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In recent years, swarm-based stochastic optimizers have achieved remarkable results in tackling real-life problems in engineering and
data science. When it comes to the particle swarm optimization (PSO), the comprehensive learning PSO (CLPSO) is a well-established
evolutionary algorithm that introduces a comprehensive learning strategy (CLS), which effectively boosts the efficacy of the PSO.
However, when the single modal function is processed, the convergence speed of the algorithm is too slow to converge quickly to the
optimum during optimization. In this paper, the elite-based dominance scheme of another well-establishedmethod, grey wolf optimizer
(GWO), is introduced into the CLPSO, and the grey wolf local enhanced comprehensive learning PSO algorithm (GCLPSO) is
proposed.0anks to the exploitative trends of theGWO, the algorithm improves the local search capacity of theCLPSO.0enew variant
is compared with 15 representative and advanced algorithms on IEEE CEC2017 benchmarks. Experimental outcomes have shown that
the improved algorithm outperforms other comparison competitors when coping with four different kinds of functions. Moreover, the
algorithm is favorably utilized in feature selection and three constrained engineering construction problems. Simulations have shown
that the GCLPSO is capable of effectively dealing with constrained problems and solves the problems encountered in actual production.

1. Introduction

Optimization problems are common problems in real life, and
we need to achieve the best solution when tackling a specific
problem. With the increase of complexity of the problem, the
traditional gradient-based method is difficult to better opti-
mize some types of problems [1, 2]. To deal with this problem,
metaheuristic algorithms are widely used in real life. 0ese
algorithms use iterations and randomly generate optimal
solutions for optimization problems by simulating natural
phenomena or social behaviors [3–6]. 0e underlying idea
behind these technologies is usingmathematical algorithms to
simulate biological and physical systems in nature, such as

natural evolutionary and swarm intelligence algorithms.
Previous studies confirm that metaheuristic algorithms
possess more effectiveness than gradient-based algorithms in
coping with some problems that involve optimization [7–10].
Also, the metaheuristic algorithm (MA) has some weaknesses
to be improved. For example, convergence to an optimal
solution is relatively slow, and there is no universal model
when dealing with different problems.0erefore, it is required
to modify and enhance the core exploratory and exploitative
abilities of stochastic algorithms on some optimization
problems [11–18].
MA can be divided into swarm intelligence algorithms

and evolutionary algorithms (EA). In detail, the inspirations
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of EAs come from the biological evolution process, and the
mechanisms of competition and elimination are added into
the algorithms. 0e representative evolutionary algorithms
include differential evolution (DE) [19], genetic algorithm
(GA) [20], and evolutionary strategy (ES). 0e group be-
havior of animals inspires swarm intelligence algorithms, for
example, ant colony optimization (ACO) [21, 22], firefly
algorithm (FA) [23], whale optimization algorithm (WOA)
[24–28], moth-flame optimization (MFO) [29–31], grass-
hopper optimization algorithm (GOA) [32–34], bat algo-
rithm (BA) [35, 36], moth search algorithm (MSA) [37],
Harris hawks optimization [38], slimemould algorithm [39],
and so on [40–44].
PSO [45] is a MA proposed by Eberhart et al. in 1995,

which is motivated by the communication behaviors and
social interaction of animals. PSO simulates the hunting
behavior of the birds that cooperatively search for food. Each
member of the group adjusts their search model by learning
their own experience or other members. Inspired by this
phenomenon, a mathematical model was established. In the
PSO algorithm, a particle means a number of the group,
which is a potential solution of the problem optimized and
represents a point in the search space.0e position of food is
regarded as globally optimal. Each particle possesses a fitness
value and speed, which can be adjusted according to the
global optimal solution and the individual optimal solution.
Due to its small number of parameters and ease of use, the
PSO algorithm was used in function optimization [46], filter
design [47], proportional-integral-derivative (PID) control
[48], power allocation [49], and other scientific and engi-
neering applications [50–53]. However, the algorithm tends
to be trapped in local optimization when encountering
complex multimodal problems. With the purpose of im-
proving the performance of the algorithm, researchers have
come up with a large number of PSO variants to promote the
acceleration coefficient and inertia weight of the parameters
controlled [54, 55] and applied the population number
[56, 57] to the optimization problem. Gong et al. [58] added
GA to PSO to promote the convergence performance of the
algorithm. Zhan et al. [59] added the orthogonal learning
(OL) strategy to PSO to promote the capacity of the algo-
rithm to escape from the local optimum. Cheng and Jin [60]
combined competitive learning strategies with PSO to better
the convergence accuracy of the algorithm. To enhance the
ability of the PSO algorithm to obtain the optimum on
complex multimodal problems, Liang et al. [61] proposed a
new, improved PSO algorithm, which is CLPSO. It adopted
an innovative comprehensive learning strategy (CLS), where
the individual best position of all particles is used to update
the particle’s speed. 0is mechanism allows group diversity
to be conserved to prevent convergence in the premature
period. However, the convergence speed of CLPSO on the
unimodal function is very slow. For the sake of making the
algorithm to converge to the optimal solution, it is necessary
to enhance the local search ability of the algorithm near the
optimum. Grey wolf optimizer (GWO) [62] is a MA pro-
posed for global optimization. Its inspiration comes from the
hunting process of grey wolves in nature. GWO uses the
same principle to organize different individuals in the

algorithm after learning the wolf group organization hier-
archy. Since the GWO has fewer parameters, on the con-
trary, this strategy is relatively simple, flexible, and scalable,
and the algorithm has a good convergence effect on the
unimodal function. At present, this method has been applied
in many fields, including neural network [15, 16, 63, 64],
environment [65], medical diagnosis [17, 66–68], and image
processing [69]. In this research, the GWO algorithm is
introduced into CLPSO to generate a novel algorithm called
GCLPSO, which can reach a certain harmony between local
search and global search to enhance the ability of the al-
gorithmwhen finding the optimum. Specifically, CLPSO can
effectively preserve the population diversity and evade
premature convergence. 0en, GWO is utilized to perform a
local search for excellent particles in CLPSO to achieve high
convergence speed and accuracy.0eoretically, the proposed
mechanism can greatly better the balance between explo-
ration and development so that the algorithm can quickly
converge to the optimum.
To analyze the efficiency of the algorithm, the bench-

marks in CEC2017 [70] were adopted to evaluate the per-
formance of the GCLPSO and other comparison algorithms.
0e comparison algorithms include seven MAs, such as
PSO, dragonfly algorithm (DA) [71], GOA, sine cosine al-
gorithm (SCA) [72], MFO, WOA, and GWO, and eight
advanced evolutionary algorithms, such as Cauchy and
Gaussian sine cosine optimization (CGSCA) [73], sine co-
sine algorithm with differential evolution algorithm
(SCADE) [74], chaotic fruit fly optimization algorithm
(CIFOA) [75], adaptive mutation fruit fly optimization al-
gorithm (AMFOA) [76], Lévy flight trajectory-based whale
optimization algorithm (LWOA) [77], improved whale
optimization algorithm (IWOA) [78], biogeography-based
learning particle swarm optimization (BLPSO) [79], and
CLPSO [61]. Experimental results have shown that the
improved algorithm is considerably superior to other
comparison algorithms in finding the optimal solution. Also,
GCLPSO has shown a good effect on the engineering
constraint problems. 0is paper applies the proposed al-
gorithm to the problems of the pressure vessel, welded beam,
and I-beam design models. It can be seen from the opti-
mization outcomes of the comparisons that the improved
algorithm was significantly better than other methods.
0is paper is divided into five sections. Section 2 briefly

describes the CLPSO algorithm and GWO algorithm. Sec-
tion 3 provides a detailed definition of the GCLPSO. Section
4 is the experimental part, which details the experimental
results of the GCLPSO and other comparison algorithms on
these benchmark functions, feature selection, and engi-
neering problems. Section 5 summarizes the contributions
of this paper and plans for future work.

