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Abstract

Chimp optimization algorithm (ChOA) is a recently proposed metaheuristic. Interestingly, it simulates the social status rela-
tionship and hunting behavior of chimps. Due to the more flexible and complex application fields, researchers have higher 
requirements for native algorithms. In this paper, an enhanced chimp optimization algorithm (EChOA) is proposed to improve 
the accuracy of solutions. First, the highly disruptive polynomial mutation is used to initialize the population, which provides 
the foundation for global search. Next, Spearman’s rank correlation coefficient of the chimps with the lowest social status is 
calculated with respect to the leader chimp. To reduce the probability of falling into the local optimum, the beetle antennae 
operator is used to improve the less fit chimps while gaining visual capability. Three strategies enhance the exploration and 
exploitation of the native algorithm. To verify the function optimization performance, EChOA is comprehensively analyzed 
on 12 classical benchmark functions and 15 CEC2017 benchmark functions. Besides, the practicability of EChOA is also 
highlighted by three engineering design problems and training multilayer perceptron. Compared with ChOA and five state-
of-the-art algorithms, the statistical results show that EChOA has strong competitive capabilities and promising prospects.

Keywords Chimp optimization algorithm · Highly disruptive polynomial mutation · Spearman’s rank correlation 
coefficient · Beetle antennae operator · Continuous optimization domains

Introduction

During the fourth industrial revolution, people have entered 
the artificial intelligence (AI) age. Faced with complex 
research branches and massive data, it is essential to design 
effective tools to explore valuable information. As one of 
the elements in the development of AI, algorithms regu-
larly promote the optimization and innovation of technique. 
Brute-force search [1] finds the best solution possible but 
is very low even in two or three dimensions. Hill-climbing 
[2] usually finds the local optimum instead of the global 
warm. These algorithms are hard to solve exactly classical 
NP-complete problems such as Hamiltonian cycle problem 
[3], traveling salesman problem [4], and coloring problem 
[5], etc. This is also the reason that metaheuristic algorithms 

(MAs) enter the blowout period. For a specific issue, heuris-
tic algorithms provide estimated solutions in feasible time 
and space. To adapt to a wide range of the issues, MAs are 
proposed, which are independent of the existence of the 
problem. If necessary, some fine-tuning of internal param-
eters will adapt to the current issue [6].

When designing a MA, two components should be con-
sidered: exploration and exploitation. The convergence speed 
and solution accuracy of the algorithm mainly depend on the 
balance level between the two components. In the initial 
phase, a well-organized optimizer should highly explore the 
search space to find diverse solutions. After a fine transition, 
the algorithm often uses local information to generate better 
solutions, which are usually in the neighborhood of the cur-
rent solutions [7, 8]. More than hundreds of MAs have so 
far developed. Based on different design inspirations, MAs 
can be divided into four categories. The physics-inspired 
MAs use physical laws, which mainly include gravitational 
search algorithm (GSA) [9], multi-verse optimizer (MVO) 
[10], and thermal exchange optimization (TEO) [11]. The 
evolution-inspired MAs use Darwinian natural selection. 
The most well-known algorithms are genetic algorithm 
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(GA) [12] and differential evolution (DE) [13]. The swarm-
inspired MAs mainly simulates the collective behavior of 
creatures in nature. The most classical algorithm belongs to 
particle swarm optimization (PSO) [14]. swarm intelligence 
(SI) optimization algorithms proposed in recent years also 
include ant lion optimizer (ALO) [15], whale optimization 
algorithm (WOA) [16], and marine predators algorithm 
(MPA) [17], etc. The last category is the human behavior-
inspired MAs represented by teaching–learning-based opti-
mization (TLBO) [18].

MAs have their importance in various fields of compu-
tational sciences. However, most MAs suffer from prema-
ture convergence, stuck in local optimum, poor convergence 
speed, etc. No free lunch (NFL) theorem [19] turns out 
that the world is dominated by real-world problems with-
out a known provably efficient algorithm. Therefore, many 
researchers have been motivated by the NFL theorem to pro-
pose novel algorithms. Some of them have demonstrated 
very well performance for optimization problems. However, 
some algorithms rely only on attractive metaphors and are 
criticized for lack of novelty [20, 21]. In 2020, Chimp opti-
mization algorithm was proposed by Khishe and Mosavi. An 
overview of ChOA can be found in Sect. “Chimp optimiza-
tion algorithm”. One of the main motivations in this paper 
is to propose an enhanced ChOA version (named EChOA), 
which is created to improve the performance of the algo-
rithm. It is not a novel SI algorithm but an enhancement 
of the existing one inspired by experimental studies on its 
behavior. The other main motivation is that the AI-enabled 
application is further developed. To the best of our knowl-
edge, it is the first time that the enhanced ChOA is used to 
train multilayer perceptron. The main contributions of this 
paper are stated more clearly as follows:

1. HDPM helps further to explore the regions and bounda-
ries of the initial space.

2. Spearman’s rank correlation coefficient refines candidate 
solutions that need to be improved.

3. Beetle antennae operator helps to avoid the local opti-
mum and provide better exploitation.

4. The performance of EChOA is evaluated on 27 bench-
mark functions, three engineering design problems, and 
training multilayer perceptron.

5. EChOA outperforms contemporary optimization algo-
rithms.

Section "Related works" outlines some related works. 
Section "Preliminaries" introduces preliminaries, including 
ChOA and three strategies. In Sect. "Proposed algorithm", 
the proposed algorithm is described in detail. In Sect. "Func-
tion optimization experiments", the experimental results 
of benchmark functions are given. In Sect. "Engineering 
optimization experiments" and Sect. "Training multilayer 

perceptron experiments", the research aspects of solving 
engineering design problems and training multilayer per-
ceptron are discussed and analyzed, respectively. Finally, 
Sect. "Conclusions and future research" summarizes the 
work.

Related works

In the introduction, some well-known algorithms with 
different categories are listed. In this section, the recent 
works done about ChOA and other MAs are briefed here-
after. Some of these algorithms in the literature are then 
used as the comparative algorithms in this paper.

Khishe and Mosavi used ChOA to train a neural net-
work to classify the underwater acoustical dataset. The 
proposed method obtained better classification accuracy 
with respect to the ion motion algorithm, gray wolf opti-
mization, and PSO-GSA [22]. It is one of the few works 
about the new application of ChOA. The MA-ALS algo-
rithm combined GA and adaptive local search was pro-
posed by Arab et al., which resulted in improved accuracy 
and convergence speed. The performance was evaluated on 
function optimization and optimal controller design [23]. 
Li et al. also developed a novel hybrid algorithm based 
on PSO and artificial bee colony (ABC) and tested it on 
13 high-dimensional benchmark functions. The efficiency 
and robustness of PS-ABC were verified in detail [24]. As 

Fig. 1  Process of position update [37]



67Complex & Intelligent Systems (2022) 8:65–82 

1 3

another variant of PSO, Berkan Aydilek also attempted to 
hybridize firefly optimization algorithm (FOA) into PSO 
in 2018 [25]. Through analysis, we believe that the main 
motivation of [23–25] is to combine one algorithm for the 
global exploration phase and the other for locally refining 
exploitation by applying reasonable laws.

