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Multidisciplinary design optimization (MDO) has been applied widely in the design of complex engineering systems. To easeMDO
problems, analytical target cascading (ATC) organizes MDO process into multilevels according to the components of engineering
systems, which provides a promising way to deal with MDO problems. ATC adopts a coordination strategy to coordinate the
couplings between two adjacent levels in the design optimization process; however, existing coordination strategies in ATC face
the obstacles of complicated coordination process and heavy computation cost. In order to conquer this problem, a quadratic
exterior penalty function (QEPF) based ATC (QEPF-ATC) approach is proposed, where QEPF is adopted as the coordination
strategy. Moreover, approximate models are adopted widely to replace the expensive simulationmodels inMDO; a QEPF-ATC and
Kriging model combined approach is further proposed to deal with MDO problems, owing to the comprehensive performance,
high approximation accuracy, and robustness of Kriging model. Finally, the geometric programming and reducer design cases are
given to validate the applicability and e	ciency of the proposed approach.

1. Introduction

Multidisciplinary design optimization (MDO) is a method-
ology to design complex engineering systems by exploiting
the interactions between disciplines and has been successfully
applied in the design of complex engineering systems, such
as aircra
, automobiles, and mechanical equipment [1, 2].
MDO method, also known as MDO strategy, is a hot topic
in the research area of MDO currently [3]. Depending on
whether the process of design optimization is hierarchically
designed, the MDO method is divided into two categories:
single-level MDO method and multilevels MDO method.
Compared with single-level MDO method, the multilevels
MDOmethod can better match the organization structure of
complex engineering systems and is bene�cial in implement-
ing concurrent design anddistributed computation.�ere are
four main multilevels methods: collaborative optimization
(CO) [4, 5], concurrent subspace optimization (CSSO) [6,
7], bilevel integrated system synthesis (BLISS) [8, 9], and
analytical target cascading (ATC) [10, 11]. CO, CSSO, and
BLISS are all two-level MDO methods. Compared with

CO, CSSO, and BLISS methods, ATC can organize MDO
process into di�erent levels according to the components of
engineering systems, and the convergence of ATC method
has been proofed strictly [10], so ATC provides a promising
way to deal with MDO problems.

Currently, ATC needs to adopt a coordination strategy to
coordinate the couplings between two adjacent levels in the
design optimization process, and an appropriate coordina-
tion strategy can improve the computation e	ciency of ATC.
Till now, some coordination strategies have been adopted
in ATC, such as augmented Lagrangian function (ALF)
[12], diagonal quadratic approximation (DQA) [13], and
Lagrangian dual function (LDF) [14]. However, these coor-
dination strategies based ATC approaches face the obstacles
of complicated coordination process and heavy computation
cost in dealing withMDO problems. In order to conquer this
problem, a quadratic exterior penalty function (QEPF) based
ATC (QEPF-ATC) approach is proposed in this paper, where
QEPF is adopted as the coordination strategy. Comparedwith
exiting ATC method, the QEPF-ATC approach can simplify
the coordination process and reduce the computation cost.
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Figure 1: Schematic of the ATC process.

In the design optimization of complex engineering sys-
tems, generally, a large number of simulation models with
high accuracy (such as the structural �nite element analysis
models, aerodynamic analysis models, and computational
�uid dynamicmodels) are involved.�ese simulationmodels
increase the computation expense greatly.�erefore, approx-
imate models are adopted widely to replace the expensive
simulation models in MDO [15–18]. In this paper, QEPF-
ATC and Kriging model [15, 18] combined approach is
further proposed to deal with MDO problems, owing to the
comprehensive performance, high approximation accuracy,
and robustness of Kriging model. Finally, the geometric
programming and reducer design cases are given to vali-
date usability and e�ectiveness of the proposed QEPF-ATC
approach and the QEPF-ATC and Kriging model combined
approach, respectively.

�e rest of this paper is organized as follows. In Section 2,
ATC is introduced, and the QEPF-ATC approach is pro-
posed. QEPF-ATC and Kriging model combined approach
is implemented in Section 3. In Section 4, the geometric
programming and reducer design cases are given to validate
the usability and e�ectiveness of the proposed approach.
Conclusion and future work are discussed in Section 5.