2. Background Knowledge

In this paper, the idea of the grey wolf algorithm is integrated
into the CLPSO to strengthen the capability of the algorithm
scouting for the optimal solution. 0is section will explain
the grey wolf algorithm and the CLPSO in detail.

2 Complexity



2.1. Particle Swarm Optimizer with Comprehensive Learning.
Liang et al. proposed the CLPSO [61] algorithm in 2006. It
uses a new comprehensive learning strategy (CLS) that uses
the personal best position of the particle, pbest, to update the
speed of the particle. 0e CLS can maintain the diversifi-
cation of the population and prevent premature fall into a
local optimum.0e formula of speed and position update in
the CLPSO algorithm is given as follows:

vid � w∗ vid + c∗ rid p bestfi(d),d − xid( ), (1)

xid � xid + vid, (2)

where fi(d) represents the value of the dth dimension in a
particle pbest, fi � [fi(1), fi(2), . . . , fi(D)] represents
the learning sample vector defined for particle i, and
pbestfi(d),d represents the optimal position of all particles
pbest with the corresponding dimension value. 0e particle
speed is updated by learning which dimension depends on
the parameter learning probability Pc.When a dimension of
a particle requires to update the speed, it will produce a
random number.0e corresponding dimension value will be
learned from its own pbest if the random number is greater
than Pc. Otherwise, it will learn from other particles pbest.
0e algorithm selects the learning particle from other
particles as follows:

(1) Firstly, select two particles randomly from the
population, excluding the particles that have updated
the speed.

(2) Compare the fitness values pbest between the two
particles and choose the best one. In this paper, the
fitness value is the smallest solution of the function,
which indicates that the function value is extremely
small when solving the minimization problem.

CLPSO allocates a learning probability Pc to each par-
ticle by the following equation:

Pci � a + b ×
exp(10 ×(i − 1)/N − 1)

exp(10) − 1 , (3)

where a and b determine the maximum and minimum
learning probabilities and N is the total number of particles.
Also, in order to avoid wasting time in bad directions

when learning the optimal personal position of particles
from samples, the thresholdm of particle learning times was
set. If the adaptive value of the particle is not improved after
m times of continuous movement, a random particle will be
generated to replace the particle. Pseudo-code of the particle
fi generation method in CLPSO is shown in Algorithm 1.

2.2. GreyWolf Optimizer. Mirjalili et al. [62] proposed a new
MA named GWO in 2014. 0e algorithm is inspired by the
social level and hunting strategy of the wild grey wolf. In the
GWO, the population is divided into four levels, including the
highest alpha (α), beta (β), delta (δ), and the lowest omega (ω).
0e better wolves α, β, and δ lead the other wolvesω to explore
the preferable solution field. In the GWO, wolves can spot the
position of prey and encircle them.

D
→ � C

→
× X→p(t) − X

→(t)
∣∣∣∣∣ ∣∣∣∣∣,

X
→(t + 1) � X→p(t) − A

→∗ D→,
(4)

where X
→
is the position vector of the grey wolf; A

→
and C

→
are

coefficient vectors; X
→
p is the position vector of the prey; and

t is the number of iterations.
0e calculation method of C

→
and A

→
is shown as follows:

A
→
� 2 a→∗ r→1 − a

→
,

C
→
� 2 r→2,

(5)

where r
→
1 and r

→
2 are random numbers between [0, 1]; a

→
decreases from 2 to 0 as the number of iterations increases.
0e hunting process of the grey wolf is shown by the fol-
lowing formula:
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→
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→
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X
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→
1 + X

→
2 + X

→
3

3
. (12)

0e pseudo-code of the GWO is shown in Algorithm 2.

3. Proposed GCLPSO Method

0is section interprets the GCLPSO in detail. In this paper,
due to the slow convergence speed and low convergence
accuracy of the CLPSO algorithm when dealing with opti-
mization problems, core mechanisms of the GWO algorithm
are cooperated to enhance the CLPSO algorithm, and a new
algorithm called GCLPSO is proposed. 0e GWO’s mech-
anisms can effectively promote the exploitative engine of the
algorithm.
CLPSO updates the particle speed through pbest of all

particles to avoid the algorithm from trapping in the local
optimal solution prematurely and prevents the algorithm
from carrying out local search near the global optimal so-
lution. 0e elite-based dominance idea of the improved
algorithm, called GCLPSO in this paper, is to select the three
optimal solutions generated in each iteration of the CLPSO
algorithm, such as GWO’s alpha, beta, and delta, and then
explore the vicinity of the three optimal solutions generated
by the CLPSO algorithm through the GWO algorithm’s idea.
Meanwhile, the optimum searched is compared with the
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optimal solution in the CLPSO algorithm. If the optimum
searched is superior to the optimum in the CLPSO algo-
rithm, the optimal value of the CLPSO algorithm is updated
to the global optimal solution. 0e improved algorithm
enhances the local search of the CLPSO algorithm through
the idea of the GWO algorithm. It boosts the local search
capacity of the algorithm and enhances the accuracy and the
acceleration of the algorithm under the condition that the
algorithm does not trap in the local optimal solution in
premature. 0e specific steps of the algorithm are described
as follows:

(1) First, initialize the particles and parameters, and
calculate the fitness for each particle.

(2) Update every particle with the CLPSO algorithm.

(3) 0e three optimal solutions of the CLPSO are se-
lected as grey wolf algorithm alpha, beta, and delta,
and the GWO is used to search locally near the
optimal solution. If the optimum found is superior to

the optimal solution in CLPSO, the optimal solution
in CLPSO is replaced.

(4) Keep repeating Steps 2 and 3 until the condition of
termination is met.

0e specific process of the GCLPSO is described in
Algorithm 3, which shows each step involved in the algo-
rithm in detail. In order to illustrate the process of the
improved algorithm more clearly and intuitively, the
flowchart of the GCLPSO algorithm is shown in Figure 1.
0e time complexity of the GCLPSO depends on the

algorithm search population initialization O (n) and the grey
wolf population initialized toO (n); update the search particle
position to O(n × d × g), update the local search for all grey
wolf positions O(n × d × g), and sort the population fitness
values asO(n × log n × g). n is the size of the population, d is
the dimension, and g is the maximum times of iterations.
0erefore, the final time complexity of the GCLPSO algo-
rithm is 2O(n × d × g + n)+O(n × log n × g).

Input the best position of each particle pbest and the fitness of an individual’s best positions fit (pbest); learn probability
Pci(i � 1, 2, . . . , N)
for d� 1 :D
if rand ≥Pci
fi(d) � i

else select two particles a and b randomly (a≠ b≠ i)
if fit(pbesta)< fit(pbestb)
fi(d) � a

else

fi(d) � b
end if

end if

end for

if fi(d) �� i(d � 1, . . . , D)in all dimensions
select a particle randomly j(j≠ i)
select a dimension d randomly
fi(d) � j

end if

ALGORITHM 1: Generation method for learning sample vector fi.

Initialize the grey wolf population Xi(i � 1, . . . , N) and the parameters a, A, C
Calculate the fitness of each wolf
Xα � the best wolf α
Xβ � the second best wolf β
Xδ � the third best wolf δ
while (t<T)//T is the maximum number of iterations
for i� 1 :N
Update the position of the current wolf by equation (12)

end for

Update a, A, and C
Update Xα, Xβ, andXδ

t� t+ 1
end while

Return Xα

ALGORITHM 2: Pseudo-code of the GWO.
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4. Experimental Studies

0is section firstly compares the algorithm proposed in this
paper with other advanced methods through 30 classic
benchmark functions in CEC2017. 0e performance of the
GCLPSO algorithm on benchmark functions was verified.
0en, the algorithm was applied to the design of three
engineering construction problems, and good optimization
results were obtained, which confirms the ability of the
algorithm in coping with constraints.

