making by farmers,
increasing the scope for reduced use of inputs without
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enhancing the risk of failure to control crop pests. The
second part considers process control, modelling the
process in the context of the control mechanisms
available, sensing key system variables and translating
system information optimally for control purposes.
A more precise process management allows inputs to
match production needs more closely, reducing or
eliminating waste streams by automatic control. The
mathematical and computational advances that have
made these approaches possible are considerable—but
of equal importance has been the demonstration that
the application of mathematics to describe and predict
complex processes and systems has been sufficiently
accurate to inform and add value to the practical
management of the agricultural systems concerned.

2. SYSTEMS MODELLING FOR DECISIONS

(a) Background

Modelling provides a logical procedure for predicting
process outcomes in circumstances other than those
that have been observed. Decision modelling aims to
determine the optimal decision, define the trade-offs
between different outcomes that are inherent in a range
of decisions or predict the probable decisions that will
be taken by farmers in a range of practical circum-
stances. Such models encapsulate knowledge of how a
system is constructed of interacting processes and how
each process works. They often combine experimental
observations, expert knowledge and logic. In the
physical world, models are frequently very precise and
allow us, for example, to send probes to the moons of
Jupiter. In the biological world not only are processes
less well understood, often because they are made up of
many sub-processes, but also the systems themselves
are stochastic. Weed plants not only spread their seeds
by various mechanisms—using wind, animals and birds
so that their destination could be a long way from the
plant—but seeds are also designed to lie dormant for
times ranging from months to years so that the species
can survive attacks by weather or man. Fungal spores
operate in a similar fashion. Millions are launched into
the air, some of these land on a leaf, some of these
germinate and some of these survive the defences of
plant and man to produce yet more spores. Domesti-
cated seeds have been bred by man to germinate when
planted, but this reliability is confounded by the action
of wildlife such as a browsing slug finding the seed in
the soil. Overlaying all is the weather and its variability
and unpredictability—even with the very latest and
largest computer.

Modelling to aid decision making in sustainable
agriculture does not require description of all elements
in fine detail—the approach needs to be tailored for the
purpose. Relatively simple descriptions of specific
processes are sufficient if the processes are known to
respond to a limited subset of external conditions, or if
other unmodelled effects can be dealt with through
appropriate adjustments to accommodate drift or
errors. Early attempts at decision support systems in
agriculture, such as ProPlant (Frahm et al. 1991),
relied purely on expert knowledge to instruct the user
in what to do. ProPlant Expert (www.proplantexpert.
com) continues to function as an expert advisory
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system and covers a range of crops, pests and diseases.
PC-Plant Protection, developed in Denmark (Murali
et al. 1999), also uses expert scoring rules and covers
control of weeds, pests and diseases in wheat, with an
emphasis on reducing chemical use. EPIPRE in The
Netherlands (Zadoks 1981; Rijsdijk 1983) used
empirical models to relate observed disease levels to
probable losses, but use of the system has now declined
as farmers have become educated about the meaning of
observations. None of these approaches allows the
users themselves to consider the dynamics of the
diseases, interact with current weather conditions,
make sequential decisions, maximize profit and
compare alternatives. However, they do attempt to
estimate the magnitude of losses, without which no
decision is possible.

Predictive modelling of the outcomes resulting from
actions enables a person to make a better decision.
The methods to achieve this range from education/
training so that operators better understand the
consequences of their actions, through analytical
studies and reports which provide the decision maker
with measures of the effect of various options, to
computer-based decision support systems that use the
models interactively to suggest the best decisions to
the operator. Modelling decisions for these systems
needs to combine a probabilistic approach to the range
of possible outcomes with a deterministic description.
The probabilistic approach could use stochastic
modelling techniques (Sells 1996), but, for systems
studies, direct application of probability modelling
techniques to repeated simulations is more likely, for
example, using many years of weather data. The
deterministic approach will generally describe com-
ponent processes as logical relations or will use the fact
that the overall system, the sum of the parts, often
behaves in a fairly predictable way. Optimization is a
powerful adjunct to predictive modelling for both the
user and the modeller. In principle, its aim is to
provide the farmer with the best decision. In this
process, it is a very powerful test of the accuracy and
completeness of a system model and, by association,
of the expert knowledge.

These approaches are exemplified by a range of
studies. Farming system models provide the means to
assess the implications for optimal profitability and
optimal environmental performance. Model outputs
increase understanding of how strategic decisions, by
farmer or regulator, affect system performance. Process
modelling and optimization lead to decision support
and optimized advice to the farmer on input manage-
ment. Total system studies, in the form of life cycle
assessments (LCAs), address cradle-to-grave issues in
the context of global sustainability.

(b) Systems modelling for environmental life
cycle assessments

Environmental LCA based on agricultural system
models is a holistic systems approach that assesses the
overall impact of the agricultural production system. The
concept of modelling required for LLCA is to analyse the
flows through the system to provide accurate measures of
all inputs and outputs and enable comparison of
alternatives. The aim is to identify all the physical
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resources consumed and all the (undesirable) emissions
resulting from the production of a product (or functional
unit). This is basically impossible, particularly in
agriculture, as the input required for a given production
is very uncertain. Decisions are required on what is
significant and on the importance of by-products—straw
for bedding from wheat, meat and manure from milk
production, etc. The basic premise is to account for
disposal of every input, whether an atom or a lamb.

LCA assesses the environmental aspects and
potential impacts associated with a product, by
compiling an inventory of relevant inputs and outputs
of a system and evaluating the impacts associated with
them, from raw material acquisition through pro-
duction, use and disposal (Audsley er al. 1997;
De Boer 2003). Consider comparing the national
production of bread wheat by a conventional system
with an alternative, for example, using lower inputs. An
important part of an LCA is to define the functional unit
being produced: in this case, wheat suitable for
breadmaking with a minimum protein content of
12%. Reducing inputs of nitrogen will reduce expected
protein content. (In practice, it reduces the probability
that the output from the field will meet the require-
ments for breadmaking each year.) One option is to
choose a very high protein variety but it is then essential
to systematically analyse how much this choice reduces
yield potential, hence both products are identical at the
farm gate and only the farming side need be analysed.

In general, LCA analyses are comparative studies
looking at alternatives to current systems. In agricul-
ture, they frequently compare conventional and
organic systems. De Boer (2003) compared conven-
tional versus organic milk results from three studies,
illustrating the large effect that small differences in
assumptions can make, but with an overall message of
little difference per kilogram of milk. Sandars er al.
(2003) compared livestock manure management,
showing the need to study the whole system not just
the individual part being improved. It is important to
remember that the functional unit is kilogram of meat
not hectare of land (Halberg ez al. 2005).

The first step is to completely define an inventory of
the production systems. In particular, all flows of
energy and materials entering and leaving the system,
where they are different, are defined and a systematic
procedure determined for measuring this difference—
noting that in many cases data will be sparse or non-
existent and confounded by the huge variability present
in agricultural processes. Inputs consist of fertilizer
(NPK), active (pesticide) ingredients, machinery,
buildings and energy as fuel and electricity. The grain
and straw yield also contain NPK. Outputs to air, water
and landfill include carbon dioxide, ammonia, nitrous
oxide, nitrate and packaging.

Although data on current systems will generally exist
in some form, data on alternatives are generally sparse
or non-existent and, even where they exist are likely to
be transient, influenced by the preceding production
system. Thus, there is a need to use or develop system
models which accurately predict the future per-
formance of alternatives.

Reduced inputs will have an effect on the soil. In
studying a single commodity, it is assumed that any
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crop year is part of an unspecified crop rotation
forming a sustainable system of production such that
the soil returns to the same condition at the start of the
next rotation. By comparison, experimental trials and
their associated simulation models are frequently only
1 year in duration, and reduced inputs of N are not
fully reflected in lower yield or lower soil N in the soil
for the following crop. System simulation models can
be run until a steady state is obtained, which properly
predicts the (reduced) yield and soil N content.
Reduced herbicide inputs present a similar problem
with weeds for which the solution requires alterations
to the crop rotation, cultivations or timing of drilling.
An altered crop rotation, however, assumes that the
market wishes to consume more of one crop and less
of another! Indeed, a complete UK LCA model
(which does not exist) also needs to take into account
the available land area, and the impact of changed
production on imports and exports. It is easy to
reduce the UK’s global-warming potential from the
use of fertilizer in agriculture by reducing production
and importing our food—but this does little for global
global-warming potential.

Burdens must be allocated appropriately to the
function. Thus, the energy and materials used in manu-
facturing a tractor are allocated in proportion to its use.
Co-production is common in agricultural systems since
many activities produce multiple co-products, notably
cereal grain and straw. The fertilizer in manure is
another example. There are a number of different
approaches to allocation. A common option is avoided
burdens, which subtracts the burdens displaced by use
of the co-products. It is sometimes possible to use a
property of the products. Relative economic value at
the point of division in the system, which represents a
measure of the incentive for production, is a final
option, though a proper economic value is some-
times difficult to determine (Audsley er al. 1997).
Cederberg & Stadig (2003) show that how you deal
with products, in their case beef calves from dairy, can
make a big difference to the result. Economic value
gives a very different answer to expanding the system to
determine the avoided burdens. It is important to
consider the whole system as far as possible.