2. The Proposed QEPF-ATC Approach

2.1. ATC. �e design optimization problem of complex
engineering systems is decomposed into a set of subproblems
in ATC approach, where the desired design speci�cations
or targets are established at the top level and cascaded
down to each lower level subproblem. �e target transfor-
mation is a decomposition process from up to down in a
level-by-level way. Moreover, subproblems need to get the
responses to match the cascaded targets. If targets cascaded
to subsystems are not achievable or compatible, the feedback
from subsystems is required, resulting in an iterative target
cascading process. Hence, targets and responses are updated
and coordinated iteratively to achieve global consistency (see
Figure 1) [10]. Coordination strategy is needed to implement
the communication of target and response values between
parents and children problems.

ATC is a model-based optimization method. �ere exist
two kinds of models, optimal design models � and analysis
models �. �e former is just so-called optimization design
problem that includes optimization object, design variables,
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Figure 2: Information �ow between children subproblem and
parent subproblem.

and constraints. �e latter is physical model or mathematical
model that is the foundation of the optimization design.
Figure 2 shows the data �ow between subproblems (parent
and children) [19].

In Figure 2, there exist consistency constraints for each
subproblem. In order tomake each subproblem independent,
consistency constraint is introduced as a kind of equality
constraints. For the subproblem at a given level, consistency
constraints are as follows:

��1 = (��� − ���) = 0, ��1 = (��−1�� − ����) = 0,
��1 = (	�−1�� − 	���) = 0,
��2 = (�(�+1)� − �(�+1)�) = 0,
��2 = (��(�+1)� − ��+1(�+1)�) = 0, ��2 = (	�(�+1)� − 	�+1(�+1)�) = 0.

(1)

�e general mathematical notation for subproblems��� in
the hierarchy is then

���: min ���
w.r.t. 
��, 	���, ��(�+1)�, 	�(�+1)�
where ��� = ��� (��(�+1)�, 
��, 	���)
s.t. �1 = (��−1�� − ����) = 0, �2 = (	�−1�� − 	���) = 0,

�3 = (��(�+1)� − ��+1(�+1)�) = 0,
�4 = (	�(�+1)� − 	�+1(�+1)�) = 0,
��� (��(�+1)�1 , . . . , ��(�+1)���� , 
��, 	���) ≤ 0
ℎ�� (��(�+1)�1 , . . . , ��(�+1)���� , 
��, 	���) = 0,

(2)

where ��� is the problem formulation of element � at level �.� is used to designate the parent of element �. � designates
children of element �. 
�� is local variables for subproblem���. ��� is the function that calculates responses for ���. ���� is
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response of ���. ��−1�� is the target for ��� cascaded from the

(� − 1) level parent element. ��+1(�+1)� is response of the (� + 1)
level children element. ��(�+1)� = (��(�+1)�1 , . . . , ��(�+1)����) is the
target for the (� + 1) level children element. 	��� is response of
linking variable of ���. 	�−1�� is the target of linking variable for

��� from the (� − 1) level parent element. 	�+1(�+1)� is response of
linking variable of the (� + 1) level children element. 	�(�+1)�
is the target of linking variable for the (� + 1) level children
element from���.��� is the local objective for���.��� is function
of inequality constraints for ��� in negative null form. ℎ�� is
function of equality constraints for ��� in null form.

�e coordination strategy in ATC deals with the de�-
nition of deviation between targets and responses (namely,
consistency constraint) and updating weight coe	cients
therein. By setting appropriate norm and weight coe	cients
to coordinate each subproblem, the optimal design point can
be obtained. �e coordination strategy is the key research in
ATC, and an appropriate coordination strategy can improve
the computation e	ciency of ATC. In recent years, some
coordination strategies in ATC have been studied.

2.1.1. �e Coordination Strategy Based on ALF. According
to the ALF, the deviation between targets and responses is
presented by augmented Lagrangian function, and weight
coe	cients are presented by the augmented Lagrange mul-
tiplier. �e coordination way based on ALF is shown as

min ��� + ���� (���� − ��−1�� ) + ��������� ∘ (���� − ��−1�� )�����2

+ ���� (	�−1�� − 	���) + ��������� ∘ (	�−1�� − 	���)�����2
+ ��(�+1)� (��(�+1)� − ��+1(�+1)�)
+ �������(�+1)� ∘ (��(�+1)� − ��+1(�+1)�)�����2
+ ��(�+1)� (	�(�+1)� − 	�+1(�+1)�)
+ ��������(�+1)� (	�(�+1)� − 	�+1(�+1)�)������

2 ,
s.t. ��� (��(�+1)�1 , . . . , ��(�+1)���� , 
��, 	���) ≤ 0

ℎ�� (��(�+1)�1 , . . . , ��(�+1)���� , 
��, 	���) = 0.
(3)

Weight coe	cients ����, ����,���� , and���� in (3) are updated

in accordance with the following equation:

��(�+1)�� = ��(�)�� + 2��(�)�� (��(�)�� − ��−1(�)�� ) ,
��(�+1)�� = ��(�)�� + 2��(�)�� (	�(�)�� − 	�−1(�)�� ) ,

��(�+1)�� = ���(�)�� ,
��(�+1)�� = ���(�)�� ,

(4)

where the superscript � indicates iterations and � is step
length. Usually, � ≥ 1, but 2 < � < 3 can accelerate
convergence.

2.1.2. �e Coordination Strategy Based on DQA. DQA is
realized by approximating the deviation between targets and
responses on the basis of ALF. �e speci�c approximation is

��������� − ��−1�� �����2 = ������(����)2 − 2������−1�� + (��−1�� )2������ where,
������−1�� ≅ ��(�−1)�� ��−1(�−1)�� + ��(�−1)�� (���� − ��−1(�−1)�� )

+ ��−1(�−1)�� (���� − ��(�−1)�� ) so,
��������� − ��−1�� �����2 = �������−1(�−1)�� − ���������2 + ��������� − ��−1(�−1)��

�����2
+ ��(�−1)�� ��−1(�−1)�� (constant value) .

(5)

Based on DQA, the cross term among the deviation is
approximated; that is to say, an order Taylor type expansion is
conducted in the last design point. Among them, the weight
coe	cient is updated according to (5) too.

2.1.3. �e Coordination Strategy Based on LDF. According to
the LDF, the deviation is dealt with by Lagrangian duality
function, and weight coe	cients are presented by the dual
Lagrange multiplier. �e coordination of LDF is shown as

min ��� + ���� (���� − ��−1�� ) + ��������� ∘ (���� − ��−1�� )�����2
+ ���� (	�−1�� − 	���) + ��������� ∘ (	�−1�� − 	���)�����2

s.t. ��� (��(�+1)�1 , . . . , ��(�+1)���� , 
��, 	���) ≤ 0
ℎ�� (��(�+1)�1 , . . . , ��(�+1)���� , 
��, 	���) = 0.

(6)

Weight coe	cients ����, ����, ���� , and ���� in (6) are updated

in accordance with the following equation:

��(�+1)�� = ��(�)�� + ��(�)�� (��(�)�� − ��−1(�)�� ) ,
��(�+1)�� = ��(�)�� + ��(�)�� (	�(�)�� − 	�−1(�)�� ) ,
��(�+1)�� = √!!!!!��(�)�� !!!!!, ��(�+1)�� = √!!!!!!��(�)�� !!!!!!,
��(�+1)�� = 1 + #� + # ⋅ 1�������(�)�� − ��−1(�)�� ����� ,

��(�+1)�� = 1 + #� + # ⋅ 1�����	�(�)�� − 	�−1(�)�� ����� ,

(7)
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where the superscript � indicates iterations and# is a positive
integers.

�e di�erence of these coordination strategies is the
way of dealing with consistency constraints and weight
coe	cients. �ere exist multiweight coe	cients in the above
three coordination strategies to increase computational cost.
For this reason, the coordination strategy based on quadratic
exterior penalty function among which only one weight coef-
�cient exists is put forward, which simpli�es the expression of
optimization problem greatly, thus improving the e	ciency
to make ATC have wider application. �e coordination
strategy based on the quadratic exterior penalty function will
be described brie�y.

2.2. �e QEPF-ATC Approach. A general equality-con-
strained optimization problem can be de�ned as follows:

min � (x)
s.t. �� (x) = 0, � = 1, 2, . . . , #

xlb ≤ x ≤ xup,
(8)

where x is the vector of the design variables with xlb and
xup as its lower and upper bounds, respectively. �e function�(x) represents the objective function. ��(x) is the equality
constraints.