4.1. Benchmarks’ Validation. In this paper, 30 classical
benchmarks in CEC2017 were utilized to compare the al-
gorithm proposed in this paper with other advancedmethods.
0ese functions consist of unimodal (C01–C03), multimodal
(C04–C10), hybrid (C11–C20), and composition functions
(C21–C30). 0e performance of the algorithm was evaluated
more comprehensively by different types of benchmarks. 0e
descriptions of the 30 benchmarks are shown in Table 1. 0e
CLPSO is also compared with other PSO variants on 10 classic

benchmark functions in CEC2019. 0e benchmark functions
of CEC2019 are shown in Table 2.
To obtain fair and unbiased results, the experiment was

carried out with the same parameter setting: the population
size and the maximum number of iterations were set to 30
and 2000, accordingly. Each competitor runs independently
thirty times on the benchmark functions. 0en, the Fried-
man test [80] is used to comprehensively assess the optimal
results of all competitors on the benchmarks. 0e Friedman
test is a nonparametric statistical comparison test, which is
usually adopted to distinguish the differences between
multiple test results. 0en, the average performance of the
selected method is sorted, and further statistical comparison
is carried out to achieve the ARV (average sort value) in the
result of comparison. Moreover, the paired Wilcoxon
symbolic rank test [81] was adopted for the statistical test to
detect the significant difference between the two sample
mean values. Only in the condition that the p value obtained
was less than 0.05, the performance of the GCLPSO was
considered to be significantly superior to other competitors.
In this paper, two effective test approaches were applied to

Set the maximum number of iterations, the threshold m, and the dimensionality of the space.
Generate learning sample vectors fi using Algorithm 1; flag(i)� 0(i� 1, 2, . . ., n)
Randomly generate the grey wolf population Mi(i � 1, . . . , n); get the fitness of each agent fit(Mi)
Initialize a, A, and C
Create the initial population xi(i � 1, . . . , n); calculate the objective function value of xi: fit(xi)
Record the best position of each particle pbest and fitness of personal best positions fit(pbest); calculate the learning probability
Pci(i � 1, 2, . . . , n)
l� 1;
while l<T
for i� 1 : n
if flag(i)>m
generation learning sample vectors fi using Algorithm 1
flag(i)� 0

end if

Updating velocities and locations using equations (1) and (2)
Compute fitness of population xi
if fit(xi)< fit(pbesti)//Update particle i pbest
pbesti � xi; flag(i)� 0

else

flag(i)� flag(i) + 1
end if

end for

Update global optimal solution gbest
Select the best three solutions xa, xb, andxc from fit(xi) as alpha Mα, beta Mβ, and delta Mδ

for i� 1 : n
Update the position of the current wolf by equation (12)

end for

Update a, C, and A
Calculate the fitness of each search agent; select the best solution Ma

If fit(gbest)> fit(Ma)
gbest �Ma

xa �Ma

end if

end while

Return gbest

ALGORITHM 3: Pseudo-code of the GCLPSO.
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compare the advantages and disadvantages of different al-
gorithms tested on 30 benchmarks in CEC2017 and verify
the effect of the algorithm.

4.2. Comparisons of the GCLPSO with Other Algorithms.
An this section, several MAs used were compared with the
GCLPSO on 30 benchmark functions in CEC2017. In

order to fully certify the performance of the GCLPSO, this
paper uses seven classical MAs and eight advanced MAs as
comparison algorithms. 0e classical MAs involved are as
follows: PSO [45], GOA [82], DA [71], MFO [29], SCA
[72], WOA [24], and GWO [62]. 0e advanced MAs
include CGSCA [73], SCADE [74], CIFOA [75], AMFOA
[76], LWOA [77], IWOA [78], BLPSO [79], and CLPSO
[61]. As shown in Table 3, the parameters of all

Start

Set the parameters
n,T,m,d,a,A,C, and flag

Record the best position of each individual
particle pbest and fitness of personal best

position fit(pbest)

Randomly generate the grey wolf
population and calculate the fitness

Update velocities and
locations using

equations (1) and (2)

Update the position of the gery wolf
search agent using equation (14)

Select three optimal solutions as
alpha, beta, and delta

Update global optimal solution gbest

Update pbest of each
particle in the population

Compute new fitness of
the population

Termination condition
satisfied?

No

Yes

End

Update global optimal solution
gbest and the optimal particle in

population x

Calculate the fitness of each grey wolf search
agent and select the best solution Ma

Update a, A, and C

Yes

No

Return the global optimal
solution gbest

No

Yes

flag (i) > m

fit (gbest) > fit (Ma)

Initialize population x
and calculate the fitness of

each search agent

Generate the learning sample
fi vector

Generate the learning sample
vector fi by Algorithm 1; flag (i) = 0

Calculate the learning probability Pci

Figure 1: Flowchart of the GCLPSO.
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comparison algorithms were set according to the original
paper. In order to make the experimental results fair and
reliable, all algorithms were executed in the same
environment.
In the experiment, the maximum number of iterations is

set to 2000, and the population size is set to 30. Each al-
gorithm runs 30 times independently on the benchmark
function. 0e comparison results are shown in Table 4,

where the mean and standard deviation of the algorithm
after 30 independent executions on 30 benchmark functions
are listed. On the unimodal benchmark functions, LWOA
and PSO in the C2 case have strong optimization ability, and
the optimum of the LWOA algorithm is superior to all other
competitors. 0e PSO algorithm in the C3 case has strong
competitiveness, and its final result is superior to other
algorithms. In the case of C1 and C4, the optimization result

Table 1: CEC2017 test functions.

Function Function name Optimum

CEC2017 unimodal functions (UF)
C01 Shifted and rotated bent cigar function 100
C02 Shifted and rotated sum of different power function 200
C03 Shifted and rotated Zakharov function 300

CEC2017 multimodal functions (MF)
C04 Shifted and rotated Rosenbrock’s function 400
C05 Shifted and rotated Rastrigin’s function 500
C06 Shifted and rotated expanded Scaffer’s F6 function 600
C07 Shifted and rotated Lunacek bi-Rastrigin function 700
C08 Shifted and rotated noncontinuous Rastrigin’s function 800
C09 Shifted and rotated Lévy function 900
C10 Shifted and rotated Schwefel’s function 1000

CEC2017 hybrid functions (HF)
C11 HF 1 (N� 3) 1100
C12 HF 2 (N� 3) 1200
C13 HF 3 (N� 3) 1300
C14 HF 4 (N� 4) 1400
C15 HF 5 (N� 4) 1500
C16 HF 6 (N� 4) 1600
C17 HF 6 (N� 5) 1700
C18 HF 6 (N� 5) 1800
C19 HF 6 (N� 5) 1900
C20 HF 6 (N� 6) 2000

CEC2017 composition functions (CF)
C21 CF 1 (N� 3) 2100
C22 CF 2 (N� 3) 2200
C23 CF 3 (N� 4) 2300
C24 CF 4 (N� 4) 2400
C25 CF 5 (N� 5) 2500
C26 CF 6 (N� 5) 2600
C27 CF 7 (N� 6) 2700
C28 CF 8 (N� 6) 2800
C29 CF 9 (N� 3) 2900
C30 CF 10 (N� 3) 3000

Table 2: CEC2019 test functions.

Function Name of the function F
∗
i
� Fi(X∗) D Search range

C31 Storn’s Chebyshev polynomial fitting problem 1 9 [−8192, 8192]
C32 Inverse Hilbert matrix problem 1 16 [−16834, 16834]
C33 Lennard-Jones minimum energy cluster 1 18 [−4, 4]
C34 Rastrigin’s function 1 10 [−100, 100]
C35 Griewank’s function 1 10 [−100, 100]
C36 Weierstrass function 1 10 [−100, 100]
C37 Modified Schwefel’s function 1 10 [−100, 100]
C38 Expanded Schaffer’s F6 function 1 10 [−100, 100]
C39 Happy Cat function 1 10 [−100, 100]
C40 Ackley function 1 10 [−100, 100]
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Table 3: Parameter setting for compared algorithms.