In 2017, Mirjalili et  al. embedded 10 chaotic maps 
and an adaptive transformation mechanism into GSA to 
improve the performance. Experimental results demon-
strated that the sinusoidal map is the most appropriate 
for this specific problem [26]. Meanwhile, Khishe et al. 
also used four chaotic maps to improve the performance 
of the stochastic fractal search (SFS) algorithm. The 
proposed algorithm trained multi-layer perceptron and 
applied it to the sonar dataset. The capability to address 
high dimensional problems was one of its advantages [27]. 
To accomplish the same task, an improved biogeography-
based optimization (BBO) algorithm based on mutation 
operators was proposed in [28] and implemented on hard-
ware. Jia et al. proposed a multi-strategy emperor pen-
guin optimizer (MSEPO) based on HDPM, Levy flight, 
and thermal exchange operator. The effectiveness of the 
suggested three strategies was analyzed and verified in 
the experiments. It was an effective multilevel threshold-
ing segmentation algorithm for color satellite images [29].

Khishe and Mosavi redesigned seven spiral shapes in 
the WOA algorithm. Different spiral shapes can directly 
affect the convergence behavior of the algorithm. This 
metaheuristic trainer based on the proposed algorithm 
was applied to data classification [30]. MAs applied in 
this field also include salp swarm algorithm (SSA) [31]. 
Mousavi et al. recently improved WOA by splitting sub-
populations and embedding fractional chaotic maps and 
applied this enhanced algorithm (EWOA) to identify 
parameters of wind–diesel power systems [32]. Shokri-
Ghaleh et al. proposed an improved version of the cuckoo 
optimization algorithm (ULCOA) for non-linear field cali-
bration problems in 2020 [33]. In 2020, Ma et al. improved 
the step size of the beetle antennae search algorithm to 
optimize the Huber Loss function [34]. The artificial bee 
colony (ABC) algorithm fused three kinds of knowledge 
to improve search capability. This idea can be regarded 
as an optimization framework for other MAs. [35]. In the 
improved grey wolf optimizer (I-GWO) algorithm, the 
dimension learning-based hunting (DLH) search strategy 
was used to enhance the information sharing among wolfs 
[36].

Based on the above in-depth literature review, the recent 
trend for improvement is to combine the two algorithms or 
apply some strategies to the entire solution. However, this 
paper attempts to apply the search gain to only certain com-
ponents of the solution besides introducing the mutation 
operator. Generally, it can enhance the result more finely.

Preliminaries

Chimp optimization algorithm

ChOA is a novel MA based on swarm intelligence pro-
posed by Khishe and Mosavi in 2020 [37]. Its intuitive 
background originates from the hunting behavior of 
chimps. Chimps perform different actions according to the 
division of labor to find the prey. The standard ChOA algo-
rithm divides the chimp group into four types: attacker, 
barrier, chaser, and driver. Among them, the attacker is the 
leader of the population. The other three types of chimps 
assisted in hunting, and their status decreased in turn. The 
mathematical model is briefly described as following. 
Equations (1) and (2) is used to update the position of the 
chimp. Figure 1 visualizes this effect:

where t represents the number of the current iteration, the 
position of the chimp is updated according to the four types 
of position stored ( XAttacker, XBarrier, XChaser, and XDriver ). The 
dynamic coefficient a and vector d are expressed in Eq. (3):

(1)

X
1(t + 1) = X

Attacker
(t) − a

1
⋅ d

Attacker

X
2(t + 1) = X

Barrier
(t) − a

2
⋅ d

Barrier

X
3(t + 1) = X

Chaser
(t) − a

3
⋅ d

Chaser

X
4(t + 1) = X

Driver
(t) − a

4
⋅ d

Driver

(2)Xchimp(t + 1) =
X1 + X2 + X3 + X4

4

Fig. 2  Beetle with long antennae [43]
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where the coefficient f decreases nonlinearly from 2.5 to 
0 with the lapse of iteration. c = 2r

2
 . r1 and r2 are random 

numbers in [0, 1]. m is a chaotic map vector. Assuming 
the probability μ is a random number in [0, 1], the chaotic 
model is used for position updating when � ≥ 0.5 , as shown 
in Eq. (4). Otherwise, Eq. (2) is still executed. Algorithm 1 
shows the pseudo-code of the ChOA algorithm:

(3)

a1 = 2 ⋅ f1 ⋅ r1 − f1, dAttacker =
|
|
c ⋅ XAttacker(t) − m ⋅ X(t)|

|

a2 = 2 ⋅ f2 ⋅ r1 − f2, dBarrier =
|
|c ⋅ XBarrier(t) − m ⋅ X(t)||

a3 = 2 ⋅ f3 ⋅ r1 − f3, dChaser =
|
|c ⋅ XChaser(t) − m ⋅ X(t)||

a4 = 2 ⋅ f4 ⋅ r1 − f4, dDriver =
|
|
c ⋅ XDriver(t) − m ⋅ X(t)|

|

(4)Xchimp(t + 1) = Chaotic_value

Highly disruptive polynomial mutation

Common mutation operators include random mutation, non-
uniform mutation, and polynomial mutation. For the tradi-
tional polynomial mutation (PM), the mutation has no effect 

End
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Fig. 3  Flowchart of EChOA
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when the variable is on the boundary. HDPM improves this 
disadvantage [38, 39]. The form of the operator is in Eq. (5):

where ub and lb represent the upper and lower boundaries 
of the search space, respectively. X is the parent, Xnew is the 
offspring. The coefficient δk is calculated by Eqs. (6)–(8):

where r is a random number in [0, 1], ηm is the mutation 
index. It can be observed from Eq. (8) that it can still make 
full use of the whole search space even if the variable is on 
one of the boundaries. This advantage maintains the diver-
sity of candidate solutions.

Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient is a non-para-
metric index used to measure the statistical correlation 
between the two series [40]. The two series ui and vi are 
sorted. The ranks u

′

i
 and v

′

i
 represent the positions of sorted 

ui and vi, respectively. The difference between them is 
d

i
= u

�

i
− v

�

i
, i = 1, 2, ...n. Spearman;s rank correlation coef-

ficient ρ is calculated as follows. Its value is in the range of 
[− 1, 1]. 0 means that the two series are no correlation. (0, 
1] means positive correlation, [− 1, 0) means negative cor-
relation, and the higher value means a stronger correlation:

where n represents the dimension of the series.

Beetle antennae operator

When a beetle (see Fig. 2) is preying, it receives the food 
smell of near-area using two antennas and finds the area 
with the strongest smell. If the antennae on one side 
receives a stronger concentration of smell, the beetle will 
turn to the same side; otherwise, it will turn to the other 
side. Considering the sense of smell, the beetle antennae 
search algorithm is formally proposed by Jiang and Li 

(5)X
new

= X + �
k
⋅ (ub − lb)

(6)�
1
=

X − lb

ub − lb

(7)�
2
=

ub − X

ub − lb

(8)

�
k
=

⎧
⎪
⎨
⎪
⎩

[2r + (1 − 2r) ⋅ (1 − �1)�m
+1]

1

�m+1 − 1, if r ≤ 0.5

1 − [2(1 − r) + 2(r − 0.5) ⋅ (1 − �2)�m
+1]

1

�m + 1 , otherwise

(9)� = 1 −
6
∑

d
2

i

n ⋅ (n2 − 1)

[41]. First, the random direction vector 
→

b is normalized 
to the following form:

where rnd(.) represents a random function, and n represents 
the dimension of search space. The two search behaviors 
in Eq. (11) simulates the beetle exploring the left and right 
areas using two antennas:

where X represents the original position of the beetle, X
r
 

represents the position obtained by the beetle exploring the 
right areas, X

l
 represents the position obtained by the beetle 

searching the left areas, d represents the distance between 
two antennas. The update rule is as follows:

where � represents the step size, C represents the attenuation 
rate, C = 2 [42]. � is calculated in Eq. (13):

