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Random testing (RT) is widely applied in the area of software testing due to its advantages such as simplicity, unbiasedness, and
easy implementation. Adaptive random testing (ART) enhances RT. It improves the effectiveness of RT by distributing test cases
as evenly as possible. Fixed Size Candidate Set (FSCS) is one of the most well-known ART algorithms. Its high failure-detection
effectiveness only shows at low failure rates in low-dimensional spaces. In order to solve this problem, the boundary effect of the
test case distribution is analyzed, and the FSCS algorithm of a limited candidate set (LCS-FSCS) is proposed. By utilizing the
information gathered from success test cases (no failure-causing test inputs), a tabu generation domain of candidate test case is
produced.*is tabu generation domain is eliminated from the current candidate test case generation domain. Finally, the number
of test cases at the boundary is reduced by constraining the candidate test case generation domain. *e boundary effect is
effectively relieved, and the distribution of test cases is more even. *e results of the simulation experiment show that the failure-
detection effectiveness of LCS-FSCS is significantly improved in high-dimensional spaces. Meanwhile, the failure-detection
effectiveness is also improved for high failure rates and the gap of failure-detection effectiveness between different failure rates is
narrowed.*e results of an experiment conducted on some real-life programs show that LCS-FSCS is less effective than FSCS only
when the failure distribution is concentrated on the boundary. In general, the effectiveness of LCS-FSCS is higher than that
of FSCS.

1. Introduction

While software is increasing in scale and complexity, also the
quality of software has attracted more and more attention.
As an important task of software quality assurance, software
testing is becoming increasingly important in software de-
velopment [1].

*e Software Under Test (SUT) usually has a large input
domain space. *erefore, it is important to select test inputs
that can effectively identify software failure as test cases. Test
case generation technology, such as combinatorial testing
[2], symbolic execution [3], random testing (RT) [4, 5],
partition testing [6], test case generation technology based
on finite state machine [7], or test case generation tech-
nology based on search [8], guides the generation of effective
test cases. RT is a simple and easy-to-implement test method.
It does not need complex software requirements or

structural information of programs. It only requires
selecting test cases randomly in the input domain. Since RT
does not utilize any information of the SUT, it has the
disadvantages of high redundancy, low coverage, and
blindness in the test case generation. RT is even considered
the worst testing method by Myers [9]. However, RT has the
advantages of simplicity, easy implementation, low costs,
unbiasedness, and fast execution. It is usually used in
combination with other testing methods in software testing
and in reliability evaluation field [10, 11]. At the same time,
in theory all test cases that can be generated by any testing
method can be generated by RT as well. *us, RT has the
potential to detect all failures [12].

Experimental studies [13] have found that failure-
causing inputs tend to cluster in continuous areas. Based on
this conclusion, Chen et al. [14] proposed adaptive random
testing (ART). Compared with RT that does not use any
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information to generate test cases randomly, ART achieves
evenly distributed test cases by using the information of
success test cases.

Experiments [14] show that in failure detection, ART
performs better than RT, which means that the number of
test cases that are needed to trigger the first failure is lower in
ART. Various algorithms based on ART have been pro-
posed, for example, distance ART algorithm (D-ART) [14],
restricted ART algorithm (RRT) [15], partitioning adaptive
random testing [16], and quasi-random testing [17].

FSCS [14] is one of the most well-known ARTalgorithms,
but it does not performwell in high-dimensional spaces and at
low failure rates [1, 12]. It is pointed out in the literature [18]
that the best effectiveness is reached for 50% of RT. In order to
improve the effectiveness of FSCS, the boundary effect of the
test case distribution is analyzed, and a novel algorithm, the
FSCS algorithm of a limited candidate set (LCS-FSCS), is
proposed in this paper. LCS-FSCS effectively relieves this
boundary effect and distributes test cases more evenly.

*e rest of this paper is organized as follows: *e dis-
tribution of test cases and the effectiveness of FSCS are
analyzed in Section 2. Section 3 presents the LCS-FSCS
approach. In Section 4, LCS-FSCS is compared with FSCS
through simulation experiments. Settings and results of
empirical studies are reported in Section 5. *reats to val-
idity are discussed in Section 6. Finally, the conclusion and
future work are presented in Section 7.

2. Analysis of FSCS

FSCS uses a distance-based selection criterion to evaluate
a fixed set of randomly generated test case candidates. An
initial test case is selected randomly. For each subsequent
test case, this test case is selected from a candidate test case
that has a maximum-minimum distance to any other
existing test case. Let TS � T1, T2, . . . , Tn  be the executed
set and CS � C1, C2, . . . , Ck  be the candidate set such that
TS∩CS � ∅. *e best test case best ∈ CS can be selected by
the following formula, minni�1dist(best, ti)≥minni�1dist
(cj, ti), where dist is defined as the Euclidean distance.

2.1. Analysis of Test Case Spatial Distribution of FSCS.
For a 2-dimensional input domain, we assume that each
dimension has a range of [1, 1000]. Suppose that FSCS
generates 100 test cases continuously without failure and
runs a total of 1000 times. Finally, the distribution of test
cases is analyzed in each dimension, as shown in Figures 1
and 2.

*e center of the input domain is uniformly distributed
in each dimension. However, the number of test cases on the
boundary is higher than the number of test cases within this
center area. *is is the so-called boundary effect; the FSCS is
prone to generating more test cases on the boundary.