Method Maximum generation Population size Other parameters

GCLPSO 2000 30 m� 5; a ∈ [0 2]
PSO 2000 30 c 1� 2; c2� 2; vMax� 6
MFO 2000 30 b� 1; t� [−1 1]; a ∈ [−2–1]
GOA 2000 30 cMax� 1; cMin� 0.00004
DA 2000 30 w ∈ [0.2 0.9]; s� 0.1; a� 0.1; c� 0.7; f� 1; e� 1
SCA 2000 30 A� 2
WOA 2000 30 a 1� [2 0]; a2� [−2–1]; b� 1
GWO 2000 30 a� [2, 0]
CLPSO 2000 30 w� [0.2 0.9]; c� 1.496
BLPSO 2000 30 w� [0.2 0.9]; c� 1.496; I� 1; E� 1
SCADE 2000 40 P CR� 0.2
CGSCA 2000 40 a� 2
CIFOA 2000 30 Mr� 0.8
AMFOA 2000 30 FR ∈ [−10, 10]
IWOA 2000 30 a 1� [2 0]; a2� [−2–1]; b� 1
LWOA 2000 30 β � 1.5; l ∈ [−1, 1]; b� 1

Table 4: Comparison of results of different algorithms.

Avg Std Avg Std Avg Std
C1 C2 C3

GCLPSO 5.27E + 03 5.17E+ 03 3.38E + 17 1.03E + 18 6.56E+ 03 3.17E + 03

CLPSO 1.80E+ 07 5.96E+ 06 6.21E+ 25 1.76E+ 26 9.83E+ 04 1.66E+ 04
BLPSO 3.76E+ 08 1.05E+ 08 1.03E+ 27 2.54E+ 27 6.09E+ 04 1.27E+ 04
IWOA 1.63E+ 08 2.30E+ 08 3.19E+ 30 1.50E+ 31 1.88E+ 05 7.07E+ 04
LWOA 1.18E+ 06 3.26E+ 05 4.63E+ 10 1.45E+ 11 1.87E+ 04 1.38E+ 04
AMFOA 8.00E+ 10 4.40E+ 09 6.96E+ 59 1.10E+ 60 8.35E+ 08 4.68E+ 08
CIFOA 7.74E+ 10 4.14E+ 08 2.15E+ 55 6.75E+ 55 8.91E+ 04 6.41E+ 02
SCADE 2.29E+ 10 3.12E+ 09 6.32E+ 37 2.31E+ 38 6.58E+ 04 5.88E+ 03
CGSCA 1.77E+ 10 3.11E+ 09 7.17E+ 36 1.95E+ 37 5.71E+ 04 7.93E+ 03
GWO 2.63E+ 09 2.02E+ 09 1.26E+ 31 3.23E+ 31 4.46E+ 04 9.63E+ 03
WOA 3.47E+ 08 2.03E+ 08 1.27E+ 36 6.96E+ 36 2.57E+ 05 7.57E+ 04
MFO 9.34E+ 09 7.94E+ 09 1.84E+ 43 1.01E+ 44 1.25E+ 05 5.44E+ 04
SCA 1.62E+ 10 2.96E+ 09 9.78E+ 36 4.25E+ 37 5.58E+ 04 9.14E+ 03
GOA 1.25E+ 06 1.61E+ 06 1.22E+ 27 6.70E+ 27 6.88E+ 03 3.38E+ 03
DA 2.52E+ 09 2.06E+ 09 5.96E+ 37 1.97E+ 38 1.04E+ 05 2.52E+ 04
PSO 1.59E+ 08 2.52E+ 07 2.31E+ 14 2.79E+ 14 2.35E+ 03 1.05E+ 03

C4 C5 C6
GCLPSO 4.37E+ 02 3.16E+ 01 6.32E+ 02 2.66E+ 01 6.02E+ 02 1.01E+ 00
CLPSO 5.76E+ 02 2.13E+ 01 6.54E+ 02 1.85E+ 01 6.04E+ 02 7.76E− 01
BLPSO 6.43E+ 02 2.91E+ 01 7.15E+ 02 1.68E+ 01 6.14E+ 02 1.61E+ 00
IWOA 5.95E+ 02 5.18E+ 01 7.98E+ 02 6.50E+ 01 6.61E+ 02 7.36E+ 00
LWOA 5.07E+ 02 2.54E+ 01 7.72E+ 02 6.30E+ 01 6.63E+ 02 1.25E+ 01
AMFOA 2.58E+ 04 1.98E+ 03 1.07E+ 03 3.35E+ 01 7.29E+ 02 4.72E+ 00
CIFOA 3.05E+ 04 3.05E+ 02 1.01E+ 03 8.65E+ 00 7.05E+ 02 2.33E+ 00
SCADE 4.59E+ 03 1.11E+ 03 8.42E+ 02 2.57E+ 01 6.69E+ 02 7.80E+ 00
CGSCA 2.65E+ 03 8.69E+ 02 8.20E+ 02 2.38E+ 01 6.63E+ 02 7.17E+ 00
GWO 6.15E+ 02 9.11E+ 01 6.09E+ 02 2.42E+ 01 6.10E+ 02 4.94E+ 00
WOA 6.85E+ 02 6.57E+ 01 8.05E+ 02 5.55E+ 01 6.79E+ 02 1.71E+ 01
MFO 1.20E+ 03 8.37E+ 02 7.04E+ 02 4.60E+ 01 6.40E+ 02 1.05E+ 01
SCA 2.14E+ 03 5.67E+ 02 8.00E+ 02 1.86E+ 01 6.56E+ 02 6.48E+ 00
GOA 5.13E+ 02 2.36E+ 01 6.45E+ 02 3.27E+ 01 6.46E+ 02 1.89E+ 01
DA 1.22E+ 03 6.47E+ 02 8.74E+ 02 8.02E+ 01 6.76E+ 02 1.24E+ 01
PSO 4.75E+ 02 3.71E+ 01 7.55E+ 02 2.80E+ 01 6.55E+ 02 1.19E+ 01

C7 C8 C9
GCLPSO 8.31E+ 02 3.98E+ 01 8.98E+ 02 4.01E+ 01 1.61E+ 03 5.56E+ 02
CLPSO 9.14E+ 02 1.60E+ 01 9.69E+ 02 1.64E+ 01 2.90E+ 03 8.88E+ 02
BLPSO 1.01E+ 03 2.02E+ 01 1.02E+ 03 1.24E+ 01 1.81E+ 03 2.07E+ 02
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Table 4: Continued.

Avg Std Avg Std Avg Std
C1 C2 C3

IWOA 1.20E+ 03 9.06E+ 01 9.98E+ 02 3.63E+ 01 9.28E+ 03 4.13E+ 03
LWOA 1.12E+ 03 7.80E+ 01 9.93E+ 02 3.54E+ 01 7.95E+ 03 3.01E+ 03
AMFOA 1.58E+ 03 2.79E+ 01 1.26E+ 03 1.84E+ 01 1.68E+ 04 2.98E+ 03
CIFOA 1.48E+ 03 1.09E+ 01 1.21E+ 03 8.19E+ 00 1.17E+ 04 7.72E+ 02
SCADE 1.22E+ 03 3.99E+ 01 1.09E+ 03 2.71E+ 01 9.09E+ 03 1.07E+ 03
CGSCA 1.21E+ 03 4.70E+ 01 1.08E+ 03 1.79E+ 01 7.99E+ 03 1.40E+ 03
GWO 8.75E+ 02 3.69E+ 01 8.92E+ 02 2.28E+ 01 2.00E+ 03 6.29E+ 02
WOA 1.28E+ 03 7.99E+ 01 1.01E+ 03 4.03E+ 01 9.69E+ 03 4.06E+ 03
MFO 1.14E+ 03 2.33E+ 02 1.01E+ 03 3.90E+ 01 7.53E+ 03 2.63E+ 03
SCA 1.19E+ 03 4.73E+ 01 1.07E+ 03 1.93E+ 01 6.48E+ 03 1.41E+ 03
GOA 8.83E+ 02 5.38E+ 01 9.38E+ 02 3.76E+ 01 5.53E+ 03 4.24E+ 03
DA 1.07E+ 03 7.23E+ 01 1.10E+ 03 5.14E+ 01 1.32E+ 04 4.72E+ 03
PSO 9.46E+ 02 2.07E+ 01 1.01E+ 03 2.11E+ 01 6.94E+ 03 2.26E+ 03