(10)
→

b =
rnd(n, 1)

‖rnd(n, 1)‖

(11)
X

r
(t) = X(t) + d(t) ⋅

→

b

X
l
(t) = X(t) − d(t) ⋅

→

b

(12)d(t) =
�(t)

C

Table 1  Parameter settings of different algorithms

Algorithm Parameters Value

EO Parameter λ [0, 1]

Generation probability GP 0.5

Parameter a1 2

Parameter a2 1

LFD Threshold 2

Scalar CSV 0.5

Index β 1.5

Random number a1 10

Random number a2 0.00005

Random number a3 0.005

Parameter δ1 0.9

Parameter δ2 0.1

HFPSO Random number a 0.2

Attractiveness B0 2

Distance r 1

Acceleration coefficient c1 1.49445

Acceleration coefficient c2 1.49445

Inertia weight wmax 0.9

Inertia weight wmin 0.5

CGSA10 Initial value of chaotic map x0 0.7

Gravitational constant G0 100

Constant a 20

I-GWO Parameter a [0, 2]
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where K is the attenuation rate of � , K=0.95 [41]. Based on 
the above search behaviors, the new position update model 
of the beetle is shown in Eq. (14):

where sign(.) represents a sign function.

(13)�(t) = K ⋅ �(t − 1)

(14)X(t + 1) = X(t) + �(t) ⋅
→

b ⋅sign (f (Xr(t)) − f (Xl(t)))

Proposed algorithm

Although the native ChOA algorithm divides chimps into 
different social levels for cooperative hunting, it lacks popu-
lation diversity in the initialization phase. Besides, it also 
falls in the local optimum easily in the last detailed search 
phase. In this section, three strategies, including HDPM, 

Table 2  Details of 12 classical benchmark functions

Function Class Range

F
01
(x) =

∑n

i=1
x

2

i
Unimodal [− 100, 100]

F
02
(x) =

∑n

i = 1
�
�xi

��+
∏n

i = 1
��xi

�
� Unimodal [− 10, 10]

F
03
(x) =

∑n

i = 1

�

∑i

j−1
xj

�2 Unimodal [− 100, 100]

F04(x) = max{|x
i
|, 1 < i < n} Unimodal [− 100, 100]

F05(x) =
∑n - 1

i=1

�

100(x
i+1 − x

2
i
)
2 + (x

i
− 1)2

�

Unimodal [− 30, 30]

F06(x) =
∑n

i=1

��

x
i

+ 0.5
��2 Unimodal [− 100, 100]

F07(x) =
∑n

i = 1
ix

4
i

+ random[0,1) Unimodal [− 1.28, 1.28]

F09(x) =
∑n

i = 1

�

x
2

i
− 10cos

�

2�x
i

�

+ 10
�

Multimodal [− 5.12, 5.12]

F10(x) = − 20exp

�

− 0.2

�

1

n

∑n

i = 1
x2

i

�

− exp

�

1

n

∑n

i = 1
cos

�

2�xi

�

�

+ 20 + e
Multimodal [− 32, 32]

F11(x) =
1

4000

∑n

i = 1
x

2

i
−
∏n

i = 1
cos

�

x
i

√

i

�

+ 1
Multimodal [− 600, 600]

F12(x) =
�

n

�
10sin

�
�y1

�
+
�n−1

i=1

�
yi − 1

�2
[1 + 10sin2

�
�yi+1

�
+
�
yn − 1

�2
�
+
�n

i=1
u
�
xi, 10, 100, 4

�

yi = 1 +
xi + 1

4
u
�
xi, a, k, m

�
=

⎧⎪⎨⎪⎩

k
�
xi − a

�m

0

k
�
−xi − a

�m

xi > a

−a < xi < a

xi < a

Multimodal [− 50, 50]

F13(x)= 0.1{sin
2
(

3�x1

)

+
∑n

i=1

(

x
i
− 1

)2[

1 + sin
2
(

3�x
i
+1

)]

+
(

x
n
− 1

)2

×
[

1 + sin
2
(

2�x
n

)]

}+
∑n

i=1
u
(

x
i
, 5, 100, 4

)

Multimodal [− 50, 50]

Table 3  Settings of different strategy combinations

HDPM Correlation coefficient and 
beetle antennae operator

ChOA 0 0

ChOA1 1 0

ChOA2 0 1

EChOA 1 1

Table 4  Average fitness results of different combinations on 12 clas-
sical benchmark functions

F ChOA ChOA1 ChOA2 EChOA

F01 7.7223E − 06 9.3568E − 17 1.6848E − 22 1.2202E − 36

F02 3.2295E − 05 6.9785E − 12 1.4127E − 17 6.5794E − 23

F03 1.0266E + 02 6.6010E − 09 1.2706E − 12 4.3166E − 19

F04 2.8411E − 01 1.3391E − 10 3.8679E − 13 2.5706E − 16

F05 2.8850E + 01 1.6184E + 01 1.4163E + 01 1.0437E + 01

F06 3.6396E + 00 1.9711E + 00 1.2517E + 00 1.1092E + 00

F07 1.4896E − 03 9.3673E − 04 5.8464E − 05 1.0987E − 06

F09 1.4008E + 01 5.7691E + 00 1.7842E − 01 1.4185E − 01

F10 1.9962E + 01 2.2204E − 10 1.5099E − 14 1.9481E − 14

F11 2.6092E − 02 1.8164E − 02 4.2539E − 03 3.1093E − 03

F12 4.7654E − 01 3.7679E − 05 5.2757E − 10 7.4552E − 12

F13 2.7403E + 00 1.2777E − 02 9.0927E − 07 1.0024E − 10
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Spearman’s rank correlation coefficient, and beetle anten-
nae operator are introduced to enhance the performance of 
the native ChOA algorithm. The enhanced version is named 
EChOA. The pseudo-code is given in Algorithm 2, and the 
flowchart is shown in Fig. 3. The details of the proposed 
algorithm are explained as follows.

First, the HDPM strategy is introduced to enhance the 
population diversity in the initialization phase. A well-
organized optimizer should achieve an appropriate balance 
between exploration and exploitation. Further, high explo-
ration steps are carried out at the beginning of the search, 
and more exploitation steps are often required in the last 
phase. By introducing the HDPM strategy, the exploration 
capability of the algorithm is enhanced. Second, the Spear-
man’s rank correlation coefficient of the driver chimps with 
respect to the attacker chimp is calculated. In the native 

ChOA algorithm, the attacker chimp as the leader plays an 
important role in guiding the population. However, it can be 
observed from Eq. (2) that the final position is updated not 
only by the attacker chimp but also by the driver chimps with 
less social level and fit. Therefore, by calculating the Spear-
man’s rank correlation coefficient, it can determine whether 
the driver chimp is near or far away from the attacker chimp. 
For the driver chimp far away from the attacker chimp, we 
change the position updating method to improve the fit. 
Finally, two series are negatively correlated or uncorrelated 
when the Spearman’s rank correlation coefficient is less 
than or equal to 0. Meanwhile, the less fit chimp (the driver 
chimp) is improved. The beetle antennae operator is intro-
duced. As described in Sect. “Beetle antennae operator”, the 
less fit chimp gains visual capability. The position updating 
method of chimp is improved using Eq. (14). It utilizes its 

Fig. 4  a Parameter space. b Search history of EChOA. c Trajectory of EChOA in the first chimp. d Convergence curve of ChOA and EChOA
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left and right eyes to observe the environment on both sides 
and further determines the direction of the next step. The 
purpose of this improvement is to prevent the driver chimp 

from falling in the local optimum due to poor performance. 
It is considered to boost the exploitation trend.