2.2. Analysis of Effectiveness of FSCS

2.2.1. Difference of Failure-Detection Effectiveness in Different
Failure Rates. It is assumed that in the block failure pattern,

the failure rates are 0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1
respectively, in a 2-dimensional input domain.,running 2000
times for each failure rate; the average of F-count is cal-
culated as the F-measure. *e F-ratio is the ratio of F-FSCS
to F-RT as shown in Table 1 (F-ratio� F-FSCS/F-RT).

FromTable 1, it can be seen that the effectiveness of FSCS
improves with a decrease in the failure rate. *e reason for
this is that for a larger failure rate, a smaller average number
of test cases are needed to detect the first failure. According
to the spatial distribution of FSCS test cases, the initial test
cases generated by FSCS are easy to concentrate on the
boundary [18]. As the number of test cases increases, the
distribution of test cases becomes more even. For this
reason, the advantage of FSCS is more obvious for lower
failure rates.

2.2.2. Failure-Detection Effectiveness in Different Dimensions.
We analyze the effectiveness of FSCS in a 2D-5D input
domain under the assumption that the failure rate is 0.001 in
the block failure pattern [19] and FSCS runs 2000 times.

0 200 400 600 800 1000
50

100

150

200

250

Figure 1: *e distribution of test case in the X dimension.
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Figure 2: *e distribution of test case in the Y dimension.

Table 1:*e effectiveness of FSCS with different failure rates in 2D.

Failure rate 0.0005 0.001 0.005 0.01 0.05 0.1

F-ratio 0.6 0.61 0.63 0.65 0.69 0.73

2 Mathematical Problems in Engineering



As can be seen from Table 2, with an increase in the
input space dimension, the failure-detection effectiveness
of FSCS decreases rapidly. According to the analysis from
the literature [18], the higher the dimension of the input
domain is, the more likely the failure domain will con-
centrate on the middle of the input domain, whereas the
test cases generated by FSCS prefer to focus on the
boundary of the input domain; thus, the failure-detection
effectiveness of FSCS is poor in a high-dimensional input
domain.

3. Proposed Approach

3.1. Underlying Concept. With respect to the analysis results
regarding the effectiveness and the spatial distribution of the
test cases generated by FSCS, the FSCS of limited candidate
set (LCS-FSCS) algorithm is proposed. By limiting the
candidate test case generation domain, test cases are more
evenly distributed and the boundary effect is eliminated.

To constrain the candidate test case generation domain
Dc, first each dimension is divided into p equal subdomains.
When the “best” test case tci is generated and it does not
detect any failure, we transfer it to the execution test case set
TS. *e subdomains of each dimension of the tci are deleted
from the candidate test case generation domain, so that
candidate test cases are generated using the remaining p − 1
subdomains. When the candidate test case generation do-
main Dc is empty, Dc is reinitialized with an input domain
and divided into p subdomains. *en, the next test case is
generated based on this procedure.

Assume that each dimension of an input domain is
divided into five equal subdomains in 2D. *at is, the input
domain is divided into a 5 × 5 grid. *e first test case tc1 is
randomly generated. Suppose that tc1 does not detect any
failure, it is therefore put into the executed test case set TS.
(1) Using FSCS as shown in Figure 3, four candidate test
cases (c1, c2, c3, and c4) are randomly generated in the input
domain. On the basis of the Euclidean distance, the can-
didate test case c3 with the max-min distance is selected as
the next test case tc2. *e horizontal coordinate value of c3 is
very close to that of tc1. *is does not conform to the idea of
uniform distribution from the perspective of the abscissa. (2)
Using LCS-FSCS as shown in Figure 4, the success test case
generated subdomain is removed from the candidate test
case generation domain (that is, the shaded area in Figure 4
is excluded); as a next step, four candidate test cases (c1′, c2′,
c3′, and c4′) are randomly generated in the remaining sub-
domains; Finally, the max-min distance between the test
cases in TS and the candidate test cases is calculated, and the
optimal candidate test case c2′ is selected as the next test case
tc2. Test case c2′ and test case tc1 belong to different sub-
domains in each dimension. Diversity is a key characteristic
of successful testing strategies [20].

*e proportional sampling strategy (PSS) [19] indicates
that test cases should be randomly selected in proportion to
the size of different partitions. *e LCS-FSCS algorithm
equally divides each dimension of the input domain. From
the perspective of the independent dimension, this is con-
sistent with PSS.

Definition 1 (equal subdomain in the independent
dimension). For an n-dimensional input domain
D � D1, D2, . . . , Dn , if each dimension of a space is
divided into p equal parts, then each part can be denoted
as Di � di1, di2, . . . , dip , where dik(1≤ k≤p) is the po-
sition identifier of partitioning in the ith(1≤ i≤ n)
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Figure 4: LCS-FSCS test case generation.
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Figure 3: FSCS test case generation.

Table 2: Effectiveness of FSCS in different dimensions for a failure
rate of 0.001, in block pattern.

Dimension 2D 3D 4D 5D

F-ratio 0.61 0.707 0.777 0.958
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dimension, with 1≤ k≤p, dia ∩dib � 0, a≠ b, and
∪pj�1dij � Di.