C10 C11 C12
GCLPSO 5.34E+ 03 4.52E+ 02 1.22E+ 03 5.31E+ 01 6.81E+ 05 2.94E+ 05
CLPSO 6.45E+ 03 3.78E+ 02 1.46E+ 03 8.52E+ 01 1.94E+ 07 5.10E+ 06
BLPSO 8.16E+ 03 3.71E+ 02 1.45E+ 03 4.43E+ 01 3.76E+ 07 9.67E+ 06
IWOA 6.00E+ 03 6.15E+ 02 2.56E+ 03 1.17E+ 03 4.48E+ 07 3.99E+ 07
LWOA 5.70E+ 03 7.76E+ 02 1.28E+ 03 6.76E+ 01 6.08E+ 06 3.76E+ 06
AMFOA 9.92E+ 03 2.76E+ 02 5.53E+ 08 1.74E+ 08 2.59E+ 10 8.72E+ 08
CIFOA 8.93E+ 03 1.55E+ 02 2.04E+ 05 2.66E+ 05 2.62E+ 10 1.51E+ 09
SCADE 8.48E+ 03 2.79E+ 02 4.07E+ 03 6.84E+ 02 2.54E+ 09 6.61E+ 08
CGSCA 8.68E+ 03 2.46E+ 02 2.97E+ 03 5.57E+ 02 1.97E+ 09 5.60E+ 08
GWO 4.19E+ 03 6.35E+ 02 2.25E+ 03 1.09E+ 03 6.01E+ 07 7.49E+ 07
WOA 6.91E+ 03 8.49E+ 02 4.33E+ 03 1.72E+ 03 1.31E+ 08 1.09E+ 08
MFO 5.54E+ 03 6.87E+ 02 5.06E+ 03 4.25E+ 03 5.43E+ 08 9.58E+ 08
SCA 8.58E+ 03 3.79E+ 02 2.96E+ 03 7.73E+ 02 1.74E+ 09 3.61E+ 08
GOA 5.26E+ 03 8.68E+ 02 1.39E+ 03 9.03E+ 01 1.99E+ 07 2.25E+ 07
DA 7.09E+ 03 7.87E+ 02 2.73E+ 03 9.50E+ 02 5.70E+ 08 5.21E+ 08
PSO 6.49E+ 03 5.07E+ 02 1.31E+ 03 3.35E+ 01 3.56E+ 07 1.95E+ 07

C13 C14 C15
GCLPSO 2.58E+ 04 1.50E+ 04 7.43E+ 03 2.88E+ 03 6.94E+ 03 6.29E+ 03
CLPSO 4.45E+ 06 4.30E+ 06 8.59E+ 04 8.47E+ 04 1.31E+ 05 1.81E+ 05
BLPSO 2.82E+ 06 2.57E+ 06 9.32E+ 04 6.71E+ 04 4.07E+ 05 3.19E+ 05
IWOA 2.18E+ 05 3.24E+ 05 1.38E+ 06 1.17E+ 06 3.61E+ 04 2.53E+ 04
LWOA 1.88E+ 05 1.12E+ 05 3.83E+ 04 3.15E+ 04 7.44E+ 04 3.98E+ 04
AMFOA 3.76E+ 10 1.81E+ 09 9.39E+ 08 3.47E+ 08 2.19E+ 09 1.04E+ 09
CIFOA 3.49E+ 10 7.06E+ 09 1.59E+ 08 1.42E+ 08 4.32E+ 09 3.26E+ 08
SCADE 8.99E+ 08 3.20E+ 08 5.89E+ 05 4.78E+ 05 1.28E+ 07 1.43E+ 07
CGSCA 8.57E+ 08 3.24E+ 08 4.65E+ 05 3.71E+ 05 2.56E+ 07 2.86E+ 07
GWO 2.20E+ 07 8.58E+ 07 4.15E+ 05 4.51E+ 05 2.07E+ 06 7.77E+ 06
WOA 3.84E+ 05 4.25E+ 05 1.77E+ 06 1.49E+ 06 2.75E+ 05 2.92E+ 05
MFO 1.29E+ 07 2.68E+ 07 4.87E+ 05 1.34E+ 06 6.07E+ 04 4.87E+ 04
SCA 7.10E+ 08 3.76E+ 08 3.21E+ 05 1.89E+ 05 2.84E+ 07 2.64E+ 07
GOA 1.65E+ 05 1.35E+ 05 3.31E+ 04 3.19E+ 04 7.36E+ 04 4.72E+ 04
DA 7.80E+ 07 1.97E+ 08 1.15E+ 06 2.03E+ 06 2.27E+ 05 3.24E+ 05
PSO 7.72E+ 06 2.01E+ 06 2.40E+ 04 1.69E+ 04 9.43E+ 05 2.78E+ 05

C16 C17 C18
GCLPSO 2.65E+ 03 2.21E+ 02 1.87E+ 03 7.69E+ 01 2.15E+ 05 1.55E+ 05
CLPSO 2.65E+ 03 2.05E+ 02 2.01E+ 03 8.43E+ 01 7.26E+ 05 4.27E+ 05
BLPSO 3.16E+ 03 2.22E+ 02 2.08E+ 03 1.01E+ 02 1.87E+ 06 7.97E+ 05
IWOA 3.20E+ 03 3.97E+ 02 2.52E+ 03 2.58E+ 02 3.30E+ 06 3.63E+ 06
LWOA 3.13E+ 03 3.45E+ 02 2.45E+ 03 2.86E+ 02 7.07E+ 05 5.97E+ 05
AMFOA 2.70E+ 04 9.04E+ 02 1.16E+ 05 2.37E+ 04 2.15E+ 09 8.74E+ 08
CIFOA 1.20E+ 04 3.61E+ 03 8.42E+ 04 5.51E+ 04 1.46E+ 09 8.96E+ 08
SCADE 4.09E+ 03 2.24E+ 02 2.61E+ 03 1.32E+ 02 6.18E+ 06 3.45E+ 06
CGSCA 3.98E+ 03 2.38E+ 02 2.68E+ 03 1.77E+ 02 8.84E+ 06 4.94E+ 06
GWO 2.56E+ 03 2.95E+ 02 1.99E+ 03 1.44E+ 02 1.10E+ 06 1.25E+ 06
WOA 4.01E+ 03 8.36E+ 02 2.64E+ 03 2.82E+ 02 5.29E+ 06 4.96E+ 06
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Table 4: Continued.