Burdens must include the production and delivery
of the inputs. Thus, the energy used to produce diesel is
an addition to the energy content of diesel (which is
itself greater than the energy required by the task). The
production generates emissions, for example, 0.016 kg
N, O is emitted from fertilizer production for each kg N
in the fertilizer, and delivery of fertilizer consumes
diesel (Audsley ez al. 1997).

Field emissions are a major impact of agriculture on
the environment. Generally, the model must ensure a
mineral balance—total input of an element equals total
output. Thus, the fate of all surplus nitrogen applied to
a crop must be determined even though, in a transient
situation, it is used to benefit the next crop. The
application of manure provides a good example. There
is more readily available nitrogen in manure than is
accounted for in the adjustment a farmer makes to his
fertilizer application. The organic N provides a source
of N for many years, though a farmer is unlikely to
make much adjustment after the year of application.
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Table 1. A typical outcome of an LLCA analysis of a single
commodity: bread wheat production.

impacts (per tonne bread wheat

produced) conventional organic

energy used, MJ 2361 1736

global-warming-potential, kg 100 422 481
year CO, equiv.

eutrophication potential, kg PO~ 2.9 8.6
equiv.

acidification potential, kg SO, 3.1 3.3
equiv.

pesticides used, dose ha™! 2.0 0

abiotic depletion, kg antimony 1.4 1.2
equiv.

land use, ha grade 2 0.14 0.44

The result is increased yield and increased nitrogen
emissions to the environment at a geometrically
decreasing rate to infinity. This is modelled to give a
difference equation for residual nitrogen: R, ;; —aR,+
BR,_; =0 and thus solved for nitrate leaching and
additional yield.

Steady state does not mean that the soil contents are
the same from crop to crop, only over the rotation.
Weather variability means that experimental values
vary from year to year but long-term averages are
required. Taken together, it means that the best
method to estimate losses is to derive them from an
appropriate simulation model such as SUNDIAL (Smith
et al. 1996) rather than using observations.

Steady state is less appropriate for some mineral
contents. The most notable example is carbon content
when comparing systems with different amounts of
straw incorporated (to value straw for electricity
generation). Organic matter in soil represents a
significant carbon sink of the order of 40 t Cha ™' for
cropped land, 60t Cha™ ' for permanent grassland
and 80t Cha ' for coniferous woodland. Carbon
content alters very slowly to a new steady state over 50
years, though most of the changes happen within 10
years. It is a challenge to LCA in this case to decide the
rate of change to be used.

The outcome is an extensive picture of the ways in
which production of the commodity impacts on the
global environment, allowing systems to be compared
and policy perspectives informed. A short-form
summary for the example comparison of conventional
and organic bread wheat production is given in table 1.
This shows that there are benefits in the fossil energy of
organic wheat production, due to saving on fertilizer
energy, but per tonne of grain produced the conven-
tional system produces less emission. The global-
warming potential associated with the difference
between conventional and organic systems is domi-
nated (60-70%) by emissions of N,O, which is 292
times worse than CO, and is a by-product of the
nitrogen cycle in the soil. Organic wheat requires
additional land for fertility building, with consequent
emissions, and this together with the lower yield results
in greater emissions per tonne of bread wheat
(however, measurements are extremely variable so the
figures have a large uncertainty).
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(c) Whole farm decisions and land use planning—
the implications of farmers’ management
decisions for environmental impacts

Policy makers are keen to assess potential impacts of
probable future agricultural land use given future
scenarios of climate, technology and socio-economics.
Using a farm systems model to consider the combined
profitability and environmental outcomes of the process
by which farmers determine land use provides a new
approach to realistic comparisons of policy positions.

There are basically two approaches to predicting
future agricultural land use. One approach (top-
down) is to determine the prices and production at a
national level and allocate to land (Hossell ez al.
1996). The alternative (bottom-up) seeks to
determine what individuals would do and aggregate
to the level of a region or country (Veldkamp &
Verburg 2004). Within this, a geographic information
system (GIS) and agent-based approach is more
frequently used for non-agricultural land use plan-
ning, but in agriculture the neighbour does not have a
major effect in general, although the neighbour is
likely to have very similar soil and climate and thus
behave the same.

A traditional approach analyses past aggregated data
to predict future outcomes. Even if valid for normal
situations, it is clearly not appropriate for novel
situations. The engineering approach (Annetts &
Audsley 2002) to predicting the impact of future
agricultural policies, socio-economics or climate on
agriculture land use and its environmental impact is
based on estimating the decisions of individual farmers.
The underlying hypothesis is that farmers are ‘profit
maximizers’ (Oglethorpe & O’Callaghan 1995). The
main differences in the choice of which crops to grow
occur as farmers attempt to maximize their long-term
profit, constrained by the physical attributes of their
land—soil type, climate and slope—and their percep-
tions of the future profitability of crops. Climate
determines how well a crop will perform. Owing to
variability in yields and prices, each farmer given the
same information will process it differently due to
perceptions, experiences and attitude to risk. The
model simulates this by randomly selecting yields and
prices based on their variability. Aggregated at the
regional level, the cumulative decisions show how
agriculture may adapt to accommodate changes in
climate or socio-economics, technology or legislation
(Audsley er al. 2006a,b). Combined with the environ-
mental emissions calculated above, the MEASURES
project showed the economic and environmental
impact of possible policy choices on sustainable
farming (Williams ez al. 2003).

The Silsoe whole farm model (figure 1) is a
multiple objective linear programming model
developed for a variety of farming scenarios including
UK and European arable, livestock and mixed farms
(Annetts & Audsley 2002). The model optimizes a
weighted sum of component objective functions which
calculate annual net profit and environmental out-
comes, subject to a set of constraints. In particular, the
model determines the best strategic farm plan of
cropping and machinery for given farm, economic
and climate details. The crop rotation, timing of
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| physical | |

climate scenario

| | socio-economic scenario

| soils and weather

S

workable hours

maturity dates

possible crops, yields,

available
technology

| prices and costs

Silsoe whole farm model

|

profitability (or loss) | | crop and livestock outputs

| environmental impacts

Figure 1. The linkages in the Silsoe whole farm model.

operations and machinery systems used will affect the
profitability in terms of potential crop yields, cost of
machinery, fuel use, machinery repairs, inputs (e.g.
fertilizer and herbicides), etc. The plan must be
sustainable over the long term not just for a single
year. The hours available in each period are operation
dependent, since weather and soil conditions impact
the amount of time the farmer can plough, drill,
harvest, etc. in differing amounts; for example,
spraying requires good weather and low wind
speeds, whereas ploughing is possible in wind, rain
or shine, provided the soil is workable. Thus, some
operations are more restricted in terms of the time
available than others.

Any human activity has effects on the environment,
but different choices have different effects. A particular
example is the choice of when an operation is carried
out, e.g. planting winter wheat. There is a time which
will give the farmer the highest yield from that crop.
The crop could be planted a few weeks later for a loss of
yield and a decreased need for chemicals (such as
herbicide to control grass weeds). However, later
sowing increases the risk of leaching of nitrate which
the crop would otherwise have taken up. The model
incorporates the effects of changes in crop, method or
timing on yield, costs and environmental outcomes.

For livestock, the model considers feed and bedding
requirements, and waste production and subsequent
disposal to land. The major environmental outcomes
are associated with waste disposal, which may lead to
large emissions of ammonia to the atmosphere and
nitrate leaching to water courses, depending on the
method and the timing. Constraints describe the
feeding of the animals from foodstuffs, such as straw,
grazed grass, grass silage, maize silage and various
manufactured concentrates, some of which can be
grown on the farm or are by-products of growing crops.

The systems model needs to predict changes in yields
as a function of soil, fertilizer rate and climate; to
estimate soil workability as a function of climate; to
estimate environmental emissions; and to model
changes to livestock production with changes in feeds
and the availability of forages with climate. Thus, it
brings together many models from different sources.
The models should be only as complex as necessary for
the purpose, but equally they should include all the
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important parameters. Many crop simulation models
predict the average crop yield using weather data, but
these are normally soil-water and development stage
models, do not include disease, and mostly model just
wheat. Complex nitrate leaching models also exist,
again usually well tested only for major crops, often
transient models and not designed to model the steady-
state situation over a prolonged crop rotation. However,
these models provide a foundation from which more
comprehensive system-level models can be developed.