Definition 2 (location). In an n-dimensional input domain,
assume a test case tc � (x1, x2, . . . , xn), where xi is the value
in the ith(1≤ i≤ n) dimension, xi ∈ dik; then, the region of xi
in the ith(1≤ i≤ n) dimension is denoted as dik � loc(xi),
where 1≤ k≤p.

Definition 3 (tabu subdomain). In an n-dimensional input
domain, assume a test case tc � (x1, x2, . . . , xn) that has not
detected any failure; then, the generated tabu subdomain
is denoted as DT(tc) � loc(x1), loc(x2), . . . , loc(xn)  �
d11k, d22k, . . . , dnnk .

Definition 4 (candidate test case generation domain). In
an n-dimensional input domain, assume a test case tc �
(x1, x2, . . . , xn) that has not detected any failure. *e can-
didate test case generation domain is denoted asDc � D, for
Dc � ∅; or Dc � Dc − DT(tc) for all other cases.

3.2. LCS-FSCS Algorithm. Based on the above definitions
and our analysis, an independent dimensional division
strategy for FSCS can be defined, which is referred to as LCS-
FSCS algorithm. *e LCS-FSCS algorithm is as follows
(Algorithm 1).

At the initial stage (lines 1–4), each dimension of the
input domain is divided into p equal parts, and then the ith
dimension of the input domain is denoted as
Di � di1, di2, . . . , dip . We initialize the candidate test case
generation domain Dc with a divided dimension space. We
generate a test case tc from the domain Dc (lines 5–9) and
push tc into TS until the termination condition is satisfied
(for example, a failure was detected). Line 6 calls the pro-
cedure GenTcByLCSFscs (Dc,TS) to select a “best” test case
tc from the Dc domain using FSCS.

In the procedure GenTcByLCSFscs (Dc,TS), if there is
no test case in TS (lines 1–3), the first test case is randomly
selected from the input domain (equal to Dc domain).
Otherwise (lines 4–9), first judge whetherDc is empty or not.
We initialize Dc in case Dc is empty (lines 4–6). Sub-
sequently, randomly generate k candidates c1, c2, . . . , ck
from the Dc domain and select an appropriate candidate as
the next test case (lines 7–8). On lines 10–11, the tabu
subdomain of tc is generated, denoted as DT(tc). We then
recalculate Dc by removing DT(tc) domain (Definition 4).
*e last line returns the test case tc (Algorithm 2).

In the LCS-FSCS algorithm, the restricted candidate test
case generation domain avoids to choose the next test case
within the same subdomain of the previous generated test
cases. *erefore, the distribution of test cases is more evenly
distributed among independent dimensions.

4. Simulation Experiment

*e effectiveness of LCS-FSCS is studied in experiments that
focus on the following three problems:

RQ1: are the test cases of LCS-FSCS more evenly
distributed than that of FSCS?

RQ2: what is the effect of the p value on the effec-
tiveness of LCS-FSCS?

RQ3: does LCS-FSCS improve the effectiveness of FSCS
in different dimensions?

4.1. Experimental Setup and Measures. LCS-FSCS is com-
pared with RT and FSCS to analyze its failure-detection
effectiveness. *e relevant parameter settings for these ex-
perimental studies are discussed in this section. *e pa-
rameters involved in the simulation experiments are mainly
dimension, failure rate, failure pattern, test method, and
number of experiments.

(1) Dimension: the dimension of the input domain
indicates the number of parameters of SUT. In the

Input:
(1) *e size of candidate set (CS) is denoted as k (k> 1)
(2) *e input domain D
(3) *e dimension number (n) of input domain
(4) *e partition number (p) of each dimension
Output:
*e set of test cases TS
(1) Input parameters k, n, D, and p;
(2) Set TS� {}, Dc � {};
(3) Dividing each dimension into p equal parts Di � di1, di2, . . . , dip  //(Definition 1) Init D domain;
(4) Set Dc � D1, D2, . . . , Dn ; //init Dc

(5) while (termination condition is not satisfied) do
(6) tc�Call procedure GenTcByLCSFscs (Dc, TS); //to get a “best” test case tc from Dc domain;
(7) Add tc into TS;
(8) if tc is in the failure domain, then break;
(9) end while
(10) return TS;

ALGORITHM 1: LCS-FSCS algorithm.
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simulation experiment, the 2D-5D input domain
is used as the representative for analysis and
comparison. Moreover, it is assumed that each
dimension is an equidistant continuous space.
*e coordinate range of each dimension is [1,
1000]. *is means the 2D input domain spans
a square, the 3D input domain spans a cube, and
so on.

(2) Failure rate: the failure rate is obtained as the ratio of
failure-causing input domains to all input domains.
*e failure rate is represented by θ ∈ [0, 1]. It is as-
sumed that the failure pattern is a block failure pattern
[19], and the failure-causing input field is an equi-
distant continuous space. *e location of the block
failure domain appears randomly within the input
domain. *e failure rate range is θ ∈ [0.001, 0.5] in
this experiment.

(3) Test case generation algorithm: the following four
test case generation algorithms are compared:

(a) RT: test cases were generated randomly with
replacement as a benchmark test.