Table 5  Average fitness 
results of ChOA and EChOA 
in different dimensions on 12 
classical benchmark functions

F 30 50 100

ChOA EChOA ChOA EChOA ChOA EChOA

F01 7.7223E − 06 1.2202E − 36 5.2398E − 03 2.2325E − 35 9.5014E − 01 8.3822E − 33

F02 3.2295E − 05 6.5794E − 23 5.5773E − 03 1.4383E − 21 6.4973E − 02 5.0171E − 20

F03 1.0266E + 02 4.3166E − 19 2.1025E + 02 6.7592E − 19 9.0444E + 02 1.1324E − 18

F04 2.8411E − 01 2.5706E − 16 2.8994E + 00 3.3147E − 16 8.2501E + 01 4.3428E − 15

F05 2.8850E + 01 1.0437E + 01 4.8972E + 01 4.8627E + 01 1.7901E + 02 9.7893E + 01

F06 3.6396E + 00 1.1092E + 00 8.6031E + 00 4.0003E + 00 2.3056E + 01 1.2507E + 01

F07 1.4896E − 03 1.0987E − 06 1.3708E − 03 1.5895E − 06 4.0216E − 02 4.6171E − 05

F09 1.4008E + 01 1.4185E − 01 3.2399E + 01 5.6843E − 01 4.0426E + 01 1.1369E + 00

F10 1.9962E + 01 1.9481E − 14 1.9965E + 01 6.4837E − 12 1.9971E + 01 1.4317E − 11

F11 2.6092E − 02 3.1093E − 03 1.0259E − 01 6.4109E − 03 1.0591E − 01 9.9920E − 03

F12 4.7654E − 01 7.4552E − 12 8.3770E − 01 1.8173E − 11 8.7288E − 01 4.8866E − 11

F13 2.7403E + 00 1.0024E − 10 4.7009E + 00 2.8465E − 10 9.9282E + 00 7.5741E − 08

Table 6  Fitness results of different algorithms on 12 classical benchmark functions

F EO LFD HFPSO CGSA10 I-GWO ChOA EChOA

F01 Avg 1.6170E − 23 3.0993E − 07 3.2812E − 05 9.4112E + 04 1.7304E − 28 7.7223E − 06 1.2202E − 36

Std 7.8302E − 23 1.0756E − 07 2.5400E − 05 1.4041E + 04 2.4004E − 28 1.2221E − 05 6.3326E − 36

F02 Avg 1.9691E − 12 3.2558E − 04 5.2264E − 03 4.1778E − 02 7.5942E − 18 3.2295E − 05 6.5794E − 23

Std 9.3125E − 12 4.8672E − 05 2.6546E − 03 1.4479E − 01 6.4458E − 18 3.4737E − 05 6.5418E − 23

F03 Avg 1.8194E − 18 1.5230E − 06 1.4441E + 02 1.6653E + 06 2.9177E − 03 1.0266E + 02 4.3166E − 19

Std 6.8144E − 18 4.0094E − 07 7.4368E + 01 1.8665E + 06 1.0877E − 02 2.4079E + 02 1.5968E − 18

F04 Avg 8.1523E − 14 3.4102E − 04 2.0783E + 00 9.5673E + 01 2.8119E − 05 2.8411E − 01 2.5706E − 16

Std 3.1401E − 13 4.9296E − 05 6.1350E − 01 2.5393E + 00 3.7238E − 05 2.5059E − 01 8.9657E − 16

F05 Avg 1.2440E + 01 2.8051E + 01 5.1327E + 01 2.7193E + 08 2.4392E + 01 2.8850E + 01 1.0437E + 01

Std 1.4225E + 01 1.4211E − 01 4.0559E + 01 6.8410E + 07 7.9887E − 01 2.8108E − 01 8.2122E − 01

F06 Avg 7.1125E − 10 1.8184E + 00 6.1290E − 01 9.2573E + 04 4.0925E − 02 3.6396E + 00 1.1092E + 00

Std 1.0317E − 09 3.9499E − 01 1.0977E + 00 1.5578E + 04 9.1425E − 02 3.2955E − 01 4.3338E − 01

F07 Avg 9.7758E − 05 1.0628E + 00 1.4883E − 02 1.0395E − 01 2.5625E − 03 1.4896E − 03 1.0987E − 06

Std 1.1316E − 04 5.2436E − 01 5.9072E − 03 4.0837E − 02 1.0006E − 03 1.4926E − 03 7.9915E − 07

F09 Avg 2.9849E + 00 7.4709E − 06 4.8306E + 01 1.8241E + 01 2.0584E + 01 1.4008E + 01 1.4185E − 01

Std 8.9546E + 00 1.8776E − 05 1.5342E + 01 5.0232E + 00 7.2316E + 00 1.5233E + 01 6.0519E − 01

F10 Avg 7.8859E − 12 1.3036E − 04 5.5938E − 01 2.0703E + 01 6.0811E − 14 1.9962E + 01 1.9481E − 14

Std 4.0699E − 11 1.9759E − 05 6.8395E − 01 2.1803E − 01 1.1036E − 14 1.1443E − 03 3.6327E − 15

F11 Avg 0.0000E + 00 8.5356E − 07 1.1200E − 02 9.0754E + 02 3.2914E − 03 2.6092E − 02 3.1093E − 03

Std 0.0000E + 00 2.2361E − 07 1.5621E − 02 1.4253E + 02 6.3726E − 03 4.6616E − 02 7.3349E − 03

F12 Avg 1.0639E − 10 7.7341E − 01 2.0065E − 02 9.3354E + 08 1.4692E − 05 4.7654E − 01 7.4552E − 12

Std 1.3557E − 10 1.2477E − 01 5.5352E − 02 3.0820E + 08 4.3331E − 05 1.9997E − 01 2.9305E − 12

F13 Avg 7.0539E − 10 2.9328E + 00 1.8018E − 02 1.8117E + 09 1.0566E − 01 2.7403E + 00 1.0024E − 10

Std 2.1688E − 09 1.3236E − 01 3.5997E − 02 5.2650E + 08 1.2856E − 01 1.4713E − 01 2.8722E − 11
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good performance. Table 1 shows the parameter settings of 
different algorithms. The values used are the same as those 
in the corresponding references. Besides, the maximum of 
iterations is 500, and the population size is 30. All the experi-
mental series were carried out on MATLAB R2016a, and the 
computer was configured as Intel(R) Core (TM) i5-1035G1 
CPU @1.00 GHz 1.19 GHz, using Microsoft Windows 10 
system. Each experiment is run 30 times independently.

Impact of introduced strategies

Due to the mutual influence among the strategies, in this sub-
section, 12 classical benchmark functions [46] are used to ver-
ify the effectiveness of the introduced strategies. The formula 
of functions, the class, and the range of variables are given 
in Table 2. The number of variables and the global optimum 
is all 30 and 0, respectively. The settings of the samples of 
different strategy combinations are shown in Table 3. Here, 1 
and 0 are used to represent whether the strategy is introduced, 
respectively. The average fitness results obtained are shown 
in Table 4. Note that the best values has been highlighted in 
boldface in all following tables. Based on these results, the 
three enhanced versions all outperform the native algorithm. 
EChOA outperforms ChOA1 for 12 classical benchmark func-
tions, and ChOA2 for 11 functions. On the one hand, ChOA1 
and ChOA2, respectively, reach a higher level in terms of 
search breadth and search accuracy compared with ChOA. 
On the other hand, the performance of EChOA is comprehen-
sively improved with the effective combination of the intro-
duced strategies. After validation, EChOA is selected as the 
final optimized version of the native algorithm.