As an illustration, let us consider how an environ-
mental policy option to reduce herbicide use by
taxation compares to a conceptual approach in which
the farmer chooses practices which are likely to result in
less use while maximizing profit. Data for herbicide use
were estimated using a weed control model (Sells
1996), and attached to appropriate crops, rotations and
operations. Figure 2 shows results from modelling a
typical arable farm (Sells 1999). Applying a tax regime
that increases herbicide price reduces the optimum net
profit of the farm system, but makes only a small saving
in the amounts of herbicide applied, largely through
small changes in cropping patterns. When an increas-
ing weighting is applied in the optimization to
minimizing the herbicide use while maximizing the
net profit, there is a much greater impact on the
herbicide use. Trebling herbicide price (200% tax)
reduces profit by 5%, and decreases wild oat and
blackgrass herbicide use by 13 and 21%, respectively.
For the same profit reduction, the goal-driven scenario
achieves herbicide reductions of at least three times as
much, i.e. 37 and 100%. This shows that there are a
number of near-optimal solutions which have lower
environmental burdens and tax is not an efficient
means of control.

Similar effects have been shown with attempts to
reduce nitrate leaching by limiting fertilizer, in this case
using the nitrogen turnover model SuNDIAL (Smith
et al. 1996) as the source for estimates of leaching. In
this case, the farmer’s reaction is to grow nitrogen-
fixing crops and the result is actually an increase in
nitrate leaching! The model predicts the probable
reactions of optimizers to proposed interventions.

These models may also address the potential effects
of future scenarios such as climate change (Rounsevell
et al. 2003). The REGIS decision support system
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Figure 2. The effect on profit of encouraging decreased herbicide use (filled symbols, blackgrass; open symbols, wild oats), either
by taxation (each point on the solid lines represents 100, 200 and 300% herbicide price increases) or by land users making
decisions that put increasing weighting on reduced use (dotted line), for a typical sandy loam soil, arable and roots farm.

allows a user to study interactively the regional impact
of a wide range of economic and climate variables
(Holman et al. 2005). This modelling has required
metamodels to replace the complex system models.
The metamodels, in addition to being representations
of the full models, must exhibit the same robustness-
to-data characteristics.

(d) Decision support for complex uncertain
systems—stochastic dynamic programming

and weed control strategies

Many of the driving forces in agricultural systems, for
example, the levels of weed seed production and the
weather conditions that may influence the timing of
their germination, are highly variable and uncertain.
Specific modelling strategies are required where a
strategic decision demands that an array of possible
outcomes are considered and weighted. Consideration
of options for weed control and subsequent decision
support provides an important example.

One of the major criteria in weed control is future
losses, illustrated by the maxim: ‘one year’s seeding is
seven years’ weeding’. The farmer wishes to maintain a
low level of weeds and hence seeds, because the weed
may be difficult to control in some future crops
(Bastiaans et al. 2000). Dynamic programming (DP)
is a valuable modelling technique for optimizing such a
multi-annual strategy for weed control (Sells 1996).
The method is now being implemented as part of the
weed management support system (WMSS) in the
arable decision support (ArableDS) system (Davies
et al. 2004). Figure 3 shows the problem and the main
variable element of the system, the herbicide effective-
ness each year. Control can be achieved by changing
crop, cultivation method and sowing date, and by
choosing one of a number of herbicides and doses.
However, the level of control achieved becomes more
variable as one tries to reduce costs.

The formulation of the stochastic dynamic pro-
gramme is

N
f() = max {sz (R + afi11(1)) } (2.1)
j=1

where £,(7) is the optimal expected reward for years ¢
and beyond given that at the beginning of year ¢ the
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Figure 3. The key determinants of the weed control in an
arable system.
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number of seeds in the seedbank is described by state i;
pf; is the transition probability of going from state 7 to j
given the actions described by k; R;is the associated
reward; and « is a discount factor.

For the DP model, the seedbank number is divided
into discrete states on a logarithmic scale owing to the
exponential nature of population growth. It is usually
necessary to define the seedbank by two state variables
for the surface and deep levels, ploughing moving the
seeds between levels and deep seeds suffering higher
mortality. One of the major problems with any DP
formulation is always the time required to solve a
realistic problem. Needing two soil levels and hence 7>
states is a classic example.

To use stochastic DP, we need to calculate the
transition probability pg’- of moving from one state 7 to
another j for a given set of actions defined by the index
k. Actions % define crop, cultivation, sowing time and
weed control. In general, it is possible to describe the
control achieved in experiments by a lognormal or
similar distribution function. The reward function is
the loss of yield and cost of treatments, and also needs
to include allowance for loss of value or cleaning costs
from having weed seeds in the grain. Once the dynamic
programme is formulated, we can solve it to optimize
profits over an infinite time horizon.

As part of WMSS, the system allows the user to
specify the weeds of concern and their current levels,
examine the impact of alternative options manually and
then optimize. For a complete system, it is necessary to
parametrize the seed and herbicide models for every
arable weed of concern. This is rather a challenge for
experimental data, but by having a model for which the
expert provides parameters by reference to known
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weeds, performance can be simulated and optimized,
the results tested against reasonableness and the
parameters adjusted if necessary.

(e) Linking process and system models to support
on-farm decision making—an example for
Jungicide dose optimization

Though processes like weed control may, to some
degree, be considered in isolation when developing
optimal decisions, others are so intimately linked to the
whole growth and development of the crop that an
integrated approach is necessary. A key example is the
optimization of fungicide treatment, where develop-
ment of the leaf canopy and the timing in relation to
grain formation are key interactions with the effect of
any disease development, and require a joined up
approach to modelling the component processes.

In cool temperate climates, farmers typically spray
intensively managed wheat two or three times during
April to June to control fungal diseases. At present, the
UK farmer has a choice of approximately 20 active
ingredients, formulated in combinations into hundreds
of products. These in turn can be mixed and applied at
different doses and timings. Wheat varieties have
different susceptibility to various diseases and weather
is very variable. The choice of what, when and how
much to spray is complex, and this complexity together
with the variability in disease attacks creates a common
perception that farmers use too much chemical because
they choose a minimal-risk, insurance approach. It is
also the basis of a huge and continuing amount of field
experimentation as diseases rapidly adapt, new
chemicals are discovered and new more- or less-
resistant crop varieties are introduced.

Research under the banner ArableDS has developed
models (Milne ez al. 2003; Parsons & Te Beest 2004;
Audsley ez al. 2006a,b) that bring together agronomic
expertise, biological reasoning and experimental infor-
mation on disease growth and fungicide performance
into a decision support tool. The wheat disease
manager (WDM) seeks to improve chemical use by
transferring this knowledge to users, providing advice
on the best choices of timing and product. The model is
not prescriptive but instead calculates and demon-
strates to the user the probable outcome of choices of
chemicals and timing. The user is free to study the
alternatives and examine the consequences in yield,
cost and reliability of control or ask for the optimum.
Decisions can be refined progressively through the
season as the effect of weather, earlier sprays and new
observations become available. This approach provides
a considerable challenge to the expert knowledge as the
modelling process rapidly highlights inconsistencies
and incompleteness, and is thus a major benefit to
decision making.

WDM predicts disease control on winter wheat
using a hierarchy of semi-mechanistic models
simulating canopy growth, development of the four
main foliar fungal diseases (namely Seproria tritici,
yellow rust, powdery mildew and brown rust), the
effect of sprays applied and disease-induced yield loss
(figure 4). Foliar diseases reduce yield by destroying
green leaf area which would otherwise intercept light
energy (Bryson et al. 1997). The models respond to
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Figure 4. Hierarchy of models used in the WDM to lead to
optimal decisions on disease control.

differences in location, sowing date, varietal disease
susceptibility, weather data, climatic data, and user
observations of crop and disease, etc. The potential
development of the crop, disease and yield are
predicted using future weather scenarios appropriate
to that location.

The canopy simulation (Milne ez al. 2003) predicts
developmental stages as a function of photo-vernal
thermal time, and upper culm leaves are set to emerge
at a constant rate in thermal time. The foliar disease
model (Audsley er al. 2006a,b) simulates the growth of
daily infections and differs from other models in three
respects. Variables (such as weather, host resistance
and inoculum pressure) which affect disease risk are
integrated in their effect on disease progress—the
agronomic and meteorological data called for are
restricted to those commonly available to growers by
their own observations and from meteorological service
networks. Field observations during the growing
season may be used both to correct current estimates
of disease severity and to modify parameters which
determine predicted severity. Pathogen growth and
symptom expression are modelled to allow the effects of
fungicides as protectants (reducing infections which
occur post-application) and eradicants (reducing
growth of pre-symptomatic infections).

Diseased leaves and ears intercept less solar energy
proportional to the area of disease, and this is the basis
of predicted yield loss. An important aspect of the
system is to make use of information on disease levels
obtained from field walking, while allowing for the
limited accuracy of disease observations. A typical
example is yellow rust which is difficult to observe at
low levels, but may rapidly explode if not controlled.
Bayes’ theorem is used to update a prior estimate based
on site and variety, using observation. Thus, for
example, a zero observation at a high-risk site is
effectively not believed!