(b) ART with random partitioning (RP) [16]: ART
with random partitioning generates a test case
randomly, divides the subdomain according to
its coordinates, generates the next test case
randomly from the largest subdomain, and di-
vides the subdomain according to its co-
ordinates. Repeat this procedure until the first
failure is found. *is is a classic partition-based
ART algorithm.

(c) FSCS: FSCS is the prototype of the improved
algorithm.*e parameterK represents the size of
the candidate set. It is shown [14] that for nu-
merical programs, the failure-detection effec-
tiveness of this algorithm does not improve
significantly for K larger than 10. *erefore, K is
set to 10 in the experiment.

(d) LCS-FSCS: a new enhanced FSCS strategy is
proposed in this paper. *e number of divisions
p in each dimension is (1, 5, 10, 25, 50, 100, 200,
500, and 1000). When p is 1, LCS-FSCS and
FSCS are equivalent.

(4) Number of experiments: the number of experiments
is set to 2000. *ese repetitions of the experiments
are needed to effectively avoid the influence of
randomness on the experimental results.

(5) Metric of failure-detection effectiveness: the F-
measure is used as a measure of effectiveness within
this paper. *e F-measure is defined as the average
number of test cases needed to detect the first failure.
*e F-count is defined as the number of test cases
needed to detect the first failure for each run,
Fmeasure � Fcount. *e smaller the value of the F-
measure is, the stronger the effectiveness of the al-
gorithm is.

In order to further evaluate the effectiveness im-
provement of the ART algorithm in comparison with RT,
the ratio of the F-measure of ART to the F-measure of RT
(theoretical value is 1/θ) is denoted as F-ratio and is used to
measure the improvement in comparison with RT. If the F-
ratio is less than 1, the ARTalgorithm outperforms RT.*is
means ART requires fewer test cases to detect the first
failure.

According to the configuration of the experimental
parameters, the simulation process is as follows: the input
domain is generated and the failure domain is calculated
according to the failure rate. In each experiment, the failure
domain is randomly generated in the input domain. *e test
case is generated using different test methods. When the test
case falls into the failure domain, that is, a failure is detected,
the number of test cases executed is captured as the F-count.
When the number of experiments reaches 2000, the average
of F-count is recorded as F-measure.

4.2. Analysis of the Distribution of Test Cases. Because LCS-
FSCS evenly divides the independent dimensions and
constrains the test case generation domains, in theory the
spatial distribution of test cases is more even. Simulation
experiments are conducted to investigate whether the test
cases generated by LCS-FSCS are indeed more evenly dis-
tributed than the test cases generated using FSCS.

Answer RQ1: distribution of test cases generated by LCS-
FSCS.

(1) If TS � ∅, then
(2) tc�Random (Dc); //randomly select a test case tc from the Dc domain as the first TC;
(3) else
(4) If Dc � ∅, then
(5) Init Dc domain; //Dc � D1, D2, . . . , Dn ;
(6) end if
(7) Randomly generate k candidates c1, c2, . . ., ck from the Dc domain; //CS � c1, c2, . . . , ck 
(8) select the best one as the next test case tc; //Max-Min Euclidean Distance (FSCS)
(9) end if
(10) generated tabu subdomain of tc, noted as DT(tc); (Definition 3)
(11) recalculate Dc domain by (formula 2);
(12) return tc

ALGORITHM 2: Procedure GenTcByLCSFscs (Dc, TS).
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In the 2D input domain, the range of each dimension is
(1, 1000). 100 test cases are generated using LCS-FSCS and
FSCS with no failure domain, and a total of 1000 runs are
performed. Because the distribution of test cases on each
dimension is similar, the distribution of test cases is com-
pared as shown in Figures 5 and 6.

*e distribution of test cases generated by FSCS is shown in
Figure 5. *ere are a large number of test cases near the
boundary of the input domain, which demonstrates the so-called
boundary effect. Figure 6 shows the distribution of test cases
generated by LCS-FSCS. From the perspective of the in-
dependent dimensions, the distribution of the test case generated
by LCS-FSCS is more even than that generated by FSCS.

4.3. Analysis on Failure-Detection Effectiveness. *e experi-
mental results in Section 4.2 show that LCS-FSCS distributes
test cases more evenly. However, does this affect the failure-
detection effectiveness? To answer this question, we research
the failure-detection effectiveness of LCS-FSCS at different
failure rates in RQ2. Furthermore, we aim to determine the
effectiveness of LCS-FSCS in a multidimensional input
domain in RQ3.

4.3.1. Failure-Detection Effectiveness at Different Failure
Rates. Experiments are conducted to analyze the effect of
the p value on the improvement of the failure-detection
effectiveness within the same dimensional input domain at
different failure rates.

Answer RQ2: the effect of different p values on the
failure-detection effectiveness of LCS-FSCS.

We assume the following failure rates: 0.5, 0.4, 0.3, 0.2,
0.1, 0.05, 0.01, 0.005, and 0.001, respectively, whereas the
abscissa is P in LCS-FSCS with values of 1, 5, 10, 25, 50, 100,
200, 500, and 1000, respectively, in the 3D input domain.*e
Y-axis is the F-ratio as shown in Figure 7. *e F-ratios of RP
and FSCS serve as a benchmark comparison value for the
improvement of the effectiveness of LCS-FSCS.