Table 7  Details of 15 CEC2017 benchmark functions

*N represents the basic number of functions

No. Name Class Fmin

F04 SRF Rosenbrock’s function Multimodal 400

F05 SRF Rastrigin’s function Multimodal 500

F06 SRF expanded Scaffer’s F6 function Multimodal 600

F07 SRF Lunacek Bi-Rastrigin function Multimodal 700

F08 SRF noncontinuous Rastrigin’s function Multimodal 800

F09 SRF Levy function Multimodal 900

F11 HF1(N = 3) Hybrid 1100

F16 HF6(N = 4) Hybrid 1600

F17 HF6(N = 5) Hybrid 1700

F19 HF6(N = 5) Hybrid 1900

F21 CF1(N = 3) Composition 2100

F25 CF5(N = 5) Composition 2500

F26 CF6(N = 5) Composition 2600

F27 CF7(N = 6) Composition 2700

F29 CF9(N = 3) Composition 2900

Function optimization experiments

In this section, the performance of the proposed EChOA 
algorithm is evaluated based on the function optimization. 
The native ChOA algorithm and five state-of-the-art algo-
rithms from 2017 to 2021, including EO [44], LFD [45], 
HFPSO [25], CGSA10 [26], and I-GWO [36], are used as 
competitors to verify the improvements of the proposed algo-
rithm. Some of these comparison algorithms are the native 
ones recently proposed, and some are improved ones with 
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Qualitative analysis

Figure 4 shows the qualitative results of testing on F05, F07, 
and F13. Figure 4b shows the two-dimensional scatter plot 
of the search history of EChOA. Through observation, it 
can be seen that chimps are scattered in the entire search 
space in the early phase, and concentrated rapidly in the 
later phase. When addressing different functions, the density 
of distribution is significantly different. This demonstrates 
that EChOA can change the balance between exploration 
and exploitation. Figure 4c shows the trajectory of the first 
chimp. There are some sudden changes in the early optimi-
zation phase. It reveals that EChOA does not fall into the 
early local optimum and has better exploration capability. 
The amplitude of these fluctuations gradually decreases with 
the lapse of iteration. Finally, the chimp tends to be stable 
and converges to the optimal position. Figure 4d shows the 
convergence curve of ChOA and EChOA. For functions such 

as F05, F07, and F13, EChOA have a better fitness curve that 
lasts 500 iterations than ChOA. EChOA can find a smaller 
solution, which demonstrates that the excellent convergence 
capability is one of the features for EChOA.

Analysis of scalability

Scalability is an important indicator of a new-designed algo-
rithm. By testing the different dimensions of the benchmark 
function, we can effectively judge the influence of dimen-
sion expansion on the execution efficiency of the algorithm. 
According to experience, 12 classical benchmark functions 
are tested on three dimensions of 30, 50, and 100. The experi-
mental results are made in Table 5. It can be seen from the 
data comparison that as the number of dimension increases, 
the optimization performance of two algorithms gradually 
decreases. The main reason is that the dimension of data 
reflects the number of factors to be optimized. The larger 

Table 8  Fitness results of different algorithms on 15 CEC2017 benchmark functions

F EO LFD HFPSO CGSA10 I-GWO ChOA EChOA

F04 Avg 3.3818E + 03 8.5581E + 02 4.4101E + 02 2.3377E + 04 4.0384E + 02 6.5063E + 02 4.0338E + 02

Std 1.3435E + 03 1.1135E + 02 4.5452E + 01 1.5951E + 04 1.2163E + 00 1.8229E + 02 1.1019E + 00

F05 Avg 6.5871E + 02 5.8589E + 02 5.5292E + 02 8.2374E + 02 5.1198E + 02 5.6072E + 02 5.0707E + 02

Std 3.2326E + 01 1.3714E + 01 1.8402E + 01 1.2098E + 02 6.3950E + 00 1.3426E + 01 5.7011E + 00

F06 Avg 6.9142E + 02 6.4641E + 02 6.2194E + 02 7.6954E + 02 6.0014E + 02 6.4028E + 02 6.0012E + 02

Std 1.0649E + 01 7.2723E + 00 1.3521E + 01 4.0641E + 01 3.6350E − 02 1.0790E + 01 3.9394E + 00

F07 Avg 8.9003E + 02 8.4993E + 02 7.6343E + 02 1.6580E + 03 7.2761E + 02 8.0675E + 02 7.4266E + 02

Std 4.3783E + 00 1.4870E + 01 1.7263E + 01 2.5632E + 02 9.8944E + 00 1.7866E + 01 1.3513E + 01

F08 Avg 9.0325E + 02 8.8154E + 02 8.3952E + 02 8.0632E + 02 8.0787E + 02 8.4792E + 02 8.1919E + 02

Std 1.6861E + 01 9.9282E + 00 1.4438E + 01 8.2518E + 01 6.5295E + 00 9.7080E + 00 5.9720E + 00

F09 Avg 2.7393E + 03 1.8209E + 03 1.1775E + 03 1.3836E + 04 9.0001E + 02 1.3950E + 03 9.3767E + 02

Std 3.2260E + 02 2.1994E + 02 3.0667E + 02 6.7106E + 03 1.0486E − 02 3.0565E + 02 5.9709E + 01

F11 Avg 3.4421E + 04 1.7873E + 03 1.1959E + 03 4.4827E + 08 1.1051E + 03 1.3990E + 03 1.1044E + 03

Std 2.2575E + 04 2.8833E + 02 5.2380E + 01 6.6524E + 08 2.1797E + 00 1.0773E + 02 1.8980E + 00

F16 Avg 2.6478E + 03 2.0525E + 03 1.9629E + 03 2.7739E + 04 1.6066E + 03 1.9608E + 03 1.6050E + 03

Std 2.1697E + 02 1.1639E + 02 1.5877E + 02 4.2371E + 04 4.2364E + 00 1.4878E + 02 3.2319E + 00

F17 Avg 2.2014E + 03 1.8927E + 03 1.8248E + 03 2.6971E + 05 1.7394E + 03 1.7883E + 03 1.7357E + 03

Std 8.9954E + 01 4.9418E + 01 8.3997E + 01 3.8333E + 05 1.5305E + 01 1.6272E + 01 1.4215E + 01

F19 Avg 9.9979E + 07 2.6170E + 04 3.5177E + 04 2.1767E + 10 1.9581E + 03 2.4709E + 04 2.5950E + 04

Std 1.3030E + 08 3.6799E + 04 3.8300E + 04 2.4308E + 10 3.8432E + 01 8.6563E + 03 7.0906E + 04

F21 Avg 2.4567E + 03 2.3088E + 03 2.3377E + 03 3.0230E + 03 2.2819E + 03 2.3213E + 03 2.2200E + 03

Std 2.6438E + 01 3.6122E + 01 4.7750E + 01 7.0541E + 02 4.9986E + 01 5.5371E + 01 2.5314E + 01

F25 Avg 4.5200E + 03 3.2740E + 03 2.9581E + 03 1.0893E + 04 2.9053E + 03 3.0282E + 03 2.8382E + 03

Std 3.9231E + 02 1.1144E + 02 5.0193E + 01 4.5375E + 03 1.6562E + 01 7.2071E + 01 1.4367E + 01