A genetic algorithm procedure (Parsons & Te Beest
2004) finds a list of the best solutions for a fungicide
application plan that optimizes profit margin over
fungicide spray cost. This meets a user demand that
the decision model should give a ranked list of near-
optimal spray programmes, not just the best. The
allowable set of solutions consists of legal combinations
of products at one-quarter, one-half, three-quarters
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Figure 5. The main user interface screen of the WDM, with explanation of main features.

and full (label-recommended) doses. The user can
choose to apply up to four sprays, each of which
contains up to three products, subject to restrictions on
permitted mixtures, timing and doses. The product
database is large and complex. Products are com-
binations of active ingredients in a bewildering range of
different concentrations. By concentrating on actives, it
is possible to reduce the problems of parametrizing
them—experimental data are very variable and must be
collected over several years—using parameters which
effectively compare the performance of actives.

The system is accessed through a feature-rich user
interface (figure 5). This allows the user to investigate
scenarios by altering model settings and observing the
effect on disease and margin as predicted by the model,
as well as to request a list of the optimized spray plans
for the scenario under consideration. The system has
been used by farmers for several years and forms a
part of the ArableDS decision support system. Its
recommendations have proved generally effective
(Parsons er al. 2004). In 2003, it achieved the twin
‘sustainability successes’ of suggesting lower doses than
the experts and achieving the same control giving
higher profits. Conversely, in 2004, it was suggesting
high doses ‘in a tricky Septoria season’—its target is the
most appropriate dose—while farmers were applying
lower doses. Validating the correctness of the decisions
is an interesting challenge since the post-harvest
optimum is not the same as the optimum decision at
spray time when future weather is unknown.

3. CONTROL ENGINEERING APPROACHES

TO BIOLOGICAL SYSTEMS

(a) Background

Responsibility for the outcome of the many inter-
linked and complex processes that comprise agricul-
tural production is largely in the hands of the farmer.
Farmers need to control inputs to achieve a particular
set of production targets. At present for most
systems, decisions are based on experience and
intuition, rather than measurements. Though sensors
could provide the measurements, sensing technology
is only a partial solution to improving production
control. Sensors produce large amounts of data which
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are only useful once the information content is
available, and when the farmer has the means to
take decisions from that information. In the case of
animal nutrition, sensors of animal size or weight
might indicate that an animal is growing too slowly,
suggesting that it is given more food, but how much
more protein, how much more energy and how
quickly should the diet be changed? The wrong diet
might produce unwanted fat rather than valuable
muscle. Is the increased cost of providing more food
justified by the increased value of the animal? The
development of sensing systems, their linkage to
control via models and the ability of these control
approaches to incorporate factors beyond production
alone, including emissions to the environment,
demonstrate the potential for precision approaches
to be integral to future sustainable agriculture.

Automatic closed-loop control systems have the
potential to control such complex processes. Any
control system will include: a reference signal, or
input, which sets the desired value of the controlled
variable; a controller, which produces an appropriate
control signal; an actuator, which acts on the system in
response to the control signal; the process that is to be
controlled; and the controlled variable, or output, from
the system. In its simplest form, this constitutes an
open-loop control system, so-called because there is no
way in which the value of the output variable influences
the input signal. Most agricultural production pro-
cesses operate in this way. For example, in the case of
rearing animals for meat, the input is a desired growth
rate; the controller is the farm manager; the actuator is
the feed supply system, which is operated by the
manager; the process is the animal; and the output is
the resulting growth rate.

Open-loop control is prescriptive. The nutritional
inputs (protein and energy) for the animals to realize
their potential growth are calculated in advance—in a
well-managed enterprise by growth models. However,
there are many factors (e.g. disease or unfavourable
environment) that may prevent the animals from
achieving their potential, and growth targets may be
missed. These problems are reduced by introducing a
feedback loop in which the value of the output is
measured, compared with the input and the difference
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between them (the error) used to control the actuator.
An example from agriculture is the system that controls
the temperature in livestock housing by switching on a
variable number of fans in response to signals from
temperature sensors inside and outside the house. The
detailed design of the controller determines how the
input is modified in response to a given output error.
For many applications, a simple on/off controller may
suffice. This will switch the actuator on when the
controlled variable exceeds a limit, and off when the
error is back within the limit.

For improved control, controllers such as propor-
tional +integral + derivative are used. The proportional
element provides a control action proportional to the
error, the integral element removes steady-state error
and the derivative term controls output oscillation. The
controller consequently contains three parameters for
which suitable numerical values are required for the
particular process to be controlled. These parameters
are fixed. If the process changes with time, or differs in
its behaviour from the one for which the controller was
designed, the resulting control of the process will be
degraded since there is no mechanism for adapting the
controller to the revised process. Examples of control
degradation include increased delay in the output
reaching the target value, the output overshooting the
target, and the output becoming unstable and oscillat-
ing around the target value.

One solution to this problem is to incorporate a
model of the process in the controller. Continuous
revisions of the model can then reflect changes in the
real process and be used to recalculate suitable
controller parameters. The model of the process,
which is driven by the process input and output, is
used to calculate suitable values for the controller
parameters. Thus, controller characteristics become
responsive to process behaviour—if the process
changes, the controller changes accordingly.

(b) Incorporating models in the control loop
Animals are increasingly grown to tight market
specifications for unit weight, lean and fat composition,
and meat distribution on the animal. The farmer
chooses the diets for the animal so that it produces an
acceptable yield of meat. It is clearly useful to be able to
weigh a growing animal periodically if one is aiming at a
target final weight and especially if the market demands
(and it frequently does) achievement of the target on a
particular date. An obvious solution is a weighing
platform that an animal would stand on, and these have
been developed (Turner er al. 1984) and are available
commercially for smaller animals like broiler chickens.
Although models of most agricultural processes
including animal growth have been developed, few
are suitable for direct incorporation into a control
system. Most models have been developed to demon-
strate a scientific understanding of the process valid in a
wide range of contexts. They are expensive to develop
since they involve dissecting the process into many sub-
processes, and they are generally mathematically
complex, making implementation in a real-time
controller difficult. In contrast, the controller model
is required to provide predictions which need only
be valid for a given place and time. If process
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Figure 6. Model-based control for broiler production.

Figure 7. Processed image of a pig showing areas identified
and measured by the image analysis system.

characteristics change so that the model is no longer
valid, it should be possible to develop a new model to fit
the changed process easily and cheaply, for example,
when a new strain of animal is developed. Similarly, if
the animals’ growth patterns were modified by local
conditions, for example, environmental conditions, it
should be possible to modify the model easily to take
these changes into account. In summary, the require-
ments of a model for use in a model-based controller
(figure 6) are that it is specific, easy to develop and
mathematically simple.

Using system identification techniques to develop
models of agricultural processes is one way to meet
these requirements. These techniques use online
measurements of process inputs and outputs to
estimate the parameters of an adaptive abstract
mathematical model. The approach has, for example,
been used to produce a model of the growth response of
broilers to feed intake (Aerts ez al. 2003a). The model
was derived solely from measurements of the process
output (broiler growth) in response to changes in the
process input (feed intake), and did not require
knowledge of the biological processes involved. The
accuracy of prediction achieved by the model was
similar to that of three traditional static empirical
growth models. The model has been used in a feed
control system (Aerts ez al. 2003b) to grow birds along
different growth curves with promising accuracy.

An alternative approach to the modelling problem
was taken by Frost and colleagues (Frost ez al. 2003;
Stacey et al. 2004). They judged that a detailed
mechanistic model would be too slow for practical
implementation in the controller, and instead
developed and used a semi-mechanistic growth model
predicting broiler growth from feed intake and feed
composition (lysine, protein, organic matter, lipid and
energy content, and nutrient digestibility) each day.
Having satisfied the requirement for maintenance, the
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limiting nutrient (lysine or energy) determines the
protein growth rate. The model assumes that excess
energy is deposited as lipid and excess protein is
excreted at an energy cost. This is based on established
models and principles. A single parameter of the
model, effectively representing digestibility of the
food, is optimized online in response to past and
present values of the process inputs and outputs by
minimizing the r.m.s. error between target weight and
actual weights plus the growth predicted by the model
for the remainder of the growth period.

A prototype system was used in trials to calculate the
daily diet for the birds in two broiler houses. At the same
time, in two other houses on the same farm, birds were
grown by an experienced manager using the traditional
prescriptive diet calculation procedure. For operational
reasons, the new controller could only change the diet
three times a week over the six-week growth period,
rather than once a day which would have been
preferable, and there was a 24-hour lag in delivering
the recalculated diet. Despite these limitations, both of
which have been overcome in a fully developed
commercial system, the performance of the controller
was comparable to that of the experienced manager,
using the criteria of deviation from the final target bird
weight, and feed conversion ratio. It is well established
that the performance of human managers in all areas of
livestock production is very variable with some produ-
cing consistently better results than others. Novel
controllers of this type have the potential to reduce this
variation, raising the overall standards of performance
and allowing managers to focus on animal husbandry.

The main prerequisite for these approaches is the
availability of input and output data, updated at a
frequency matched to the speed of the process. In the
case of broiler growth control, this means that
up-to-date bird weight and feed intake data must be
available every day. These studies have demonstrated
that practical systems can achieve this reliably, leading
towards practical adoption.