As can be seen in Figure 7, the failure-detection effi-
ciency of FSCS and LCS-FSCS varies greatly depending on
the failure rate, while that of the RP algorithm varies little
with changes in the failure rate within the 3D input domain.

With increasing failure rates, the failure-detection effi-
ciency of the RP algorithm provides an advantage. For
a failure rate of 0.5, the F-ratio of RP is less than 0.85, while
the F-ratio of FSCS is larger than 1, indicating that the
failure-detection effectiveness of FSCS is inferior to that of
RT. For different values of p in LCS-FSCS, the F-ratio of
LCS-FSCS fluctuates. *e minimum F-ratio of LCS-FSCS is
slightly better than that of FSCS. *e failure-detection ef-
ficiency of RP is poor when the failure rate is low. For
example, for a failure rate of 0.005, the F-ratio of RP is close
to 0.8, which indicates that the efficiency of failure detection
is worse than those of FSCS and LCS-FSCS.

For a failure rate of 0.1 and p value of 5, 10, or 25, the F-
ratio of LCS-FSCS is significantly lower than that of FSCS
(the lowest F-ratio is reached for p � 10).*is shows that the
LCS-FSCS significantly improves the failure-detection ef-
fectiveness of FSCS. With the increase of the p value, the F-
ratio of LCS-FSCS gradually resembles that of FSCS. As the

RP FSCS 1 5 10 25 50 100 200 500 1000
0.65

0.75

0.85

0.95

1

1.05

1.15

p

F
-r
a
ti
o

0.001

0.005

0.01

0.05

0.1

0.2

0.7

0.9

0.8

1.1

0.3

0.4

0.5

Figure 7: F-ratio comparison of different ARP algorithms in 3D.
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Figure 5: Test case distribution of FSCS.
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failure rate continues to decrease, the gap between the F-
ratio of LCS-FSCS and the F-ratio of FSCS shrinks. For
a failure rate of 0.001, the minimum F-ratio of LCS-FSCS
improves slightly to resemble that of FSCS.

According to the experimental results, the p value at the
minimum F-ratio of LCS-FSCS is related to the failure rate.
*ere are p values that minimize the F-ratio of LCS-FSCS for
different failure rates. *is proves that LCS-FSCS improves
the effectiveness of FSCS. However, if the failure rate is too
large or too small, the influence of different p values on the
F-ratio of LCS-FSCS is reduced in the 3D input domain.

4.3.2. Failure-Detection Effectiveness in Different Dimensions.
We further study the impact of LCS-FSCS on the effec-
tiveness of the failure detection in the multidimensional
input domain.

Answer RQ3: failure-detection effectiveness of LCS-
FSCS in the high-dimensional space.

We assume that the failure rate is θ � 0.001, 0.01{ } in the
2D-5D input domain. Figures 8 and 9 show the comparison
of the F-ratios. *e abscissa is the p value in LCS-FSCS. p is
set to 1, 5, 10, 25, 50, 100, 200, 500, and 1000, respectively.
*e F-ratio of RP and FSCS serves as a benchmark com-
parison value for the improvement regarding the effec-
tiveness of LCS-FSCS.

It can be seen in Figures 8 and 9 that for a failure rate of
0.01 and an increase in the dimension, the failure-detection
effectiveness of the RP algorithm is better than that of the
FSCS algorithm, but not as good as that of the optimal LSC-
FSCS algorithm. For a failure rate of 0.001, the effectiveness
of RP is worse than that of FSCS and LCS-FSCS.

Comparing Figures 8 and 9, the improvement of LCS-
FSCS is more significant for low failure rates. In different
dimensional spaces, the effect of the test case distribution on
the effectiveness of FSCS increases with the increase in the
dimensions. *is means the boundary effect of FSCS has
a greater influence on the effectiveness in these cases. Be-
cause the side length of the failure domain increases with the
increase of the dimension at the same failure rate, the failure
domain is more likely to concentrate on the center of the
input domain [12, 21]. *is results in a rapid rise of the F-
ratio with the increase of the dimension. LCS-FSCS effec-
tively reduces the boundary effect and improves the effec-
tiveness of FSCS in the high-dimensional space.

In general, with an increase of the dimension, the ef-
fectiveness of LCS-FSCS gradually improves (Figures 8 and
9). With an increase of the failure rate, the optimal p value
becomes smaller (Figure 7). If the failure rate is low, a large p
value is required to optimize LCS-FSCS. It is worth noting
that for a low failure rate, LCS-FSCS slightly improves the
failure-detection effectiveness.

5. Empirical Study

Although the simulations reported in the previous section
can provide a comprehensive overview of LCS-FSCS’s ef-
fectiveness under various conditions (different failure rates
θ, dimensions n, etc.), it is still necessary to conduct an
empirical study to investigate its failure-detection effec-
tiveness for real-life programs.

5.1. Research Questions. We conduct an empirical study to
answer the following research questions:

RQ1: how effective is LCS-FSCS at revealing failures in
the real-life program?

RQ2: under what circumstances, is LCS-FSCS less ef-
fective than FSCS?