Avg Std Avg Std Avg Std
C1 C2 C3

MFO 3.05E+ 03 4.39E+ 02 2.50E+ 03 2.56E+ 02 2.11E+ 06 3.06E+ 06
SCA 3.95E+ 03 1.55E+ 02 2.61E+ 03 1.68E+ 02 8.02E+ 06 5.96E+ 06
GOA 2.88E+ 03 3.64E+ 02 2.25E+ 03 2.01E+ 02 7.01E+ 05 1.05E+ 06
DA 4.00E+ 03 6.16E+ 02 2.89E+ 03 3.52E+ 02 6.98E+ 06 8.23E+ 06
PSO 3.01E+ 03 2.40E+ 02 2.40E+ 03 2.54E+ 02 4.30E+ 05 2.93E+ 05

C19 C20 C21
GCLPSO 4.90E+ 03 2.84E+ 03 2.36E+ 03 1.02E+ 02 2.41E+ 03 4.74E+ 01
CLPSO 7.96E+ 04 7.00E+ 04 2.37E+ 03 1.04E+ 02 2.45E+ 03 3.50E+ 01
BLPSO 5.11E+ 05 4.42E+ 05 2.44E+ 03 9.95E+ 01 2.51E+ 03 1.61E+ 01
IWOA 2.43E+ 05 4.53E+ 05 2.70E+ 03 2.25E+ 02 2.58E+ 03 6.61E+ 01
LWOA 4.31E+ 05 2.90E+ 05 2.78E+ 03 2.29E+ 02 2.56E+ 03 7.41E+ 01
AMFOA 3.27E+ 09 6.38E+ 08 4.14E+ 03 1.71E+ 02 3.08E+ 03 4.91E+ 01
CIFOA 4.56E+ 09 1.10E+ 08 3.97E+ 03 1.69E+ 02 3.01E+ 03 5.77E+ 01
SCADE 4.91E+ 07 3.43E+ 07 2.82E+ 03 1.13E+ 02 2.60E+ 03 2.41E+ 01
CGSCA 6.15E+ 07 2.75E+ 07 2.75E+ 03 1.33E+ 02 2.60E+ 03 2.40E+ 01
GWO 9.45E+ 05 1.26E+ 06 2.43E+ 03 1.37E+ 02 2.39E+ 03 2.34E+ 01
WOA 8.79E+ 06 9.13E+ 06 2.82E+ 03 2.05E+ 02 2.60E+ 03 4.99E+ 01
MFO 1.59E+ 07 3.80E+ 07 2.72E+ 03 2.24E+ 02 2.50E+ 03 5.32E+ 01
SCA 5.09E+ 07 3.07E+ 07 2.77E+ 03 1.44E+ 02 2.58E+ 03 2.90E+ 01
GOA 3.65E+ 06 3.12E+ 06 2.60E+ 03 1.77E+ 02 2.43E+ 03 3.20E+ 01
DA 4.87E+ 07 6.38E+ 07 2.83E+ 03 1.90E+ 02 2.66E+ 03 7.42E+ 01
PSO 2.66E+ 06 1.27E+ 06 2.72E+ 03 1.71E+ 02 2.56E+ 03 3.67E+ 01

C22 C23 C24
GCLPSO 2.30E+ 03 1.41E+ 00 2.73E+ 03 3.30E+ 01 2.91E+ 03 3.13E+ 01
CLPSO 3.84E+ 03 1.88E+ 03 2.81E+ 03 2.13E+ 01 3.00E+ 03 7.19E+ 01
BLPSO 2.40E+ 03 1.36E+ 01 2.87E+ 03 1.88E+ 01 3.05E+ 03 1.47E+ 01
IWOA 6.52E+ 03 2.21E+ 03 3.04E+ 03 8.27E+ 01 3.16E+ 03 7.66E+ 01
LWOA 6.16E+ 03 1.64E+ 03 3.00E+ 03 7.99E+ 01 3.20E+ 03 1.17E+ 02
AMFOA 1.22E+ 04 3.83E+ 02 6.48E+ 03 6.15E+ 02 5.05E+ 03 5.20E+ 01
CIFOA 1.13E+ 04 1.41E+ 02 4.09E+ 03 2.34E+ 02 4.30E+ 03 3.51E+ 02
SCADE 5.13E+ 03 7.57E+ 02 3.03E+ 03 3.83E+ 01 3.20E+ 03 3.73E+ 01
CGSCA 4.73E+ 03 1.54E+ 03 3.04E+ 03 5.07E+ 01 3.19E+ 03 2.80E+ 01
GWO 4.94E+ 03 1.80E+ 03 2.76E+ 03 3.61E+ 01 2.94E+ 03 5.35E+ 01
WOA 7.89E+ 03 1.03E+ 03 3.12E+ 03 1.01E+ 02 3.19E+ 03 1.07E+ 02
MFO 6.86E+ 03 8.83E+ 02 2.84E+ 03 4.03E+ 01 2.99E+ 03 3.20E+ 01
SCA 9.36E+ 03 1.77E+ 03 3.04E+ 03 3.46E+ 01 3.20E+ 03 3.33E+ 01
GOA 5.75E+ 03 1.86E+ 03 2.80E+ 03 3.99E+ 01 2.96E+ 03 3.83E+ 01
DA 7.65E+ 03 2.10E+ 03 3.28E+ 03 1.75E+ 02 3.45E+ 03 1.62E+ 02
PSO 5.56E+ 03 2.89E+ 03 3.14E+ 03 1.04E+ 02 3.24E+ 03 1.18E+ 02

C25 C26 C27
GCLPSO 2.88E+ 03 8.68E+ 00 4.37E+ 03 9.09E+ 02 3.20E+ 03 2.04E− 04
CLPSO 2.93E+ 03 1.08E+ 01 4.71E+ 03 6.61E+ 02 3.25E+ 03 9.38E+ 00
BLPSO 2.97E+ 03 1.81E+ 01 5.79E+ 03 5.24E+ 02 3.30E+ 03 1.30E+ 01
IWOA 2.99E+ 03 3.27E+ 01 7.31E+ 03 1.32E+ 03 3.34E+ 03 8.26E+ 01
LWOA 2.91E+ 03 2.02E+ 01 6.62E+ 03 1.41E+ 03 3.28E+ 03 4.33E+ 01
AMFOA 7.56E+ 03 3.73E+ 02 1.48E+ 04 6.94E+ 02 9.19E+ 03 4.95E+ 02
CIFOA 7.92E+ 03 6.90E+ 01 1.47E+ 04 3.21E+ 02 5.67E+ 03 7.11E+ 02
SCADE 3.57E+ 03 1.56E+ 02 7.76E+ 03 3.46E+ 02 3.50E+ 03 5.71E+ 01
CGSCA 3.43E+ 03 1.81E+ 02 7.56E+ 03 5.63E+ 02 3.47E+ 03 5.82E+ 01
GWO 2.98E+ 03 3.83E+ 01 4.84E+ 03 3.82E+ 02 3.26E+ 03 2.09E+ 01
WOA 3.05E+ 03 4.43E+ 01 7.38E+ 03 1.38E+ 03 3.45E+ 03 1.13E+ 02
MFO 3.31E+ 03 5.67E+ 02 5.81E+ 03 4.31E+ 02 3.26E+ 03 3.22E+ 01
SCA 3.40E+ 03 1.37E+ 02 7.30E+ 03 2.98E+ 02 3.47E+ 03 7.13E+ 01
GOA 2.93E+ 03 2.87E+ 01 5.29E+ 03 9.69E+ 02 3.24E+ 03 1.99E+ 01
DA 3.17E+ 03 1.82E+ 02 8.66E+ 03 1.60E+ 03 3.56E+ 03 1.72E+ 02
PSO 2.92E+ 03 2.79E+ 01 5.52E+ 03 1.98E+ 03 3.20E+ 03 7.86E+ 01