A criticism sometimes directed at this process
control approach is that it excludes the farmer, thus
losing the benefit of his experience. This should not be
the case. The process control system informs the
farmers so that they are able to take a supervisory
role, for example, to approve the animal diet calculated
by a nutrition control system and are able to override it.
Freed from routine tasks by automation, the farmer
would have more time to devote to the skilful aspects of
animal and crop husbandry.

(c) Control of multiple outputs—target growth
but with limited emissions

Animal production has multiple outputs that include
the animal product itself, the financial outturn,
environmental emissions and animal welfare. All are
affected by process inputs which include the animals,
their nutrition and their environment. These multiple
inputs and outputs are interconnected, for example:
changing the animal’s diet to achieve a target growth
rate may have an undesirable effect on emissions by
providing excess protein leading to increased nitrogen
excretion; it may produce no economic benefit because
the increased value of the animal does not justify the
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increased feed cost; or compromise animal welfare
because the new diet does not meet basic requirements.
The ideal control system would regulate all of the
inputs so that all output targets are met simultaneously.
In practice, this might prove impossible. The most
useful system is likely to target profitability as the
priority, but with limits that protect welfare and the
environment.

Frost er al. (2003) linked their experimental studies
of growth control in broiler production to intensive
monitoring of ammonia emissions. Dietary control, or
strategic feeding, has been identified as a technique
offering good overall prospects for abatement of
ammonia from livestock production (Phillips et al.
1998). Frost et al.’s study showed that some aspects of
the production regime were associated with higher
emissions of ammonia, dust or odours. In related
studies reported by Robertson ez al. (2002), there were
observable correspondences between the ammonia
emission from each house and the actual total protein
intake in that house, being highest for the house
where the highest total protein diet was consumed,
and generally lowest for the house with the lowest
protein intake.

With appropriate models of emissions associated
with excretion, the above semi-mechanistic modelling
approach can be extended to seek to change the
animal’s diet to achieve a target growth rate while also
constraining emissions within specified limits.
Improved systems for managing large animal pro-
duction facilities to constrain environmental emissions
are part of Integrated Pollution Prevention and Control
regulations in the UK and EU and may become a
global requirement for environmental management.

(d) Advanced sensing techniques—a route

to more complex control opportunities

The scope of advances in sensing to contribute new
approaches to sustainable control of agricultural
systems is enormous. For the purpose of this chapter,
we will just reflect on two areas: machine vision and
biological sensors.

(1) Machine vision

Though weighers for heavier animals are available, they
are rarely used owing to their capital cost, the labour
involved in ensuring that the animals stand on them
(there are many examples of innovative technology not
being adopted owing to its impact on workloads) and
reliability (the floor under an animal is an especially
hostile environment).

A more practical solution is to apply the science of
machine (computer) vision—video cameras linked to
computers that analyse the image to produce definitive
information on the size of the animal. Overhead
cameras collect plan view images (figure 7) from
which specific body dimensions are extracted by
PC-based image analysis algorithms. These dimen-
sions have been found to correlate well with weight
(Wathes & Schofield 2004). Cheap hardware is
available, most farms already have a PC, and mass-
produced webcams provide adequate quality images.
The software extracts the data automatically so that,
with the cameras positioned such that images of the
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Figure 8. Biosensors offer a key opportunity to introduce engineering control to a wide range of biological processes.

animals are collected during a normal day (e.g. over a
feeder), the system is fully automatic (Schofield ez al.
1999). This general principle of using mass-produced
sensors together with advanced software to interpret
the signals that they produce is more likely to succeed
commercially than one based on developing special-
purpose, and therefore expensive, sensors. White ez al.
(2004) developed a prototype practical system for
incorporation into an integrated management system
for pig production (Parsons er al. 2005).

In contrast to applications in manufacturing indus-
try, agricultural machine vision must operate robustly
in unstructured environments and, owing to biological
variability, can make fewer assumptions about the
nature of the subject. A vision system has to cope with
the variation in the apparent shape of plants or animals
of given species due to inherent variability, changing
viewpoint or variable lighting. For example, the
presence of shadows in external scenes can pose serious
problems for rapid and robust image interpretation.
Because daylight is of variable spectrum, the colour of
any scene component sensed by a computer vision
system will vary, making discrimination based on
colour difficult. Marchant & Onyango (2002) have
overcome this problem using the fact that sunlit areas
receive more light at the red end of the spectrum than
shaded areas. They have developed a transformation
for colour images that is invariant to daylight spectral
changes. The result is a more robust sensing
mechanism that can control outdoor processes resi-
liently, in scenes with sun and shade. This has direct
relevance to real-time field machine control, discussed
at the end of this chapter.

(ii) Biological sensors

Engineering to apply biosensor science in special-
purpose sensors has considerable potential (figure 8).
A biosensor may be defined as incorporating a
biological or biomimetic sensing element connected
to a transducer that produces an electrical output.
Biosensor research and development has hitherto
been mainly directed at healthcare, for example, the
hand-held glucose meter used by diabetics. Progress
in agricultural applications has been made in
detecting pollutants in crops and soils (Palmer ez al.
1998; Starodub ez al. 1999), identifying diseases in
crops and animals (Schutz er al. 2000) and moni-
toring animal fertility (Velasco-Garcia & Mottram
2003). The latter is a particularly important example
for on-farm process control as the economic per-
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formance of a dairy farm is heavily dependent on
predicting cow ovulation, to allow insemination on
the optimal day for conception. Traditionally, the
farmer observes cow behaviour, looking for signs of
increased activity associated with oestrus. This
method is very unreliable. It is known that moni-
toring progesterone levels in milk is a very effective
means of predicting ovulation. ELISA test kits have
been available for some time, but are not widely used,
at least in part because they require the farmer to take
samples of milk and carry out a procedure culminat-
ing in observing a colour change. This is another
example of the failure of labour-intensive sensor
technology to make an impact, indicating that new
technology must be labour-saving and preferably
automatic. Biosensing can provide such a solution
for progesterone monitoring. A prototype electro-
chemical biosensor, based on screen-printed carbon
electrodes modified by immobilization of appropriate
monoclonal antibodies, able to detect progesterone at
the required concentrations, has been assessed for
automatic on-farm monitoring systems (Velasco-
Garcia & Mottram 2001). The approach could
reduce culling, with obvious profitability, waste and
welfare benefits. The scope to incorporate other non-
invasive sensing heralds the future for precision
animal management.

A radical approach to sensing for process control
uses the crop or animal itself as the sensor. Thus, the
main purpose of a temperature control system in an
animal house should be to make the animals comfor-
table rather than to control temperature itself. At a
given temperature, thermal comfort depends on other
environmental variables such as humidity and airspeed,
and on animal-related variables such as stocking
density and coat length. Animal behaviour may be a
better indicator of their comfort. For example, Xin
(1999) used automatic analysis of images of groups of
pigs to monitor their thermal comfort, based on the
observation that a group of pigs will lie huddled closely
when they are feeling cold, spread out when they are
warm and just touching when they are comfortable.
A similar approach is being used to determine an
animal’s well being from the noises that it makes. It has
been shown, for example, that the pig huddling
behaviour mentioned earlier is accompanied by an
increase in high-frequency vocalizations (Hillmann
et al. 2004), suggesting an automatic acoustic moni-
toring system for temperature regulation. Direct
monitoring of plant temperature, using thermal
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imaging, has also been used in greenhouse production
to enhance the precision of control, potentially saving
energy and enhancing the quality of the crop (Langton
et al. 2004).

(e) Real-time machine control

At the extreme short end of the time scale for making
decisions, the challenge for control is to operate at time
scales and frequencies that are not attainable by even
the most proficient person, and this is exemplified by
control of field machinery. Traditionally, arable
operations such as cultivation, crop spraying and
harvesting have been carried out as if the field were
homogeneous. Precision agriculture aims to control
operations in response to the spatial variability of soil,
crop or pest infestations. The first principle is to
measure the variable properties and then to tailor
inputs or actions to local needs or conditions. For some
systems, this is possible in real time, adjusting the
machine to local conditions as immediately measured.
The definition of needs may again be based on a model
of crop or pest performance that interprets local data to
determine the appropriate action. For other systems,
past knowledge of the field—the soil type variation or
past years’ crop performance—may determine the
actions. In these circumstances, field maps and Global
Positioning System (GPS) referencing of the equip-
ment are an integral part of the control system.

Pesticide application provides examples of precision
approaches using maps, where applied dose is calcu-
lated according to local variations in pest infestation,
rather than using a standard rate for the whole field
(Miller 2003). For many species, weed distributions in
fields are patchy and it has been shown that patch
spraying can deliver savings of up to 40% in herbicide
use. Weed patch detection is the main problem. In
widely spaced row crops such as vegetables, there is
considerable scope for developing fully automated
detection systems based on image analysis, and for
the development of accurate guidance systems that
apply pesticides only to the weeds. This may not be
feasible for crops with higher plant density, in which
case providing the spraying machine with weed maps,
produced in advance by human observation, is a more
practical approach. It is impossible to use real-time
observation when using pre-emergence herbicides or
when the crop or weeds are very small, preventing
accurate identification. In these circumstances, maps of
past infestations have been shown to provide suf-
ficiently accurate information for a patch spraying
system (Paice ez al. 1996).