According to QEPF, consistency constraints are added
into the objective function by introducing a penalty factor,
and the penalty factor is used as the weighting coe	cient
to realize the coordination. �e quadratic exterior penalty
function is de�ned as

% (
, &) = � (x) + &2
	∑
�=1
�� (x)2 = � (x) + &2 � (x)
 � (x) , (9)

where the weight coe	cient (penalty factor) is updated in
accordance with (10). �e value of � in�uences the con-
vergence e	ciency and computational e	ciency so that it
is necessary to set up appropriate � to obtain much better
solution e	ciency. Consider

&�+1 = �&�, � = 1.4∼10. (10)

�e mathematical formulation of QEPF-ATC is

���: min ��� + &2 (�����(��−1�� − ����)�����
2 + �����(	�−1�� − 	���)�����2

+ �����(��(�+1)� − ��+1(�+1)�)�����2
+ �����(	�(�+1)� − 	�+1(�+1)�)�����2)

s.t. ��� ≤ 0, ℎ�� = 0
��� = ��� (
��) ,

�� = (��(�+1)�1 , . . . , ��(�+1)���� , 
��, 	���) .

(11)

Generally, the much bigger the penalty factor is the much
closer the optimization results are to the optimal solution

Optimizing system subproblem 
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Initializing

No
Updating weight 

Optimized results 

Figure 3: �e solving process of QEPF-ATC approach.

of the original problem. But, in the practical application,
the value of the penalty factor must be moderate when
considering the computational cost, due to the fact that if
the penalty factor is too small, the optimization results may
get bigger error from the original problem to bring low
computational e	ciency. Otherwise, too large penalty factor
would increase the computational expense.

Figure 3 shows the solving process of the QEPF-ATC
approach, and the main steps are as follows:

(1) decompose the original problem and con�rm design
variables and constraints of system and subsystems;

(2) initialize design variables (including local design

variables and linking variables) and &(0) and transfer
the corresponding initial value to the subsystem as the
target;

(3) solve each subsystem and pass back current results to
system level;

(4) optimize the system problem on the basis of the third
step and transfer new target to each subsystem;

(5) obtain the optimization result if the convergence con-
dition is met; otherwise, update the weight coe	cient& according to (10) and go back to the third step until
the convergence condition is met.

3. The Proposed QEPF-ATC and Kriging
Model Combined Approach

3.1. Kriging Model. Kriging models [15, 16] have their origins
in mining and geostatistical applications involving spatially
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Figure 4:�e solving process of the QEPF-ATC and Kriging model
combined approach.

and temporally correlated data. Kriging models combine a
global model with localized departures:

	 (
) = � (
) + 5 (
) , (12)

where 	(
) is the unknown function of interest, �(
) is the
known approximation (usually polynomial) function, and5(
) is the realization of a stochastic process with mean zero,
variance62, and nonzero covariance.�e�(
) term is similar
to a polynomial response surface, providing a “global” model
of the design space. �e covariance of 5(
) is given by

cov [5 (
�) , 5 (
�)] = 62� (
�, 
�) , (13)

where� is the correlation.�(
�, 
�) is the correlation function
between any two of the 9 sampled data points 
� and 
�, and
it can be calculated by

� (
�, 
�) = exp[− �∑
�=1
;� (
�� − 
��)2] . (14)

Generally, �(
) is treated as a constant �, then predicted

estimates,
_	 (
), of the response 	(
) at untried values of 


are given by

_	 (
) =_� +�
 (
) �−1 (? − % _�) , (15)

where 	 is the column vector of length 9 that contains the
sample values of the response, and � is a column vector of
length 9 that is �lled with ones when �(
) is taken as a

constant. In (10), �
(
) is the correlation vector of length 9
between an untried 
 and the sampled data points.

Consider

�
 (
) = [� (
, 
1) , � (
, 
2) , � (
, 
3) , . . . , � (
, 
�)]
 .
(16)

In (10),
_� is estimated using (12):

_� = (%
�−1%)−1 %
�−1? (17)

In �, ;� = max{−[9 ln(62) + ln |�|]/2},

62 = (? − %
_�)
 �−1 (? − % _�)

9 . (18)

3.2. �e QEPF-ATC and Kriging Model Combined Approach.
In QEPF-ATC, the deviation between the target and response
is processed in the form of sum of squares, as shown in (11).
�e sum of squares function is usually not smooth and non-
linear. And discrepancy of variables in the neighborhood of
the current solution will lead to �uctuation of the deviation,
which will increase the number of iterations and so forth.
Kriging model is appropriate for high nonlinear problem
with better comprehensive performance, high approximation
accuracy, and high robustness [20–22]. Moreover, fewer
sample points also can get higher precision approximation
model. So Kriging model is adopted in this paper.