5.2. Object Program. *ere are three real-life programs in
this experiment: the Trityp program and the TCAS program
derived from the Software Artifact Infrastructure Repository
(SIR) [22] at http://sir.unl.edu and the Integer program is the
java.lang.Integer class in JDK.
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Figure 9: F-ratio comparison in 2-5D with θ� 0.001.
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Trityp is an implementation of the classic triangle
classification program.*e program has three input integers
and determines whether they represent a triangle, and if so,
the specific type of triangle. Faults are introduced into the
object program based on the mutation analysis technique. A
java mutation tool, mujava [23], is used to generate various
mutants, each of which is related to a single fault injected
into an object program. *e total number of mutants
generated for the Trityp program is 462. After removing 72
equivalent mutants (those mutants are equivalent to SUT),
390 mutants remain. Suppose that in the integer input
domain space of [1, 100], the failure rate of each mutant is
calculated by traversing each value of the input domain
space. *e 165 mutants of the failure rate were selected in
[0.001, 0.01].

TCAS is one of the classic “Siemens” programs. TCAS is
an aircraft collision avoidance system with 12 input pa-
rameters. *e range of values is [0, 1000]. Mutants come
from SIR. Real faults are introduced in these mutants. *e
failure rate of those mutants is between [0.00001, 0.04].

*e Integer program has two input parameters, and the
range of values is [1, 1000]. *e Integer program also
generates mutants using mujava. A total of 160 mutants are
generated, of which 21 equivalent mutants and 16 mutants
with a failure rate greater than 0.95 are removed. *e failure
rate of the remaining 123mutants is between [0.0009, 0.004].

Details of the three real-life programs are shown in
Table 3.

5.2.1. Independent Variables. *e independent variables are
the test case generation strategy and the implementation of
LCS-FSCS. RT and FSCS are selected as baseline techniques
for the comparison. RT is a natural baseline and LCS-FSCS is
an enhancement to FSCS.*erefore, assessing whether LCS-
FSCS is more effective than FSCS is important. In general, an
automated oracle is assumed when RT is applied. In our
experiments, the size of the candidate set is 10 for FSCS and
LCS-FSCS. By results of the simulation experiments, we
draw a conclusion that the optimal p value of LCS-FSCS
increases with the decrease of the failure rate. *erefore,
according to the range of failure rate, p is set to 50 in Trityp
and Integer, while p is set to 100 in TCAS.

5.2.2. Dependent Variables. In this experiment, FRT is
recorded as the F-measure of RT, FFSCS represents the F-
measure of FSCS, and FLCS− FSCS is the F-measure of LCS-
FSCS. *e F-ratio is usually used as a measure of failure-
detection effectiveness. Let FFSCS/RT � FFSCS/FRT and
FLCS− FSCS/RT � FLCS− FSCS/FRT indicate the improvement of
the effectiveness of FSCS in comparison with RT and the
improvement of the effectiveness of LCS-FSCS in com-
parison with RT, respectively. FFSCS/RT < 1 indicates that
FSCS is more effective than RT. At the same
time, FLCS− FSCS/FSCS � FLCS− FSCS/FFSCS is defined to
compare the effectiveness of LCS-FSCS with FSCS. When
FLCS− FSCS/FSCS < 1, it shows that the effectiveness of LCS-
FSCS is higher than that of FSCS.

5.3. Generation of Test Cases. *e experimental process is as
follows: test cases are generated using RT, FSCS, and LCS-
FSCS. As a next step, the source program and the mutants
are executed. *e source program execution result is used as
a test oracle. If the mutant result is different from the source
program result for the same test case, the mutant is killed.
For each effective mutant, the number of test cases required
to kill the mutant is recorded as F-count, and the average F-
count over 2000 experiments is recorded as the F-measure.
Let FRT, FFSCS, and FLCS− FSCS be the F-measure of RT, FSCS,
and LCS-FSCS, respectively. *e FFSCS/RT, FLCS− FSCS/RT, and
FLCS− FSCS/FSCS for each mutant are calculated separately.

5.4. Data and Analysis

5.4.1. Failure-Detection Effectiveness. For 165 mutations of
the Trityp program, the statistics of each mutation operator
are shown in Table 4.

As shown in Table 4, FSCS and LCS-FSCS are compared
with RT, respectively. For FSCS, there are 54 mutants with
FFSCS/RT ≥ 1 and the remaining 111 mutants with FFSCS/RT < 1.
*e failure-detection effectiveness of FSCS with 67.3%mutants
is higher than that of RT.At the same time, for LCS-FSCS, there
are 16 mutants with FLCS− FSCS/RT ≥ 1, whereas FLCS− FSCS/RT < 1
for the remaining 149 mutants. *is shows that the failure-
detection effectiveness of LCS-FSCS with 90.3% mutants is
better than that of RT.Overall, the advantage of LCS-FSCS over
RT is much higher than that of the FSCS over RT.

FSCS is compared to LCS-FSCS. *ere are 74 mutants
with FLCS− FSCS/FSCS ≥ 1 and the remaining 91 mutants with
FLCS− FSCS/FSCS < 1. *is shows that the failure-detection ef-
fectiveness of LCS-FSCS with 55.15% of mutants is better
than that of FSCS. Overall, the LCS-FSCS algorithm is su-
perior to the FSCS algorithm.

To further analyze the difference in the failure-detection
effectiveness between LCS-FSCS and FSCS when Ratio> 1
(where Ratio is FFSCS/RT, FLCS− FSCS/RT, and FLCS− FSCS/FSCS,
respectively), a Conditional Value-at-risk (CVaR) is in-
troduced [24]. CVaR is a risk measurement method that
measures the average loss when the loss exceeds VaR. *e
formula is as follows: CVaR(Pr(r <VaR)) � E(r | r≥VaR).