Matching applications to crop canopy structure may
also reduce pesticide use. In crops such as cereals,
studies have demonstrated potential savings in fungi-
cide, particularly at earlier stages of growth, by
adjusting spray delivery to measured canopy charac-
teristics. This approach is particularly important in
bush and tree crops where savings of up to 75% in
pesticide use have been estimated (Miller 2003). It
presupposes that relevant crop canopy measurements
are possible. A light detection and ranging system has
been used to provide such measurements in an apple
orchard (Walklate er al. 2002). The canopy measure-
ments have been used as input to a spray deposition
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model which estimates required pesticide application
rates. Reductions in pesticide applications through
improved precision have direct benefits both to
improved profitability and to reduced environmental
contamination.

Pressures on pesticide availability due to more
stringent regulation and approval processes are challen-
ging the sustainability of production systems for some
crops. Precision in non-chemical interventions has the
potential to provide effective solutions. For example, in
many intensive farming systems, though mechanical
weed control is feasible, it is slow and expensive. In
organic systems, the limitations to the performance of
mechanical weed control constrain important aspects
of the crop rotation. Significant environmental and
economic benefits would be available from precision
mechanical control of weeds. The difficulty is in
guiding the hoe or cultivator so that its blades do not
damage the rows of crop but do uproot or bury weeds
across most of the inter-row. The required lateral
positioning accuracy of typically +25 mm is not
reliably achievable by manual guidance or by mapping
techniques or by GPS-based technology at the kind of
forward speeds necessary for a competitive weed
control technique.

This guidance problem has been addressed by
applying the science of vision analysis in real time
(Tillett ez al. 2002). The novel position control system
adjusts the lateral position of the hoe relative to the
tractor, using hydraulic cylinders. Inter-row cultivator
units were mounted on the hoe frame at separations
corresponding to the crop row spacing. The vision
system consisted of a standard monochrome CCD
camera mounted on the centre of the hoe frame so that
four rows of crop were in view (hoe widths and seed drill
bouts need to be equal). Contrast between the plants
and soil was enhanced using a near infrared filter. The
image analysis system must locate the crop rows as the
crop grows from small discrete plants to continuous rows
of vegetation, accommodate the presence or absence of
weeds between the crop rows and tolerate varying
lighting conditions. This was achieved by dividing each
image into eight horizontal bands and using a math-
ematical filter to detect the periodic component of the
amplitude in each band due to the crop rows (Hague &
Tillett 2001). To allow for unreliability in observation of
row position obtained from a particular image band due
to the presence of weeds or absence of crop plants,
information from each band was compared with an
idealized template and assigned a confidence term
between one, indicating a good fit, and zero. To track
hoe position with respect to crop rows, a mathematical
filter was provided with observed row position from each
image band and row positions predicted from knowledge
of previous positions and the machine’s kinematics. The
observed and predicted positions were compared, and if
the difference exceeded a given value the new position
observation was ignored. Otherwise, it was used in the
calculation of the next prediction. The latest estimate of
position was used to control the lateral position of the
hoe. Field trials with the guidance system in sugar beet
showed encouraging accuracy with standard deviation in
hoe lateral position relative to crop rows within 16 mm
and a mean bias of not more than 10 mm. The system
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demonstrated robustness with respect to plant growth
stage, missing crop and varying lighting conditions.
Good weed control was achieved and it was possible to
operate at twice the target forward speed of 6 kmh ™!
without crop damage (Hague & Tillett 2001).

Developments in this area are likely to increase work
rates by the guidance of multi-component (wider)
machines. For example, the system described by Tillett
et al. (2002) relies on all rows covered by the hoe being
parallel, which is only true for the rows planted by a
single drill pass. This restricts the width of an
automatic hoe to that of the drill, typically 4 m. A hoe
with several independently guided 4 m wide sections
would solve this problem and make the technology
more economically attractive. This first embodiment of
automatic hoe control only targets weeds in the inter-
row—hoeing weeds within the row of spaced row crops
will follow.

4. CONCLUSIONS

These concepts and examples of developments in
engineering science directed at agricultural systems
demonstrate the scope for quantitative mathematical
approaches within an engineering framework to target
key concerns of sustainable agriculture. The overall
impact of a farming system can be understood better,
the options for management decisions that address
both profit and environmental impacts can be pre-
sented, and the implications of regulation assessed. In
addition, specific techniques for automatic process
control provide benefits from precision in use of inputs
or management of unwanted outputs.

The critical engineering challenge with systems
models is to provide approaches that address real and
practical problems and provide information that will
improve performance. The performance could be in
the context of policy decisions, assessing the impact of
regulation on how land use and environmental impacts
may change, or at the other extreme in immediate and
day-to-day decisions on uses of inputs that influence
profitability and the environmental footprint of agri-
culture. High-level models and simplified descriptions
of processes are essential if the models are to be
tractable and the outputs available to practical effect.

It is important to have techniques for mathematical
optimization of the models so that the best solutions or
a range of near-optimal solutions and associated
probabilities are provided to support decision makers.
However, optimization also provides a very valuable
test of the reliability of any system model. Optimization
will identify and exploit errors and omissions in the
model or parametrization and lead to unrealistic
optima. Thus, in the fungicide model, it is unnecessary
to force a spray at growth stage 39, since if it has been
correctly constructed and parametrized, the optimized
model will nearly always choose to spray at or near that
time. Not to do so indicates an error. In the weed
model, sensible levels of control must be suggested by
the optimization for any combination of weeds. In the
land-use model, the optimization should give a
reasonable prediction of current cropping given soils,
climates, yields and prices, all without being con-
strained to do so.
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The engineering developments for real-time control
are not only relevant to intensive agriculture. For
example, the automatic process control techniques that
are currently being applied to intensive livestock
farming are equally applicable to extensive systems. It
may be more difficult to develop sensors for monitoring
free-ranging animals than those confined in a building
and to control the nutrient intake of a grazing animal,
but these problems are amenable to engineering
research. The need for advanced process control in
agriculture will increase as production priorities move
from simple requirements to maximize outputs and
profit to more complex multiple targets involving
compromises between, for example, economic per-
formance and environmental impact. The example of
the automatically guided hoe shows that advanced
engineering science is able to provide systems that have
less direct environmental impact than their predeces-
sors. Engineering development in agriculture is proving
itself flexible to changing priorities.

Other disciplines continue to provide new challenges
for engineering to translate innovation into practice.
The potential for biosensors that detect key indicators
of disease or physiological status will increase as the
benefits of post-genomics are realized. The potential
from continuing increases in computing performance
will enable new mathematical modelling methods and
permit more effective approaches that accommodate
the temporal and spatial variability of biological and
agricultural processes, and thus a more robust and
confident realization of precision agriculture. Inte-
grated approaches to communication of extensive and
complex data and decisions will be an important part of
the development of model-based decision support,
providing the farmer with technical precision at his
fingertips, ready at the moment a decision is required.
The natural world’s uncertainty and variability have
always created key challenges for the timeliness,
accuracy and precision of decision making and control
in agriculture and new mathematical and engineering
approaches are providing the means to meet them.

Silsoe Research Institute was supported by grant-in-aid from
the Biotechnology and Biological Sciences Research Council.
A significant proportion of the science reviewed here has been
undertaken at the Institute, much with funding from the
Department of Environment, Food and Rural Affairs, or from
industry and government sources in combination. The
breadth that can be covered under the title of this paper
reflects the pervasiveness of engineering’s potential contri-
bution to the sustainability of agriculture. Written at the time
when the Silsoe Research Institute was closing, we hope that
readers will recognize, value and build on the contribution
that the institute has been able to make to the key theme of
engineering future sustainability for agriculture.

REFERENCES

Aerts, J. M., Lippens, M., De Groote, G., Buyse, ].,
Decuypere, E., Vranken, E. & Berckmans, D. 2003a
Recursive prediction of broiler growth response to feed
intake by using a time-variant parameter estimation
method. Poult. Sci. 82, 40-49.

Aerts, J. M., Van Buggenhout, S., Vranken, E., Lippens, M.,
Buyse, J., Decuypere, E. & Berckmans, D. 20035 Active
control of the growth trajectory of broiler chickens based
on online animal responses. Poulr. Sci. 82, 1853-1862.



540 W.Day er al.

An engineering approach for sustainable systems

Annetts, J. E. & Audsley, E. 2002 Multiple objective linear
programming for environmental farm planning. ¥ Oper.
Res. Soc. 53, 933-943. (doi:10.1057/palgrave.jors.2601
404)

Audsley, A. et al. 1997 Harmonisation of environmental life
cycle assessment for agriculture. Final report for con-
certed action AIR3-CT94-2028, European Commission,
DG VI Agriculture.