�e solving process of the QEPF-ATC and Kriging model
combined approach is shown in Figure 4, and the main steps
are as follows:

(1) decompose the original problem and con�rm design
variables and constraints of system and subsystems;

(2) select a set of sample points using the Latin hypercube
sampling (LHS) method;

(3) analyse each subsystem to obtain responses at all
sampling points of the subsystems;

(4) build Kriging model based on the sample points and
the corresponding responses of each subsystem;

(5) evaluate the Kriging model by error analysis; if the
precision conditions are not met, go back to step (2)
to build a new Kriging model by adding some new
sample points;

(6) initialize variables and transfer the corresponding ini-
tial value to the subsystem as the target and optimize
each subproblem based on the created Krigingmodel;



6 Mathematical Problems in Engineering
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PA: min
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�

2
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2
+ (x11 − xL11B)

2
+ (x11 − xL11C)
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Figure 5: �e solving framework of QEPF-ATC for geometric programming.

(7) pass back current results to system level, and imple-
ment the system level optimization;

(8) obtain results if the convergence condition is met;
otherwise, go to step (6) until the convergence con-
dition is met.

4. Case Studies

4.1. �e Geometric Programming. �e geometric program-
ming [23] that has only the global optimal solution is
employed to verify the usability of QEPF-ATC. Its mathemat-
ical expression is shown as

min � = 
21 + 
22,
s.t. �1 : 


−2
3 + 
24
25 ≤ 1, �2 : 


2
5 + 
−26
27 ≤ 1,

�3 : 

2
8 + 
29
211 ≤ 1,

�4 : 

−2
8 + 
210
211 ≤ 1, �5 : 


2
11 + 
−212
213 ≤ 1,

�6 : 

2
11 + 
212
214 ≤ 1,

ℎ1 = 
21 − 
23 − 
−24 − 
25 = 0,
ℎ2 = 
22 − 
25 − 
26 − 
27 = 0,
ℎ3 = 
23 − 
28 − 
−29 − 
−210 − 
211 = 0,
ℎ4 = 
26 − 
211 − 
212 − 
213 − 
214 = 0.

(19)

Table 1: �e optimal results.

QEPF-ATC ALF DQA LDF AAO


1 2.9049 2.85 2.86 2.87 2.84
2 3.0551 3.04 3.10 3.05 3.09
3 2.4930 2.48 2.49 2.43 2.36
4 0.8805 0.86 0.82 0.79 0.76
5 0.9676 0.94 0.95 0.89 0.87
6 2.7103 2.72 2.75 2.78 2.81
7 1.0357 1.02 0.95 1.03 0.94
8 0.9830 0.98 0.98 1.01 0.97
9 0.7572 0.78 0.79 0.82 0.87
10 0.7104 0.76 0.79 0.81 0.80
11 1.2408 1.27 1.26 1.25 1.30
12 0.8409 0.86 0.85 0.83 0.84
13 1.7088 1.73 1.74 1.71 1.76
14 1.4875 1.52 1.49 1.50 1.55� 17.7721 17.36 17.78 17.53 17.59

Runtime (s) 289 355 336 368

Figure 5 shows the solution framework of the QEPF-ATC
approach for the problem, where 
11 is the linking variable

(coupling variable) coordinated by the system level. 
�11
,
�11�, 
�3 , and 
�6 are the targets of each subproblem passed

from the system level. 
�11
 and 
�11� are the responses of the
linking variable coming from the subproblems E and F. 
�3
and 
�6 are the responses of E and F.

Solve the geometric programming problem according to

QEPF-ATC. Initialize the design point 
0 = (1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1)
, and take � = 10. Here, the acceptable
inconsistency tolerance is 0.01 for every response variable and
linking variable. Table 1 shows the optimal results based on
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Table 2: �e optimal results based on �.
� (
1, 
2, 
3, 
4, 
5, 
6, 
7, 
11) (
3, 
8, 
9, 
10, 
11) (
6, 
11, 
12, 
13, 
14) � Iterations

1.4
(2.7556, 3.0804, 2.2975, 0.8131,
0.9171, 2.7718, 0.9840, 1.2678)

(2.3012, 0.9688, 0.8427, 0.7340, 1.2682) (2.7638, 1.2732, 0.7447, 1.8411, 1.4655) 17.5992 78

4
(2.9716, 2.9567, 2.5227, 0.7598,
0.8570, 2.6708, 0.9352, 1.2343)