C28 C29 C30
GCLPSO 3.29E+ 03 5.07E+ 01 3.62E+ 03 1.12E+ 02 1.25E+ 04 3.19E+ 03
CLPSO 3.36E+ 03 2.68E+ 01 3.88E+ 03 1.31E+ 02 8.61E+ 05 5.60E+ 05
BLPSO 3.35E+ 03 1.68E+ 01 4.11E+ 03 1.31E+ 02 1.98E+ 06 1.05E+ 06
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of the algorithm in this paper is superior to all the com-
petition algorithms. In the multimodal benchmark func-
tions, C5 and C8 cases, the solution of the GWO algorithm is
greater than that of the GCLPSO algorithm, but in the
functions of C6, C7, C9, and C10, the optimal solution
obtained by the GCLPSO algorithm is higher than that of all
other competing algorithms. On hybrid benchmark func-
tions, GCLPSO algorithm is better compared to other al-
gorithms. In the composition benchmark functions, in
addition to the strong competitive advantage of LWOA,
GOA, and PSO in the C28 function, GCLPSO has obvious
advantages in other functions. 0e GCLPSO algorithm uses
the GWO algorithm to strengthen the local scout of the
CLPSO algorithm so that the algorithm has a better harmony
between local search and global search and possesses an
optimal solution on most benchmark functions. 0is proves
that the algorithm can effectively deal with unimodal,
multimodal, hybrid, and composition functions at the same
time.
Also, the Friedman test and Wilcoxon signed-rank test

were used to evaluate the comprehensive effect of the al-
gorithm. 0e Wilcoxon symbol rank test measures the p
values of all comparison algorithms on 30 benchmark
functions, which are basically less than 0.05. At the same
time, the symbol “+/�/−” can indicate that the GCLPSO is

significantly superior to 15 competing algorithms on 30
benchmarks of 4 different types. Table 4 also shows the
Friedman test comparison results. GCLPSO has the lowest
ARV among the 30 benchmark functions. It is proved that
the GCLPSO algorithm is greater than other popular al-
gorithms in CEC2017. 0erefore, the algorithm proposed by
us has a preferable convergence rate and a more accurate
convergence solution than other competitors.
In order to more intuitively and clearly understand the

convergence trend of the algorithm in terms of functions and
estimate the performance of the algorithm, a representative
benchmark function was selected from CEC2017 for analysis,
and images demonstrated the convergence process of the al-
gorithm. As shown in Figure 2, on unimodal benchmark
function C1, the convergence tendency and precision of the
GCLPSO algorithm are better than other algorithms. On
multimodal benchmark functions C7 and C9, the convergence
rate of the PSO in the early stage of the C7 function iteration is
better than that of the GCLPSO algorithm, the convergence
tendency of the GWO and BLPSO algorithm in the early stage
of the C9 function iteration is greater than that of the GCLPSO
algorithm, but the optimal value of the GCLPSO algorithm in
the late stage of convergence is better than that of all other
competing algorithms. On hybrid benchmark functions C12,
C13, and C9, GCLPSO algorithm is lower than some

Table 4: Continued.

Avg Std Avg Std Avg Std
C1 C2 C3

IWOA 3.39E+ 03 4.14E+ 01 4.66E+ 03 4.04E+ 02 3.13E+ 06 2.03E+ 06
LWOA 3.23E+ 03 2.62E+ 01 4.33E+ 03 3.27E+ 02 1.46E+ 06 8.15E+ 05
AMFOA 8.81E+ 03 3.17E+ 02 1.44E+ 05 3.35E+ 04 8.57E+ 09 5.14E+ 08
CIFOA 9.49E+ 03 4.61E+ 01 6.93E+ 04 3.77E+ 04 5.77E+ 09 2.31E+ 09
SCADE 4.53E+ 03 3.99E+ 02 5.29E+ 03 2.40E+ 02 1.49E+ 08 4.94E+ 07
CGSCA 4.30E+ 03 3.14E+ 02 4.96E+ 03 2.36E+ 02 1.48E+ 08 6.50E+ 07
GWO 3.42E+ 03 7.98E+ 01 3.75E+ 03 1.49E+ 02 7.73E+ 06 7.45E+ 06
WOA 3.52E+ 03 5.51E+ 02 5.14E+ 03 5.68E+ 02 2.24E+ 07 2.14E+ 07
MFO 4.20E+ 03 9.42E+ 02 4.19E+ 03 3.11E+ 02 1.17E+ 06 2.04E+ 06
SCA 4.14E+ 03 2.39E+ 02 4.95E+ 03 2.26E+ 02 1.12E+ 08 4.56E+ 07
GOA 3.27E+ 03 2.84E+ 01 4.14E+ 03 1.90E+ 02 7.67E+ 06 5.76E+ 06
DA 3.80E+ 03 2.01E+ 02 5.45E+ 03 6.82E+ 02 3.89E+ 07 2.96E+ 07
PSO 3.27E+ 03 2.36E+ 01 4.39E+ 03 2.47E+ 02 5.73E+ 06 2.10E+ 06

Overall rank
Rank ARV +/�/−

GCLPSO 1 1.755556 27/3/0
CLPSO 4 4.804444 30/0/0
BLPSO 6 6.304444 29/1/0
IWOA 9 8.087778 30/0/0
LWOA 5 5.976667 30/0/0
AMFOA 16 15.68444 30/0/0
CIFOA 15 15.06667 30/0/0
SCADE 14 11.80667 30/0/0
CGSCA 13 11.28667 30/0/0
GWO 3 4.71 24/3/3
WOA 10 10.08778 30/0/0
MFO 8 7.354444 29/1/0
SCA 11 11.00444 30/0/0
GOA 2 4.537778 26/3/1
DA 12 11.14333 30/0/0
PSO 7 6.388889 27/0/3
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competitors in the early convergence period, but the optimal
value of convergence in the late convergence period is much
higher than other competing algorithms. On the composition
benchmark functions C22, C26, and C30, although the BLPSO
algorithm is highly competitive on function C22, the optimal
values searched by the GCLPSO algorithm on the three
benchmark functions are all higher than other algorithms.

4.3. Comparisons of the GCLPSO with Other PSO Variants.
In this section, GCLPSO was compared with the improved
PSO variants on the benchmark functions of CEC2017 and
CEC2019. 0e advanced PSO variants include FST-PSO
[83], PP-PSO [84], and SopPSO [85]. In order to make the

experimental results fair and reliable, all algorithms were
executed in the same environment.
In the experiment, the population size is set to 30, and

the maximum number of iterations is set to 1000. Each
algorithm runs independently on the benchmark function
30 times.0e comparison results are shown in Table 5, which
lists the average adaptive value and standard deviation of the
algorithm after the algorithm is independently executed 30
times on 40 benchmark functions. 0e GCLPSO achieves
optimal fitness values on most benchmark functions. As
shown in Table 5, the optimal fitness value is shown in bold.
On unimodal functions C1 and C3, the adaptive value
searched by the GCLPSO is better than other comparison
algorithms. On multimodal functions C5, C6, C7, C8, and
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Figure 2: Convergence trend of the GCLPSO and other methods.
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Table 5: Comparison of results for different algorithms.

Avg Std Avg Std Avg Std
C1 C2 C3

GCLPSO 2.96E+ 08 4.76E+ 08 1.08E+ 30 1.9E+ 30 21413.4 4508.552
FST-PSO 4.59E+ 10 1.44E+ 10 1.53E+ 39 3.93E+ 39 102540.3 31341.76
PP-PSO 4.91E+ 08 1.23E+ 09 1.74E+ 27 5.34E+ 27 37336.02 12931.16
SopPSO 69643742 1.37E+ 08 9.44E+ 19 1.41E+ 20 33801.34 5568.606

C4 C5 C6
GCLPSO 725.2314 127.8274 624.5366 31.30305 608.0114 4.335014
FST-PSO 5249.981 1590.092 763.0822 32.33813 666.6076 10.16737
PP-PSO 517.4305 36.73232 692.7252 20.70859 655.9324 7.717476
SopPSO 569.4742 47.2971 694.8522 22.79289 631.6974 5.726442

C7 C8 C9
GCLPSO 853.2442 31.01812 915.111 47.39302 2759.384 729.8192
FST-PSO 1474.497 143.8618 1139.403 39.09915 8175.504 3166.286
PP-PSO 1246.102 73.45671 1058.999 55.08997 8181.35 2684.43
SopPSO 979.2978 25.34037 1023.224 38.57947 5550.586 2333.192

C10 C11 C12
GCLPSO 6902.995 1104.216 1546.228 397.4099 1.93E+ 08 1.3E+ 08
FST-PSO 7545.323 502.1786 15587.53 7038.758 4.86E+ 09 2.3E+ 09
PP-PSO 6630.596 706.92 1448.767 119.4996 51630157 39779490
SopPSO 6625.082 667.6307 1515.749 100.238 1.15E+ 08 45378499