F26 Avg 4.9095E + 03 3.6120E + 03 3.2147E + 03 8.5021E + 03 2.8935E + 03 3.9488E + 03 2.8389E + 03

Std 4.0007E + 02 1.6963E + 02 3.4227E + 02 3.0947E + 03 2.5392E + 01 3.5213E + 02 1.9843E + 01

F27 Avg 3.3716E + 03 3.1539E + 03 3.1538E + 03 7.1836E + 03 3.0896E + 03 3.1115E + 03 3.0089E + 03

Std 2.1780E + 02 2.3373E + 01 3.9370E + 01 3.1198E + 03 4.9590E − 01 1.8961E + 01 2.9929E + 01

F29 Avg 3.9498E + 03 3.4109E + 03 3.3864E + 03 9.7546E + 06 3.1677E + 03 3.3832E + 03 3.1063E + 03

Std 1.0809E + 02 6.4239E + 01 9.3976E + 01 3.2010E + 07 2.0089E + 01 9.3948E + 01 1.7743E + 01
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the dimension, the more complex the search space. On the 
other hand, Table 5 also show that the optimization results 
of EChOA are always better than that of ChOA, and the gap 
of optimization effect becomes more and more significant as 
the number of dimension increases. When addressing high-
dimensional problems, EChOA can maintain well exploitation 
while exploring certain optimality.

Comparison with other algorithms on classical 
benchmark functions

Table 6 gives the average (Avg) and the standard deviation 
(Std) of fitness obtained by each algorithm on 12 classical 
benchmark functions. It can be seen from the table above 
that EChOA gives the best results in general. For example, in 
the case of F01, the average fitness values are 1.6170E − 23, 
3.0993E − 07, 3.2812E − 05, 9.4112E + 04, 1.7304E − 28, 
7.7223E − 06, and 1.2202E − 36 for EO, LFD, HFPSO, 
CGSA10, I-GWO, ChOA, and EChOA, respectively. To ver-
ify the stability of the proposed algorithm, the Std indicator 
is also used. A lower value of Std indicates better stability. 
From Table 6, it can be found that EChOA gives lower val-
ues as compared to other algorithms, which shows the bet-
ter consistency and stability of the proposed algorithm. In 
essence, the results of unimodal benchmark functions reflect 
the high exploitation of the proposed algorithm. Consider-
ing the characteristics of multimodal benchmark functions, 
it can be said that EChOA has a robust capability to avoid 
the local optimum.

Table 9  Runtime results of different algorithms on 15 CEC2017 benchmark functions

F EO LFD HFPSO CGSA10 I-GWO ChOA EChOA

F04 1.2579E − 01 2.2316E + 00 1.3538E − 01 9.4234E − 01 5.2318E − 01 1.0168E + 00 1.9123E + 00

F05 1.8745E − 01 2.2287E + 00 9.3462E − 02 6.2194E − 01 5.9093E − 01 7.0633E − 01 1.9154E + 00

F06 3.6564E − 01 2.3182E + 00 1.1842E − 01 5.8494E − 01 6.7541E − 01 8.6802E − 01 1.7614E + 00

F07 3.0977E − 01 2.5804E + 00 1.2970E − 01 6.6852E − 01 5.5228E − 01 9.7160E − 01 1.0894E + 00

F08 3.2849E − 01 2.2765E + 00 1.3049E − 01 7.5798E − 01 5.4430E − 01 1.0369E + 00 1.1677E + 00

F09 1.5083E − 01 2.4313E + 00 1.2641E − 01 6.3035E − 01 5.4478E − 01 9.5658E − 01 1.3126E + 00

F11 3.3954E − 01 2.5419E + 00 1.1912E − 01 7.0190E − 01 5.5882E − 01 8.8230E − 01 1.0391E + 00

F16 1.3180E − 01 2.2316E + 00 1.4275E − 01 7.8232E − 01 5.4188E − 01 1.0679E + 00 8.3449E − 01

F17 1.5389E − 01 2.2803E + 00 9.3727E − 02 8.5148E − 01 5.7463E − 01 7.0120E − 01 8.0784E − 01

F19 3.6973E − 01 2.7213E + 00 1.5701E − 01 9.7306E − 01 7.3966E − 01 1.0056E + 00 8.8346E − 01

F21 2.1897E − 01 2.6679E + 00 1.4510E − 01 8.6626E − 01 5.8018E − 01 1.1361E + 00 9.7240E − 01

F25 3.9999E − 01 2.3264E + 00 9.6235E − 02 5.1479E − 01 5.9742E − 01 7.1238E − 01 8.4313E − 01

F26 4.5253E − 01 2.3452E + 00 1.1605E − 01 6.2516E − 01 6.2773E − 01 7.5772E − 01 9.6169E − 01

F27 4.3989E − 01 2.3677E + 00 1.2916E − 01 8.7839E − 01 6.2384E − 01 9.3619E − 01 1.4167E + 00

F29 3.9911E − 01 2.5651E + 00 1.4910E − 01 8.1732E − 01 6.1274E − 01 1.0805E + 00 8.3510E − 01

Table 10  Experimental results of Wilcoxon rank-sum test

Algorithm Multimodal Hybrid Composition

EChOA vs. EO 1.3203E − 03 1.1429E − 03 9.5238E − 04

EChOA vs. LFD 1.4289E − 03 1.1429E − 03 9.5238E − 04

EChOA vs. HFPSO 6.9913E − 03 4.5132E − 03 2.2222E − 03

EChOA vs. CGSA10 4.1126E − 04 2.8571E − 04 1.5873E − 04

EChOA vs. I-GWO 1.0000E − 02 8.8571E − 03 5.4762E − 03

EChOA vs. ChOA 4.8485E − 03 6.8571E − 03 1.5079E − 03

Table 11  Experimental results of Friedman test

Algorithm Multimodal Hybrid Composition

EO 5.5000 6.0000 5.6000

LFD 4.4167 4.2500 3.9000

HFPSO 4.0000 4.1250 4.0000

CGSA10 6.5000 7.0000 7.0000

I-GWO 1.6667 1.7500 2.2000

ChOA 4.2500 3.1250 4.0000

EChOA 1.5500 1.6000 1.3000

Chi-sq 50.4643 41.0893 47.3571

p-value 3.7939E − 09 2.7807E − 07 1.5880E − 08

Table 12  Settings of different 
control parameters

ηm K

EChOA1 0.2 0.70

EChOA2 0.4 0.80

EChOA3 0.6 0.90

EChOA4 0.8 0.93

EChOA5 1 0.95

EChOA6 2 0.97
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Comparison with other algorithms on CEC2017 
benchmark functions

In this subsection, 15 benchmark functions from CEC2017 
[47] are used to further evaluate the performance of the 
proposed EChOA algorithm. The name, the class, and the 
global optimum of functions are given in Table 7. The num-
ber and the range of variables are all 10 and [− 100, 100], 
respectively. Compared with the classical benchmark func-
tions, the selected benchmark functions with constraints and 
high computational cost are challenging landscapes.

Table 8 gives the average (Avg) and the standard devia-
tion (Std) of fitness obtained by each algorithm on some 
CEC2017. Because these functions provide complex shapes 
and many local optimums, they approximate the search space 

of real-world problems. In terms of Avg, EChOA obtains 
the best results on 73.33% of functions. For “F09”, I-GWO 
algorithm ranks first, and the proposed algorithm obtains the 
second result. In terms of Std, EChOA gives lower values 
on 66.67% of functions. These results may prove that the 
proposed algorithm can transition from high exploration to 
more exploitation. In other words, a smooth relationship is 
achieved between them. The convergence curve shows the 
trend of fitness value. Figure 5 gives convergence curves of 
F05, F07, F09, F25, F26, and F29. Comparing each conver-
gence curve, EChOA can effectively find a better minimum. 
Effective updates are guaranteed both in the early and late 
iterations.