Audsley, E., Milne, A. E. & Paveley, N. 2006a A foliar disease
model for use in wheat disease management decision
support systems. Ann. Appl. Biol. 147, 161-172. (doi:10.
1111/5.1744-7348.2005.00023.x)

Audsley, E., Pearn, K. R., Simota, C., Cojocaru, G.,
Koutsidou, E., Rounsevell, M. D. A., Trnka, M. &
Alexandrov, V. 20060 What can scenario modelling tell
us about future European scale land use, and what not?
Environ. Sci. Policy 9, 148-162. (doi:10.1016/j.envsci.
2005.11.008)

Bastiaans, L., Kropff, M. J., Goudriaan, J. & van Laar, H. H.
2000 Design of weed management systems with a reduced
reliance on herbicides poses new challenges and prerequi-
sites for modeling crop-weed interactions. Field Crops Res.
67,161-179. (d0i:10.1016/S0378-4290(00)00091-5)

Bryson, R. J., Paveley, N. D., Clark, W. S., Sylvester-Bradley,
R. & Scott, R. K. 1997 Use of in-field measurements of
green leaf area and incident radiation to estimate the
effects of yellow rust epidemics on the yield of winter
wheat. Eur. § Agron. 7, 53-62. (doi:10.1016/S1161-
0301(97)00025-7)

Cederberg, C. & Stadig, M. 2003 System expansion and
allocation in life cycle assessment of milk and beef
production. Int. J. Life Cycle Assess. 8, 350-356.

Davies, D. H. K., Maskell, P., Collings, L. V., Ginsburg, D.,
Clarke, J. H., Milne, A., Benjamin, L. R., Mayes, A. &
Lutman, P. J. W. 2004 Providing a framework for
improved management of weeds in arable systems—
WMSS. In Proc. Conf. on Crop Protection in Northern
Britain, Dundee, 24-25 February 2004, pp. 195-200.

De Boer, 1. J. M. 2003 Environmental impact assessment of
conventional and organic milk production. Livest. Prod.
Sci. 80, 69-77. (d0i:10.1016/S0301-6226(02)00322-6)

Frahm, J., Volk, T. & Streit, U. 1991 Pro_Plant—a knowledge
based advisory system for cereal disease control. In
Computer-based plant protection advisory systems (ed.
B. Secher). Dan. ¥ Plant Soil Sci. S2161, 101-109.

Frost, A. R., Parsons, D. J., Stacey, K. F., Robertson,
A. P, Welch, S. K., Filmer, D. & Fothergill, A. 2003
Progress towards the development of an integrated
management system for broiler chicken production.
Comput. Electron. Agric. 39, 227-240. (doi:10.1016/
S0168-1699(03)00082-6)

Hague, T. & Tillett, N. D. 2001 A bandpass filter-based
approach to crop row location and tracking. Mechatronics
11, 1-12. (d0i:10.1016/S0957-4158(00)00003-9)

Halberg, N., van der Werf, H. M. G., Basset-Mens, C.,
Dalgaard, R. & De Boer, I. J. M. 2005 Environmental
assessment tools for the evaluation and improvement of
European livestock production systems. Livest. Prod. Sci.
96, 33—50. (d0i:10.1016/j.livprodsci.2005.05.013)

Hillmann, E., Mayer, C., Schon, P. C., Puppe, B. &
Schrader, L. 2004 Vocalisation of domestic pigs (Sus
scrofa domestica) as an indicator for their adaptation
towards ambient temperatures. Appl. Anim. Behav. Sci.
89, 195-206. (d0i:10.1016/j.applanim.2004.06.008)

Holman, I. P., Rounsevell, M. D. A., Shackley, S., Harrison,
P. A., Nicholls, R. J., Berry, P. M. & Audsley, E. 2005 A
regional, multi-sectoral and integrated assessment of the
impacts of climate and socio-economic change in the UK.
Part I. Methodology. Clim. Change 71, 9—41. (doi:10.
1007/s10584-005-5927-y)

Phil. Trans. R. Soc. B (2008)

Hossell, J. E., Jones, P. J., Marsh, J. S., Parry, M. L., Rehman,
T. & Tranter, R. B. 1996 The likely effects of climate
change on agricultural land use in England and Wales.
Geoforum 27, 149-157. (doi:10.1016/0016-7185(96)
00005-X)

Langton, F. A., Horridge, J. S., Holdsworth, M. D. & Hamer,
P. J. C. 2004 Control and optimization of the greenhouse
environment using infra-red sensors. Acta Hort. 633,
145-152.

Marchant, J. A. & Onyango, C. M. 2002 Spectral invariance
under daylight illumination changes. ¥ Opt. Soc. Am. A:
Opt. Image Sci. Vis. 19, 840-848.

Miller, P. C. H. 2003 Patch spraying: future role of
electronics in limiting pesticide use. Pest Manag. Sci. 59,
566-574. (doi:10.1002/ps.653)

Milne, A. E., Paveley, N., Audsley, E. & Livermore, P. 2003 A
wheat canopy model for use in disease management
decision support systems. Ann. Appl. Biol. 143, 265-274.
(doi:10.1111/.1744-7348.2003.tb00294.x)

Murali, N. S., Secher, B. J. M., Rydahl, P. & Andreasen,
F. M. 1999 Application of information technology in plant
protection in Denmark: from vision to reality. Comput.
Electron. Agric. 22, 109-115. (doi:10.1016/S0168-1699
(99)00011-3)

Oglethorpe, D. R. & O’Callaghan, J. R. 1995 Farm-level
economic modelling within a river catchment decision
support system. J Environ. Plan. Manage. 38, 93-106.
(d0i:10.1080/09640569513138)

Paice, M. E. R., Miller, P. C. H. & Day, W. 1996 Control
requirements for spatially selective herbicide sprayers.
Comput. Electron. Agric. 14, 163-177. (d0i:10.1016/0168-
1699(95)00046-1)

Palmer, G., McFadzean, R., Killham, K., Sinclair, A. &
Paton, G. I. 1998 Use of /ux-based biosensors for rapid
diagnosis of pollutants in arable soils. Chemosphere 36,
2683-2697. (doi:10.1016/S0045-6535(97)10225-9)

Parsons, D. J. & Te Beest, D. 2004 Optimising fungicide
applications on winter wheat using genetic algorithms.
Biosyst. Eng. 88, 401-410. (doi:10.1016/j.biosystemseng.
2004.04.012)

Parsons, D. J., Mayes, A., Meakin, P., Offer, A. & Paveley, N.
2004 Taking DESSAC forward with the arable decision
support community. In Aspects of Applied Biology 72,
Advances in applied biology: providing new opportunities for
consumers and producers in the 21st century, pp. 55-66.
Warwick, UK: Association of Applied Biologists.

Parsons, D. J., Schofield, C. P., Green, D. M. & Whittemore,
C. T. 2005 Real-time, model-based control of pig growth.
F. Agric. Sci. 143, 320.

Phillips, V. R., Cowell, D. A., Sneath, R. W., Cumby, T. R.,
Williams, A. G., Demmers, T. G. M. & Sandars, D. 1998
A review of ways to abate ammonia emissions from UK
livestock buildings and waste stores. Project WA0640 final
report, MAFF, London.

Rijsdijk, F. H. 1983 The EPIPRE system. In Decision making
in the practice of crop protection (ed. R. B. Austin).
Monograph, no. 25, pp. 65-76. Bracknell, UK: BCPC.

Robertson, A. P., Hoxey, R. P.,, Demmers, T. G. M., Welch,
S. K., Sneath, R. W., Stacey, K. F., Fothergill, A., Filmer,
D. & Fisher, C. 2002 Commercial-scale studies of the
effect of broiler-protein intake on aerial pollutant emis-
sions. Biosyst. Eng. 82, 217-225. (d0i:10.1006/bioe.2002.
0073)

Rounsevell, M. D. A., Annetts, J. E., Audsley, E., Mayr, T. &
Reginster, I. 2003 Modelling the spatial distribution of
agricultural land use at the regional scale. Agric. Ecosyst.
Environ. 95, 465-479. (doi:10.1016/S0167-8809(02)
00217-7)