Given the risk threshold VaR, the smaller the CVaR
value, the smaller the average loss and the overall risk.
In this experiment, VaR is related to Ratio. When Ratio> 1,
it is considered that loss occurs, so VaR=1. When Ratio
is FLCS− FSCS as shown in Figure 10, there are 55.15% of mu-
tants with FLCS− FSCS/FSCS < 1, so CVaR(Pr(FLCS− FSCS/FSCS

< 1)) � CVaR(0.5515) � E(FLCS− FSCS/FSCS| FLCS− FSCS/FSCS

≥ 1) � 1.056. *is means there is the probability that

Table 3: Details regarding the three real-life programs.

Program
Number of

input
parameters

Range of
parameters

Number
of

mutants

Range of failure
rate

Trityp 3 [1, 100] 165 [0.001, 0.01]
Integer 2 [1, 1000] 123 [0.0009, 0.004]
TCAS 12 [0, 1000] 20 [0.00001, 0.04]
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1 − Pr(FLCS− FSCS/FSCS < 1) � 0.4485 makes FLCS− FSCS/FSCS

≥ 1. *e average of FLCS− FSCS/FSCS with all FLCS− FSCS/FSCS ≥ 1
is 1.056. As shown in Figure 10, among the 74 mutants
with FLCS− FSCS/FSCS ≥ 1, there are 46 mutants corresponding
to FLCS− FSCS/FSCS ∈ [1, 1.05]. *e effectiveness of LCS-
FSCS for most of the 74 mutants is not significantly infe-
rior to that of FSCS. However, there are some mutants with
FLCS− FSCS/FSCS > 1.1. *e following section specifically ana-
lyzes the failure domain distribution of these mutants. When
Ratio is FFSCS/RT or FLCS− FSCS/RT, CVaR is shown in Fig-
ures 11 and 12.

For 123 mutations of the Integer program, the statistics
of each mutation operator mutations are shown in Table 5.

As shown in Table 5, the FFSCS/RT and FLCS− FSCS/RT of all
123 mutants are less than 1, which indicates that both FSCS
and LCS-FSCS are more effective than RT in the failure
detection. *e reason can be seen in Table 3: all mutants of
the Integer program range within [0.0009, 0.004]. However,
the FSCS algorithm is more effective in the failure detection
for low failure rates in the two-dimensional input domain.
Compared with the LCS-FSCS algorithm, the failure-de-
tection effectiveness of the LCS-FSCS algorithm is inferior to
that of the FSCS algorithm for 11 mutants only. In general,
LCS-FSCS performs better than FSCS for 123 mutants of the
Integer program.

For 20 mutations of the TCAS program, the statistics of
mutations are shown in Table 6.

Table 6 shows that the failure-detection effectiveness of
the FSCS algorithm is inferior to that of RT in 40% of the
mutants of the 12-dimensional input fields of the TCAS
program. *e LCS-FSCS algorithm is superior to RT with
80% failure-detection effectiveness. At the same time, among
85% of the mutants, LCS-FSCS algorithm is more effective
than the FSCS algorithm in the failure detection.

5.4.2. Analysis of Mutation with Low Failure-Detection
Effectiveness. *is section researches mutants of LCS-FSCS
that are ineffective in the Trityp program.

To study the mutants of FLCS− FSCS/FSCS > 1.1 in Figure 10
(that is, mutants whose LCS-FSCS is less effective than
FSCS), the distribution of their failure domains is analyzed

as shown in Figures 13–17. A 3D view of each of mutant and
a projection diagram in each dimension are given,
respectively.

Table 4: Ratio results of experiments with the Trityp program.

Mutation operators Number of mutants
FFSCS/RT FLCS− FSCS/RT FLCS− FSCS/FSCS

<1 ≥1 <1 ≥1 <1 ≥1
AOIS 32 21 11 25 7 18 14
AOIU 6 3 3 6 0 5 1
AORB 24 14 10 23 1 19 5
CDL 3 1 2 3 0 2 1
COI 3 3 0 3 0 2 1
COR 3 3 0 3 0 0 3
LOI 21 11 10 16 5 13 8
ODL 15 8 7 14 1 8 7
ROR 40 35 5 38 2 14 26
SDL 12 12 0 12 0 4 8
VDL 6 0 6 6 0 6 0
Total 165 111 54 149 16 91 74
Percentage 100% 67.27% 32.73% 90.30% 9.70% 55.15% 44.85%
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Figure 10: CVaR of FLCS− FSCS/FSCS.
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Figure 11: CVaR of FFSCS/RT.
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As shown in Figure 13, the failure domain distribution of
mutant COR_13 with a failure rate of 0.0075 corresponds to
other COR mutants in Table 4. LCS-FSCS of these mutants
has lower failure-detection effectiveness than FSCS. *e
failure regions of these mutants are the same; they consist of
three failure domains and three 2-dimensional projection
maps. It can be seen in Figures 13–17 that the failure do-
mains of these mutants are concentrated on the boundary.
*ese characteristics meet FSCS’s feature to focus on the
boundary. *erefore, compared to LCS-FSCS, FSCS with its
boundary effect is of advantage when the failure region is

concentrated on the boundary. FSCS can use fewer test cases
to find the first failure.