(2.5230, 0.9911, 0.7320, 0.7072, 1.2321) (2.6791, 1.2298, 0.8409, 1.6923, 1.4686) 17.5728 27

7
(2.9662, 2.9757, 2.5012, 0.7204,
0.8231, 2.7169, 0.9014, 1.2386)

(2.5011, 0.9863, 0.7492, 0.7115, 1.2386) (2.7168, 1.2385, 0.8408, 1.7122, 1.4915) 17.6531 17

10
(2.9049, 3.0551, 2.4930, 0.8805,
0.9676, 2.7103, 1.0357, 1.2408)

(2.4930, 0.9830, 0.7572, 0.7104, 1.2408) (2.7102, 1.2409, 0.8409, 1.7088, 1.4875) 17.7721 5

Table 3: Design variables for speed reducer.

Variables Range Units


1 Gear face width 2.6 ≤ 
1 ≤ 3.6 cm


2 Teeth module 0.7 ≤ 
2 ≤ 0.8 cm


3 Number of teeth of pinion
(integer variable)

17 ≤ 
3 ≤ 28 /


4 Distance between bearings
1

7.3 ≤ 
4 ≤ 8.3 cm


5 Distance between bearings
2

7.3 ≤ 
5 ≤ 8.3 cm


6 Diameter of sha
 1 2.9 ≤ 
6 ≤ 3.9 cm


7 Diameter of sha
 1 5.0 ≤ 
7 ≤ 5.5 cm

�1, �2, and �3 are the design variables of the gear subproblem. �4 and �5 are
the design variables of the sha
 subproblem. �6 and �7 are linking variables
(coupling variables).

QEPF-ATC, three coordination strategies (ALF, DQA, and
LDF), and AAO (All-At-Once).

According to Table 1, the results of the QEPF-ATC
approach are very close to the optimal value of the original
problem, and the runtime is less than the other three
methods.� a�ects the convergence e	ciency and computational
e	ciency of the QEPF-ATC approach. In order to obtain
more suitable � to improve the e	ciency of the QEPF-
ATC approach, di�erent values of � are selected to solve the
problem. Table 2 shows the results when di�erent values of �
are selected.

In Table 2, the QEPF-ATC approach implement fast
convergence when � is set to di�erent values, and the optimal
results are close to the results of the initial problems. With
the increase of �, the number of iterations decreases and
the solution error gets bigger (excessive weight). Generally,1.4 ≤ � ≤ 10 is strictly necessary, but typically, 4 <� < 7 is recommended to speed up convergence and reduce
computational cost and get better optimal results.

4.2. �e Speed Reducer Design. �e speed reducer design
case represents the design of a simple gearbox and is a
multidisciplinary problem comprising the coupling between
gear design and sha
 design. �is has been used as a testing
problem for MDO method in the literature from NASA
Langley research center [24]. �e multidisciplinary systems
and notations of the reducer are shown in Figure 6, and

x1

x2

x3

x4
x5

x6

x7

Figure 6: �e multidisciplinary systems and notations of reducer.

Speed reducer

x6, x7 Sha�

x4, x5

Gear

x1, x2, x3

Figure 7: �e decomposition of speed reducer problem.

the modelling is shown in Figure 7. �e design objective
is to minimize the speed reducer weight while satisfying a
number of constraints posed by gear and sha
 parts. �ere
are seven variables in the speed reducer design optimization.
Table 3 lists a brief description of the variables and gives their
reference values.

According to the decomposition method of ATC, where
a system is partitioned by object, the speed reducer problem
is decomposed into gear subproblem and sha
 subproblem
(shown in Figure 7). �e design optimization problem is
de�ned as follows:

min � = �1 (
) + �2 (
) ,
�1 (
) = 0.7854
1
22

⋅ (3.3333
23 + 14.9334
3 − 43.0934)
− 1.5079
1 (
26 + 
27) ,
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�e optimizer of system level

�e optimizer of subproblem 1 �e optimizer of subproblem 2

DOE-LHS DOE-LHS

Subproblem 1

analysis

Kriging model 1

Subproblem 2

analysis

Kriging model 2

g3, g4, g5, g6

xU8 , x
U
7B, x

U
6B xL8 , x

L
7B, x

L
6B xU9 , x

U
6C, x

U
7C xL9 , x

L
6C, x

L
7C

X1 X1

X1

X1 G1

Ĝ1

X2 X2

X2

X2 G2

Ĝ2

s.t.

s.t. s.t.