The computational complexity can qualitatively describe 
the runtime of an algorithm. The computational complexity 
of EChOA is given based on four factors such as the num-
ber of chimp N, the number of dimension D, the maximum 
number of iterations T, the cost of function F. In the ini-
tialization process, the computational complexity is O(N). 
The computational complexity of function evaluation is 
O(T × N × F). The computational complexity is expressed 
as O(T × N) for the attacker selection. The computational 
complexity of updating the less fit chimps’ position based 
on beetle antennae operator is O(T × (N − 3) × D × 3), where 
D × 3 represents the left, right and new position of them. 
The computational complexity of updating the attacker’s, 
the barrier’s, and the chaser’s positions is O(T × 3 × D). The 
overall computational complexity of EChOA is O(N × (1 
+ T × (F + 1 + 3D) − 6TD)). From the quantitative analysis 
results, Table 9 gives the average runtime obtained by each 
algorithm on some CEC2017. To conclude more intuitively, 
the ranking of the runtime of each algorithm in most cases is 
as follows: LFD > EChOA > ChOA > CGSA10 > I-GWO > E
O > HFPSO. From the results, it can be argued that EChOA 
consumes more time than ChOA and ranks second to last. 
An explanation is that introduced strategies are added to the 

Table 13  Average ranking of 
Friedman test

EChOA1 EChOA2 EChOA3 EChOA4 EChOA5 EChOA6

Rank 2.9211 2.8520 2.3800 2.7734 2.0860 2.1566

A
D

C
B

y4
y1

y3
y2

Driver Follower

Fig. 6  Gear train [49]

Table 14  Experimental results of gear train design

Algorithm y1 y2 y3 y4 Fmin

EO 48.6528 17.5152 22.3078 54.1230 1.1661E − 10

LFD 31.9406 12.5234 22.3779 59.1399 3.8248E − 09

HFPSO 59.1263 15.0724 21.0304 37.1089 3.0670E − 10

CGSA10 50.3580 17.4541 14.4831 33.3329 1.3616E − 09

I-GWO 49.8187 19.4205 16.7202 43.0977 2.7009E − 12

ChOA 46.5509 12.0000 26.1901 47.4641 9.9216E − 10

EChOA 43.7742 19.0186 16.9050 49.1866 2.7009E − 12

Fig. 7  Welded beam [49]

Table 15  Experimental results of welded beam design

Algorithm y1 y2 y3 y4 Fmin

EO 0.2057 3.4705 9.0366 0.2057 1.7249

LFD 0.1857 3.9070 9.1552 0.2051 1.7700

HFPSO 0.2035 3.5284 9.0042 0.2072 1.7354

CGSA10 0.2088 3.4205 8.9975 0.2100 1.7483

I-GWO 0.2057 3.4705 9.0366 0.2057 1.7249

ChOA 0.2134 3.3812 8.7118 0.2289 1.8382

EChOA 0.2007 3.3476 9.0415 0.2058 1.7020
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native algorithm. The high time consumption of ChOA itself 
is also the main reason. To improve the accuracy of solu-
tions, we sacrifice some runtime. It can also be concluded 
that the limitation of EChOA is still the computational com-
plexity that needs to be reduced.

A full statistical analysis of results based on differ-
ent performance measures is included and commented on 
below. Wilcoxon rank-sum test performs a rank sum test of 
the hypothesis that two independent samples and returns 
the p-value from the test. The null hypothesis is defined as 
no significant difference between the two samples. In this 
paper, the level of significance is stipulated as 0.05. p > 0.05 
casts doubt on the validity of the null hypothesis. The other 
non-parametric statistical test, the Friedman test, is used to 
detect significant differences between the behaviors of two 
or more algorithms. It returns an additional structure, includ-
ing ranking, statistic, and p-value [48]. Table 10 gives the 
exact p-values based on the Wilcoxon rank-sum test. From 
Table 10, it can be observed p-values are less than 0.05 for 
three types of functions. EChOA has significant improve-
ments over other algorithms. Besides p-values, Table 11 
also gives rankings and Chi-squares (Chi-sq) based on the 
Friedman test. EChOA gets the 1st rank compared to other 
algorithms. When the degree of freedom is 6, and the level 
of significance is 0.05, the critical value of the test statistic is 
12.592. The calculated Chi-squared is greater than 12.592. It 
also proves that there are significant differences between the 
proposed algorithm and the other comparison algorithms.

Analysis of control parameters

In this subsection, the sensitivity of control parameters 
in EChOA is analyzed using experiments, as shown in 
Tables 12 and 13. The experimental design is consistent with 
the previous subsection. It can be found from the details of 
EChOA that the main parameters include the mutation index 
ηm and the attenuation rate of the step size K. The function 
of parameter ηm is to control the diversity of the population. 
The function of parameter K is to determine the step length 
of the search. In Table 13, the best ranking is achieved when 
ηm = 1 and K = 0.95. Besides, the results do not increase or 
regularly decrease with the changes of ηm and K. This is 
because the small value of ηm attempts to maintain a large 
diversity of solutions. And we need a smaller step size to 
obtain a more accurate optimum. But it is also a fact that 
too large diversity in the early phase is not beneficial to the 
later convergence, and too small a step size will lead to more 
computational consumption. So the ranking result is a trade-
off between them.

Engineering optimization experiments

In this section, to highlight the applicability of the proposed 
EChOA algorithm, three engineering design problems are 
selected for further testing. They are gear train design, 
welded beam design, and speed reducer design. The descrip-
tions and mathematical models of all engineering problems 
are provided in detail below. All issues are implemented in 
MATLAB through the barrier penalty function. Each algo-
rithm runs independently for each project 30 times, with 
a selected chimp population of 30 and an iteration of 500. 
Finally, the corresponding evaluations for different projects 
are given.

Design of gear train

This is an unconstrained optimization problem that was pro-
posed by Sandgren. Figure 6 shows the gear train with four 
variables (y1, y2, y3, and y4). The final aim is to minimize the 

Fig. 8  Speed reducer [49]

Table 16  Experimental results 
of speed reducer design

Algorithm y1 y2 y3 y4 y5 y6 y7 Fmin

EO 3.5000 0.7000 17.0000 7.3002 7.8000 3.3502 5.2867 2996.3567

LFD 3.5161 0.7000 17.0000 7.6815 7.8000 3.3513 5.2891 3007.7820

HFPSO 3.5240 0.7000 17.0000 7.6314 7.9007 3.4138 5.3834 3003.7076

CGSA10 3.5003 0.7000 17.0000 7.3350 7.8806 3.3692 5.2897 3005.5830

I-GWO 3.5000 0.7000 17.0000 7.3000 7.8000 3.3502 5.2867 2996.3482

ChOA 3.5005 0.7000 17.0000 7.3347 7.8806 3.3690 5.2899 3005.5828

EChOA 3.5000 0.7000 17.0000 7.3000 7.71532 3.3502 5.2867 2994.4711
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gear ratio ( 
y

2
y

3

y
1
y

4

 ). The mathematical model is designed as 

follows:

where 12 ≤ y1, y2, y3, y4 ≤ 60.
The results of variables and fitness are reported in 

Table 14. EChOA obtains the best fitness corresponding to 
the optimal solution (43.7742, 19.0186, 16.9050, 49.1866). 
Compared with other algorithms, EChOA can be considered 
to be more suitable for solving this design problem.