Table 7 summarizes the distribution of the five failure
domain types in the Trityp program in Figures 13–17. *e
type of failure domain shape is defined as the five cases in
which the LCS-FSCS algorithm is inferior to the FSCS al-
gorithm. *e failure rate is corresponding to each type of
failure domain.*e total number of mutants of the five types
is 32. All mutants with FLCS− FSCS/FSCS > 1.1 are covered.
In general, FSCS is superior to LCS-FSCS mainly in
the failure domain type with obvious boundary effect
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Figure 12: CVaR of FLCS− FSCS/RT.

Table 5: Ratio results of experiments with the Integer program.

Mutation operators Number of mutants
FFSCS/RT FLCS− FSCS/RT FLCS− FSCS/FSCS

<1 ≥1 <1 ≥1 <1 ≥1
AODS 1 1 0 1 0 1 0
AODU 3 3 0 3 0 3 0
AOIS 28 28 0 28 0 26 2
AOIU 4 4 0 4 0 4 0
AORB 11 11 0 11 0 11 0
CDL 1 1 0 1 0 1 0
COD 1 1 0 1 0 1 0
COI 5 5 0 5 0 5 0
LOI 16 16 0 16 0 15 1
ODL 13 13 0 13 0 12 1
ROR 25 25 0 25 0 18 7
SDL 10 10 0 10 0 10 0
VDL 5 5 0 5 0 5 0
Total 123 123 0 123 0 112 11
Percentage 100% 100% 0% 100% 0% 91.06% 8.94%

Table 6: Ratio results of experiments with the TCAS program.

Program Number of mutants
FFSCS/RT FLCS− FSCS/RT FLCS− FSCS/FSCS

<1 ≥1 <1 ≥1 <1 ≥1
TCAS 20 12 8 16 4 17 3
Percentage 100% 60% 40% 80% 20% 85% 15%
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Figure 13: Failure domain distribution of mutant COR_13.
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Figure 14: Continued.
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(FLCS− FSCS/FSCS > 1.1). In other cases, LCS-FSCS either
has higher failure-detection effectiveness than FSCS
(FLCS− FSCS/FSCS < 1), or its failure-detection effectiveness is
not much worse than that of FSCS (1≤FLCS− FSCS/FSCS ≤ 1.1).

Considering all cases where LCS-FSCS is inferior to FSCS,
the effectiveness gap between LCS-FSCS and FSCS is
small (CVaR(Pr(FLCS− FSCS/FSCS < 1)) � E(FLCS− FSCS/FSCS |

FLCS− FSCS/FSCS ≥ 1) � 1.056).
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Figure 15: Failure domain distribution of mutant ODL_50.
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Figure 14: Failure domain distribution of mutant ROR_97.
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Figure 16: Failure domain distribution of mutant LOI_13.
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6. Threats to Validity

Some of the potential threats to the effectiveness of this
experimental research are as follows.

*e threat to the internal effectiveness lies in the conduct
of an unbiased experimental design. *e experiments in-
clude simulations and real-life programs. However, this does
not represent the various possible types of faulty program in
real life. Further study will mitigate the threat to internal
effectiveness.

*e threat to construct effectiveness is primarily
a measure of the effectiveness of the testing strategy. *ere
are many metrics regarding the failure-detection effec-
tiveness. No single metric can paint a complete picture of
the effectiveness of a test technique. *e F-measure is
commonly used to evaluate the effectiveness of ART
testing algorithms. It represents the expectation of the
number of test cases needed to detect the first failure. *e
F-measure is commonly used to compare with other
algorithms.

7. Conclusion and Future Work

*is paper proposes a novel algorithm for the enhancement
of FSCS. By constraining the candidate test case generation
domain, the number of test cases on the boundary is re-
duced, and the boundary effect is effectively alleviated. More
importantly, LCS-FSCS reduces the sensitivity of FSCS re-
garding the dimension and the failure rate.

Future work mainly includes the following: (1) *e
improvement of the LCS-FSCS algorithm: the effectiveness
of the algorithm is related to the p value (the number of
dimensions divided), and the p value is related to the failure
rate. How to adaptively adjust the p value to achieve higher
failure-detection effectiveness is part of our future work and
requires further improvements to the algorithm. (2) Ex-
tension of failure modes: further analysis of the effect of the
algorithmic complexity on more complex failure domains is
needed. (3)*e application of real-life complex programs: in
this paper, we have verified the effectiveness of the LCS-
FSCS algorithm in a variety of simulation environments and
in three real-life programs. In future work, the scale and
number of test sets need to be expanded to further verify the
failure-detection effectiveness of the algorithm.
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Figure 17: Failure domain distribution of mutant ROR_118.

Table 7: Distribution statistics of five shape failure domains in the Trityp program.

Type of failure domain shape Failure rate Number of mutants
FLCS− FSCS/FSCS

Avg. Min. Max.

A 0.0075 7 1.12 1.07 1.17
B 0.005 5 1.12 1.07 1.16
C 0.005 3 1.1 1.07 1.14
D 0.0026 2 1.05 1.04 1.05
E 0.0025 15 1.09 0.99 1.17
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