R1 = x10 = r1(x3, x4, x5) = x8 + x9

X0 = {x6, x7}

G1 = {g1, g2, g9, g10 , g11}
R2 = x8 = r2(X1) = f1(x)

X1 = {x1, x2, x3, x6, x7}

G2 = {g7, g8}
R3 = x9 = r3(X2) = f2(x)

X2 = {x4, x5, x6, x7}

PA: min f11 = x10 + x8 − xL8)
2
+ (x9 − xL9)

2
+ (x6 − xL6B)

2
+ (x6 − xL6C)

2
+ (x7 − xL7B)

2
+ (x7 − xL7C)

2]�

2
)]

PB: min f21 = x8 − xU8 )
2
+ (x6 − xU6B)

2
+ (x7 − xU7B)

2]�

2
)] PC: min f22 = x9 − xU9 )

2
+ (x6 − xU6C)

2
+ (x7 − xU7C)

2]�

2
)]

Figure 8: �e solving framework of the QEPF-ATC and Kriging model combined approach for the gear reducer.

�2 (
) = 7.477 (
36 + 
37) + 0.7854 (
4
26 + 
5
27)
s.t. �1 = 27(
1
22
3) − 1 ≤ 0, �2 = 397.5(
1
22
23) − 1 ≤ 0,

�3 = 1.93
34(
2
3
46) − 1 ≤ 0, �4 = 1.93
35(
2
3
47) − 1 ≤ 0,
�5 = 10
−36 √(745
−12 
−13 
4) + 1.69 × 107

− 1100 ≤ 0,
�6 = 10
−37 √(745
−12 
−13 
5) + 1.575 × 108

− 850 ≤ 0,
�7 = (1.5
6 + 1.9)
4 − 1 ≤ 0,
�8 = (1.5
7 + 1.9)
5 − 1 ≤ 0,
�9 = 
2
3 − 40 ≤ 0, �10 = 5 − 
1
2 ≤ 0,
�11 = 
1
2 − 12 ≤ 0,

(20)

where �1 is the gear weight and �2 is the sha
 weight. And �1
and �2, are respectively, gear bending stress and contact stress
constraints, �3 and �4 are, respectively, torsional distortion
constraints of sha
 1 and sha
 2, �5 and �6 are stress
constraints of the sha
 1 and sha
 2, �7 and �8 are experience
constraints of sha
 1 and sha
 2, and �9, �10, and �11 are gear
geometry constraints.
1, 
2, and 
3 are the design variables of the gear
subproblem. 
4 and 
5 are the design variables of the
sha
 subproblem. 
6 and 
7 are linking variables (coupling
variables). According to the QEPF-ATC and Kriging model
combined approach, three variables 
8, 
9, and 
10 are
introduced and meet the following formula:

ℎ0 = 
8 + 
9 − 
10 = 0,
ℎ1 = 
8 − �1 (
) = 0,
ℎ2 = 
9 − �2 (
) = 0,

(21)

where ℎ0 represents the analysis model of system level andℎ1 and ℎ2 represent the analysis models of subproblem 1 and
subproblem 2, respectively.

�e solving framework of the QEPF-ATC and Kriging
model combined approach for gear reducer is shown in
Figure 8.

Creating the Kriging models of the sha
 subsystem is
introduced in detail. Firstly, select 45 sample points by
LHS method to create the Kriging models to conduct the



Mathematical Problems in Engineering 9

Table 4: �e optimal results of the QEPF-ATC and Kriging model combined approach.

Initial point �
min

Iterations Runtime (s) (
1, 
2, 
3, 
4, 
5, 
6, 
7)
1 2994.53432 26 138 (3.504, 0.698, 17, 7.300, 7.845, 3.410, 5.283)

2 2994.53217 25 124 (3.501, 0.700, 17, 7.310, 7.763, 3.353, 5.286)

3 2995.21246 18 113 (3.498, 0.699, 17, 7.306, 7.755, 3.312, 5.279)

4 2995.64235 10 36 (3.499, 0.702, 17, 7.297, 7.718, 3.350, 5.282)

5 2994.33263 24 121 (3.502, 0.700, 17, 7.298, 7.720, 3.347, 5.287)

Table 5: �e optimal results of the QEPF-ATC approach.