Design of welded beam

As it is named, this problem deals with designing a welded 
beam to minimize the fabrication cost. The minimization 
process is subject to constraints such as shear stress, bending 
stress in the beam, buckling load on the bar, end deflection 
of the beam, and side constraints. This optimum design has 
four parameters: the thickness of weld (y1), the length of the 
clamped bar (y2), the height of the bar (y3), and the thick-
ness of the bar (y4), as shown in Fig. 7. The mathematical 
formulation is also illustrated as follows:

where 0.1 ≤ y1, y4 ≤ 2, 0.1 ≤ y2, y3 ≤ 10.

(15)min F(y1, y2, y3, y4) =

(

1

6.931
−

y2y3

y1y4

)2

(16)
min F(y1, y2, y3, y4) = 1.10471y2

1
y2 + 0.04811y3y4(14.0 + y2)

(17)
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P − Pc(y1, y2, y3, y4) ≤ 0, 0.125 − y1 ≤ 0

1.10471y2

1
y2 + 0.04811y3y4(14.0 + y2) − 5.0 ≤ 0

Experimental results of the welded beam design problem 
are shown in Table 15. It is shown that the proposed algo-
rithm can find the lowest cost design. Thus, it is reasonable 
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Fig. 9  EChOA for training MLP

Table 17  Descriptions of datasets

Dataset No. of features No. of instances No. of 
classes

Balloon 4 16 2

Breast cancer 9 699 2

Table 18  Experimental results of different datasets

Dataset Algorithm MSE ± Std Clas-
sification 
rate

Balloon EO 3.7450E − 18 ± 6.1675E − 18 100

LFD 2.3629E − 10 ± 1.0864E − 09 100

HFPSO 4.8369E − 20 ± 9.2670E − 19 100

CGSA10 5.0816E − 11 ± 4.7952E − 10 100

I-GWO 1.2257E − 25 ± 2.5536E − 25 100

ChOA 3.7269E − 09 ± 5.1430E − 09 100

EChOA 4.9158E − 33 ± 1.4748E − 32 100

Breast cancer EO 3.9000E − 03 ± 4.8572E − 04 94

LFD 5.6858E − 03 ± 6.8054E − 04 86

HFPSO 1.2800E − 03 ± 1.8476E − 04 98

CGSA10 4.1453E − 03 ± 5.6329E − 04 97

I-GWO 1.2100E − 03 ± 8.7560E − 05 98

ChOA 1.5035E − 03 ± 3.4985E − 04 98

EChOA 1.0300E − 03 ± 2.4868E − 05 99
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to think that the proposed algorithm is feasible in solving 
such a problem.

Design of speed reducer

This structural optimization problem involves seven varia-
bles: the face width (y1), the module of teeth (y2), the number 
of teeth on pinion (y3), the length of shafts between bearings 
(y4, y5), and the diameter of shafts (y6, y7). Figure 8 shows 
the speed reducer. Considering nine constraints, the aim is 
to find the minimum weight of the speed reducer. The math-
ematical model is designed as follows:

where y1, y2, y3, y4, y5, y6, y7 ∈ R.
The results of variables and fitness are reported in 

Table 16. As it represents, EChOA has the superior capa-
bility to minimize the weight of the speed reducer com-
pared to other algorithms. This example also highlights 
the applicability of the proposed algorithm.

Training multilayer perceptron experiments

In this section, it is the first time to use the enhanced ChOA 
algorithm to train multilayer perceptron (MLP). MLP is 
a feedforward artificial neural network model, which can 
be used to solve classification and regression problems. In 
these perceptrons, there is at least one hidden layer besides 
one input layer and one output layer. Data information is 
transmitted in one direction only. The training process is 
as follows.

(19)
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The weighted (W) sum of inputs (x) is calculated using 
Eq. (21):

where n is the number of the input nodes, h is the number of 
the hidden nodes, and θ represents the bias. The output of 
hidden nodes is calculated using Eq. (22):

The final outputs are calculated based on outputs of each 
hidden node using Eqs. (23) and (24):

where p is the number of the output nodes. From the math-
ematical model, it can be analyzed that the weights W and 
biases θ are the most important parameters for defining the 
final outputs of perceptrons. The average mean square error 
( MSE ) is selected to evaluate the training model. The for-
mula is shown as the following:

where s is the number of the training samples, m is the num-
ber of outputs, d represents the desired output, o represents 
the actual output. After analysis, training MLP can be trans-
formed into minimizing the objective function MSE by opti-
mizing two parameters W and θ. In this paper, the Balloon 
dataset and Breast cancer dataset from the UCI repository 
[50] are used to evaluate the performance of EChOA for 
training MLP. Figure 9 shows the flowchart of the train-
ing process. Descriptions of these datasets are shown in 
Table 17. Assuming that the range of variables is [− 10, 
10]. Each algorithm runs 10 times independently, with a 
population size of 30 and the iteration number of 250. The 
number of hidden nodes is equal to 2N + 1 where N indicates 
the number of features of datasets [51].

Results and discussions

Table 18 gives MSE , standard deviation (Std), and classifi-
cation rate obtained by each algorithm on two datasets. For 
Balloon dataset, all algorithms achieve 100% classification 
accuracy due to its simplicity. EChOA provides best MSE 
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and Std. The second best results belong to I-GWO. For the 
Breast cancer dataset, EChOA is superior to other compari-
son algorithms in terms of “ MSE ± Std” and classification 
accuracy. Each dataset has a different search space, which 
needs the algorithm to a higher level of the local optimum 
avoidance. These results also prove the merit of the proposed 
algorithm. EChOA can find more appropriate weights and 
biases for multilayer perceptrons, making the performance 
of the neural network better.

Conclusions and future research

In this paper, an enhanced chimp optimization algorithm 
named EChOA is proposed based on three strategies. HDPM 
enhances the diversity of the population. The correlation 
coefficient is calculated to determine the individuals that 
need to be improved. Then the beetle antennae operator 
helps the less fit individual to jump out of the local optimum. 
To explore the best performance, the strategy combinations, 
qualitative indicators, scalability, and control parameters of 
EChOA are tested. Besides, EChOA is compared with dif-
ferent algorithms from 2017 to 2021 based on 27 unimodal, 
multimodal, hybrid, and composite benchmark functions. 
The exploitation, exploration, and local optimum avoidance 
capabilities of EChOA are analyzed comprehensively. Some 
statistical tests with 5% confidence evaluate the significance 
of the improvements. Finally, three engineering design prob-
lems and training multilayer perceptron are selected as the 
real-world development of EChOA. The overall experimen-
tal results show that EChOA has significant competitiveness 
for some state-of-art algorithms.

However, like other optimization algorithms, EChOA 
also has some limitations that need to be improved. By 
analyzing the computational complexity and runtime in 
the experiment section, high consumption is still the main 
limitation. We believe that this problem can be alleviated by 
introducing some parallel strategies such as the island model 
or co-evolutionary mechanism.

For future research, attention will be given to how to 
reduce the process cost without loss of accuracy of the solu-
tion. In this paper, EChOA resolved the parameters tuning 
problem with the multilayer perceptron. In the next case, the 
development of a binary version to evaluate the potential fea-
tures from the pool of features of a given machine learning/
deep learning problem is an exciting topic. Other applica-
tions, including image segmentation, Internet of Things, and 
multi-objective optimization are also worth investigating.
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