Sandars, D. L., Audsley, E., Canete, C., Cumby, T. R.,
Scotford, I. M. & Williams, A. G. 2003 Environmental


http://dx.doi.org/doi:10.1057/palgrave.jors.2601404
http://dx.doi.org/doi:10.1057/palgrave.jors.2601404
http://dx.doi.org/doi:10.1111/j.1744-7348.2005.00023.x
http://dx.doi.org/doi:10.1111/j.1744-7348.2005.00023.x
http://dx.doi.org/doi:10.1016/j.envsci.2005.11.008
http://dx.doi.org/doi:10.1016/j.envsci.2005.11.008
http://dx.doi.org/doi:10.1016/S0378-4290(00)00091-5
http://dx.doi.org/doi:10.1016/S1161-0301(97)00025-7
http://dx.doi.org/doi:10.1016/S1161-0301(97)00025-7
http://dx.doi.org/doi:10.1016/S0301-6226(02)00322-6
http://dx.doi.org/doi:10.1016/S0168-1699(03)00082-6
http://dx.doi.org/doi:10.1016/S0168-1699(03)00082-6
http://dx.doi.org/doi:10.1016/S0957-4158(00)00003-9
http://dx.doi.org/doi:10.1016/j.livprodsci.2005.05.013
http://dx.doi.org/doi:10.1016/j.applanim.2004.06.008
http://dx.doi.org/doi:10.1007/s10584-005-5927-y
http://dx.doi.org/doi:10.1007/s10584-005-5927-y
http://dx.doi.org/doi:10.1016/0016-7185(96)00005-X
http://dx.doi.org/doi:10.1016/0016-7185(96)00005-X
http://dx.doi.org/doi:10.1002/ps.653
http://dx.doi.org/doi:10.1111/j.1744-7348.2003.tb00294.x
http://dx.doi.org/doi:10.1016/S0168-1699(99)00011-3
http://dx.doi.org/doi:10.1016/S0168-1699(99)00011-3
http://dx.doi.org/doi:10.1080/09640569513138
http://dx.doi.org/doi:10.1016/0168-1699(95)00046-1
http://dx.doi.org/doi:10.1016/0168-1699(95)00046-1
http://dx.doi.org/doi:10.1016/S0045-6535(97)10225-9
http://dx.doi.org/doi:10.1016/j.biosystemseng.2004.04.012
http://dx.doi.org/doi:10.1016/j.biosystemseng.2004.04.012
http://dx.doi.org/doi:10.1006/bioe.2002.0073
http://dx.doi.org/doi:10.1006/bioe.2002.0073
http://dx.doi.org/doi:10.1016/S0167-8809(02)00217-7
http://dx.doi.org/doi:10.1016/S0167-8809(02)00217-7

An engineering approach for sustainable systems

W.Day et al. 541

benefits of livestock manure management practices and
technology by life cycle assessment. Biosyst. Eng. 84,
267-281. (doi:10.1016/S1537-5110(02)00278-7)

Schofield, C. P., Marchant, J. A., White, R. P., Brandl, N. &
Wilson, M. 1999 Monitoring pig growth using a prototype
imaging system. J. Agric. Eng. Res. 72, 205-210. (doi:10.
1006/jaer.1998.0365)

Schutz, S., Weissbecker, B., Koch, U. T. & Hummel, H. E.
2000 Detection of volatiles released by diseased potato
tubers using a biosensor on the basis of intact insect
antennae. Biosens. Bioelectron. 14, 221-228. (d0i:10.1016/
S0956-5663(98)00092-X)

Sells, J. E. 1996 Optimising weed management using
stochastic dynamic programming to take account of
uncertain herbicide performance. Agric. Syst. 48,
271-296. (d0i:10.1016/0308-521X(94)00016-K)

Sells, J. E. 1999 Modelling the environmental effects of farm
management within whole farm planning: e.g. herbicide
use. In The Brighton Conference—Weeds. Proc. Int. Conf.,
Brighton, UK, 15-18 November 1999, vol. 3, pp. 859-864.
Farnham, UK: British Crop Protection Council.

Smith, J. U., Bradbury, N. J. & Addiscott, T. M. 1996
SunpIAL: a PC-based system for simulating nitrogen
dynamics in arable land. Agron. ¥ 88, 38—43.

Stacey, K. F., Parsons, D. J., Frost, A. R., Fisher, C., Filmer,
D. & Fothergill, A. 2004 An automatic growth and
nutrition control system for broiler production. Biosyst.
Eng. 89, 363-371. (doi:10.1016/j.biosystemseng.2004.07.
006)

Starodub, N. F., Kanjuk, N. I., Kukla, A. L. & Shirshov,
Y. M. 1999 Multi-enzymatic electrochemical sensor: field
measurements and their optimisation. Anal. Chim. Acta
385, 461-466. (doi:10.1016/S0003-2670(98)00734-X)

Tillett, N. D., Hague, T. & Miles, S. J. 2002 Inter-row vision
guidance for mechanical weed control in sugar beet.
Comput. Electron. Agric. 33, 163-177. (doi:10.1016/
S0168-1699(02)00005-4)

Turner, M. ]J. B., Gurney, P., Crowther, J. S. W. & Sharp,
J. R. 1984 An automatic weighing system for poultry.

Phil. Trans. R. Soc. B (2008)

F Agric. Eng. Res. 29, 17-24.
8634(84)90056-8)

Velasco-Garcia, M. N. & Mottram, T. 2001 Biosensors in the
livestock industry: an automated ovulation prediction
system for dairy cows. Trends Biotechnol. 19, 433-434.
(doi:10.1016/S0167-7799(01)01841-8)

Velasco-Garcia, M. N. & Mottram, T. 2003 Biosensor
technology addressing agricultural problems. Biosyst.
Eng. 84, 1-12. (d0i:10.1016/S1537-5110(02)00236-2)

Veldkamp, A. & Verburg, P. H. 2004 Modelling land use
change and environmental impact. J. Environ. Manage. 72,
1-3. (doi:10.1016/j.jenvman.2004.04.004)

Walklate, P. D., Cross, J. V., Richardson, G. M., Murray,
R. A. & Baker, D. E. 2002 Comparison of different spray
volume deposition models using LIDAR measurements of
apple orchards. Biosyst. Eng. 82, 253-267. (d0i:10.1006/
bioe.2002.0082)

Wathes, C. M. & Schofield, C. P. 2004 Precision pig
management—resolving conflicts by integrated solu-
tions. In The appliance of pig science. BSAS Occasional
Publication, no. 31. Nottingham, UK: Nottingham
University Press.

White, R. P., Schofield, C. P., Green, D. M., Parsons, D. J. &
Whittemore, C. T. 2004 The effectiveness of a visual
image analysis (VIA) system for monitoring the per-
formance of rowing/finishing pigs. Anim. Sci. 78, 409—418.

Williams, A. G., Sandars, D. L., Annetts, J. E., Audsley, E.,
Goulding, K. W. T., Leech, P. & Day, W. 2003 A
framework to analyse the interaction of whole farm profits
and environmental burdens. In Proc. EFITA 2003 4th Cony.
European Federation for Information Technology in Agricul-
ture, Food and Environment, 5-9 Fuly Debrecen, Hungary,
vol. II, pp. 492—-498.

Xin, H. 1999 Assessing swine thermal comfort by image
analysis of postural behaviors. . Amim. Sci. 7(Suppl. 2),
1-9.

Zadoks, J. C. 1981 EPIPRE: a disease and pest management
system for winter wheat developed in The Netherlands.
EPPO Bull. 11, 365-369.

(d0i:10.1016/0021-


http://dx.doi.org/doi:10.1016/S1537-5110(02)00278-7
http://dx.doi.org/doi:10.1006/jaer.1998.0365
http://dx.doi.org/doi:10.1006/jaer.1998.0365
http://dx.doi.org/doi:10.1016/S0956-5663(98)00092-X
http://dx.doi.org/doi:10.1016/S0956-5663(98)00092-X
http://dx.doi.org/doi:10.1016/0308-521X(94)00016-K
http://dx.doi.org/doi:10.1016/j.biosystemseng.2004.07.006
http://dx.doi.org/doi:10.1016/j.biosystemseng.2004.07.006
http://dx.doi.org/doi:10.1016/S0003-2670(98)00734-X
http://dx.doi.org/doi:10.1016/S0168-1699(02)00005-4
http://dx.doi.org/doi:10.1016/S0168-1699(02)00005-4
http://dx.doi.org/doi:10.1016/0021-8634(84)90056-8
http://dx.doi.org/doi:10.1016/0021-8634(84)90056-8
http://dx.doi.org/doi:10.1016/S0167-7799(01)01841-8
http://dx.doi.org/doi:10.1016/S1537-5110(02)00236-2
http://dx.doi.org/doi:10.1016/j.jenvman.2004.04.004
http://dx.doi.org/doi:10.1006/bioe.2002.0082
http://dx.doi.org/doi:10.1006/bioe.2002.0082

	An engineering approach to modelling, decision support and control for sustainable systems
	Introduction
	Systems modelling for decisions
	Background
	Systems modelling for environmental life cycle assessments
	Whole farm decisions and land use planning-the implications of farmers management decisions for environmental impacts
	Decision support for complex uncertain systems-stochastic dynamic programming and weed control strategies
	Linking process and system models to support on-farm decision making-an example for fungicide dose optimization

	Control engineering approaches to biological systems
	Background
	Incorporating models in the control loop
	Control of multiple outputs-target growth but with limited emissions
	Advanced sensing techniques-a route to more complex control opportunities
	Machine vision
	Biological sensors
	Real-time machine control

	Conclusions
	Silsoe Research Institute was supported by grant-in-aid from the Biotechnology and Biological Sciences Research Council. A significant proportion of the science reviewed here has been undertaken at the Institute, much with funding from the Department o...
	References