Initial point �
min

Iterations Runtime (s) (
1, 
2, 
3, 
4, 
5, 
6, 
7)
1 2994.63432 42 272 (3.500, 0.699, 17, 7.300, 7.825, 3.392, 5.282)

2 2995.51327 38 215 (3.500, 0.703, 17, 7.305, 7.746, 3.353, 5.287)

3 2996.12356 30 198 (3.497, 0.696, 17, 7.300, 7.713, 3.326, 5.275)

4 2995.75363 17 97 (3.499, 0.700, 17, 7.299, 7.715, 3.349, 5.282)

5 2995.21554 52 306 (3.500, 0.700, 17, 7.300, 7.719, 3.350, 5.286)

subsystem analysis, and the created models are shown in
Figure 9.

�en, select 20 sample points by random sampling
method to evaluate the createdKrigingmodels. Error analysis
for Kriging models of the sha
 subsystem is shown in
Figure 10, and it can be seen that the predicted values
obtained by Kriging models are basically equal to the actual
values.

�ere are four credibility evaluation standards for approx-
imate models, that is, the average, the maximum, the root
mean square, and the �-squared. For the average, the max-
imum, and the root mean square, the much smaller the
values are the much better the credibility of approximate
models is. �e default threshold of the average and the
root mean square is 0.2, and the maximum is 0.3. For
the �-squared, the much bigger the value is, the much
better the credibility of approximate models is, and the
default threshold is 0.9. Figure 11 describes the values of the
four credibility evaluation standards for the created Kriging
models of the sha
 subsystem, and it can be seen that the four
credibility evaluation standards are all met. So the created
Krigingmodels are reliable enough and can be used to replace
the original models with high accuracy in the next solving
process.

Five initial points are selected and the sequential
quadratic programming (SQP) method is adopted to solve
the gear reducer problem, and the results provided by the
QEPF-ATC and Kriging model combined approach and
the QEPF-ATC approach are shown in Tables 4 and 5,
respectively. It can be seen that results of the QEPF-ATC
and Kriging model combined approach and the QEPF-ATC
approach are very close, and the best result provided by
the QEPF-ATC and Kriging model combined approach is
closer to the optimal value of the gear reducer problem
compared to that provided by the QEPF-ATC approach.
In terms of the iterations and runtime, the QEPF-ATC
and Kriging model combined approach saves computing
time by more than one half compared with QEPF-ATC
approach.

5. Conclusion

Because ATC approach can �exibly organize the design opti-
mization process according to the components of engineering
systems, it has been widely applied in MDO.�e QEPF-ATC
approach is proposed to reduce the complicated coordination
process and heavy computation cost faced by exiting ATC
approaches, where quadratic exterior penalty function is
adopted to be the replaced coordination strategy. Further,
in order to deal with the design optimization of complex
engineering systems, the QEPF-ATC and Kriging model
combined approach is implemented, where Kriging models
are used to replace simulation models with high accuracy
in the solving process of MDO problems. �e QEPF-ATC
and Kriging model combined approach can avoid the impact
of numerical noise brought by using simulation models
during the iterative solving process and reduce computation
cost. A geometric programming case is given to validate
the usability and e�ectiveness of the QEPF-ATC approach.
�e QEPF-ATC and Kriging model combined approach has
been successfully applied to solve the speed reducer design
problem.

It should be pointed out that usingmetamodels within the
QEPF-ATC approach is not without its own set of potential
drawbacks, which are well known and beyond the scope of
this work. Prior to employing the metamodel assisted QEPF-
ATC approach, the user should become familiar with the
strengths and weaknesses associated with surrogate approxi-
mation. Variable-�delity modeling provides a promising way
to �exibly use approximate models in dealing with MDO
problems. �e combination of the QEPF-ATC approach and
variable-�delity modeling will be studied to design complex
engineering systems in the future.

Abbreviations and Acronyms

ALF: Augmented Lagrangian function
AM: Approximate models
ATC: Analytical target cascading
BLISS: Bilevel integrated system synthesis
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Figure 9: Kriging models of the sha
 subsystem.
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CO: Collaborative optimization
CSSO: Concurrent subspace optimization
DQA: Diagonal quadratic approximation
LDF: Lagrangian dual function
LHS: Latin hypercube sampling
MDO: Multidisciplinary design

optimization
QEPF: Quadratic exterior penalty function
QEPF-ATC: Quadratic exterior penalty function

based analytical target cascading
SQP: Sequential quadratic programming.
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