C13 C14 C15
GCLPSO 6311983 16366176 18691.68 14472.48 339311.4 771517.5
FST-PSO 3.29E+ 08 2.46E+ 08 513636 883827.9 3126763 8917858
PP-PSO 113435.6 70563.99 21442.57 37439.27 17791.48 10822.85
SopPSO 334284.1 185471 25319.19 28123.36 86743.07 67917.81

C16 C17 C18
GCLPSO 2524.394 349.3318 2181.644 214.8127 303575.8 508335.9
FST-PSO 3875.41 444.8716 2807.213 557.3205 2596442 1220712
PP-PSO 3215.168 440.3601 2543.372 324.3884 1005761 1123643
SopPSO 2646.873 257.1059 2284.727 145.7952 1157983 788348.7

C19 C20 C21
GCLPSO 309824.8 484215.9 2582.642 164.4844 2388.455 113.7288
FST-PSO 516084.8 698721.5 2899.979 231.6999 7244.879 2052.298
PP-PSO 41786.26 79193.27 2890.96 171.3033 2256.39 28.80583
SopPSO 54267.15 29390.6 2516.419 176.5408 2257.635 37.98601

C22 C23 C24
GCLPSO 2334.505 46.10819 2998.283 83.77263 3033.754 198.0154
FST-PSO 2525.269 45.64213 5159.713 754.2833 3490.721 199.574
PP-PSO 2423.022 33.20083 5430.172 566.2067 2624.505 7.079901
SopPSO 2417.927 37.82041 3145.016 106.5341 2905.707 359.1231

C25 C26 C27
GCLPSO 3232.716 227.5693 5730.447 572.2469 3200.007 0.000251
FST-PSO 4701.112 526.0779 7414.885 590.2477 5823.378 652.2105
PP-PSO 3043.248 83.18019 3271.193 1400.637 6554.57 553.1435
SopPSO 3065.398 36.85945 6913.551 1436.454 4305.518 328.8754

C28 C29 C30
GCLPSO 3330.014 140.045 3545.836 260.3361 166532.5 499410.3
FST-PSO 5767.055 589.9138 4628.107 484.319 1.61E+ 08 1.53E+ 08
PP-PSO 3303.625 44.57472 4378.405 348.2795 1822939 1242467
SopPSO 3481.639 401.8921 3955.652 199.209 2579572 2027674

C31 C32 C33
GCLPSO 359.1043 1029.417 344.3299 472.5213 3.214955 1.982597
FST-PSO 8846219 9085310 3228.755 1238.997 9.540943 0.826491
PP-PSO 2.35E+ 08 1.38E+ 08 26635.15 6358.773 6.644039 1.684984
SopPSO 1.54E+ 08 1.09E+ 08 9416.839 3062.053 8.462442 1.53715

C34 C35 C36
GCLPSO 12.61567 5.36528 1.206667 0.049533 2.533985 1.523304
FST-PSO 58.25209 22.16737 20.03394 12.11788 9.771933 1.106773
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C9, the adaptive values searched by the GCLPSO are superior to
other peers. It is proved that the GCLPSO has better results on
these multimodal functions than these improved PSO variants.
At the same time, GCLPSO also has a better effect on hybrid
functions and composition functions. On the benchmark
functions of CEC2019, the adaptive values of the GCLPSO on
the eight functions are better than other comparison algorithms.
0e Friedman test results show that the GCLPSO ranks first. As
the results of “+/�/−”show, the GCLPSO is superior to the
comparison algorithms in most functions.
In order to more intuitively and clearly understand the

convergence trend of the algorithm and evaluate the per-
formance of the algorithm, representative benchmark
functions were selected from CEC2017 and CEC2019 for
analysis. As shown in Figure 3, on CEC2017 multimodal
benchmark functions C6 and C9, the adaptive values
searched by the GCLPSO are better than other comparison
algorithms. On the C6 and C9 benchmark functions, the
adaptive value searched by the GCLPSO in the early iter-
ations is not the best, but the adaptive value searched by the
GCLPSO in later iterations is better than other algorithms.
0is is because this paper introduces the GWO algorithm
idea into CLPSO to further improve its local search ability.
On the C17 function, all the algorithms in the early iterations
quickly searched for an adaptive value. In the later iterations,
part of the comparison algorithms fell into a local optimum,
and the GCLPSO continued to update the optimal fitness
value. On the C18, C31, C33, and C38 benchmark functions,
compared with other comparison algorithms, the GCLPSO
not only searched for the best fitness value in the later it-
erations but also had a higher convergence trend and still
updated the optimal fitness value. On the C23 and C27
benchmark functions, the GCLPSO converged to an
adaptive value in the early stage of the iteration, and the
trend of updating the adaptive value in the later iteration was
relatively low. However, the adaptive value of the GCLPSO is
much better than other comparison algorithms.

4.4. Feature Selection. Feature selection is a multiobjective
optimization problem. 0e goal of this method is to select
features as few as possible in the multifeature problem to

obtain the greatest classification accuracy. In this section, the
proposed GCLPSO was compared with the advanced feature
selection algorithms on 12 different UCI datasets [86] as
described in Table 6.
GCLPSO constantly updates the position of particles to

achieve new solutions. Nevertheless, we need to select the
feature of the problem in the binary form for feature selection
problems.0erefore, we need to convert the continued values
obtained from the algorithm into binary values. We first use
the random threshold to reinitialize the algorithm to generate
a binary value, as shown in the following equation:

xij �
0, rand≤ 0.5,
1, rand> 0.5,

{ (13)

where x denotes the specific position value of the individual
and i and j denote the i-th row and the j-th column,
respectively.
0en, the continuous solution obtained in the algorithm

is compressed by using the V-shaped transfer function to
implement the conversion, and the function enables the
search agent to move in the 0 to 1 space as shown in the
following equation:

s � |tanh(x)|, (14)

where x is a continuous value.
0e value achieved after conversion by the V-shaped

transfer function is a continued value between 0 and 1.
Finally, the binary value acquired by the initialization and
the value achieved by the V-shaped transfer function are
used to generate a new binary value by the following
equation:

x �
posOut � ∼pos, rand< s,
posOut � pos, rand≥ s,

{ (15)

where posOut represents the newly achieved binary value,
pos represents the initialized binary value, and s represents
the continued value obtained by the V-shaped transfer
function.
As with K-fold cross-validation, the data are separated

into a training set and a test set. 0e verification data are

Table 5: Continued.

Avg Std Avg Std Avg Std
C1 C2 C3

PP-PSO 47.66576 8.638141 1.660454 0.233334 8.157233 1.265678
SopPSO 25.87162 8.484042 1.616367 0.114422 3.772674 1.242947

C37 C38 C39
GCLPSO 680.2373 258.1453 3.326769 0.477053 1.134663 4508.552
FST-PSO 1336.01 232.5401 4.777392 0.375858 1.601969 0.395181
PP-PSO 1119.353 385.7451 4.397828 0.271175 1.527999 0.23405
SopPSO 648.257 242.6093 4.063498 0.431445 1.257091 0.102787

C40
Avg Std Rank ARV +/�/−

GCLPSO 21.34823 0.080195 1 1.11

FST-PSO 21.14655 0.084509 4 3.385 37/1/2
PP-PSO 21.37964 0.086629 3 2.86 24/11/5
SopPSO 21.22294 0.087032 2 2.3475 22/7/11
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taken from the training data. 0e training set data are
separated into K groups (K-fold), and each subset of the data
is separately verified. One subset was used as the test data,

and the remaining K − 1 subset data were used as a training
set. In the experiment, each dataset was run N times, each
performing a K-fold cross-validation procedure. 0is ex-
periment used the K-nearest neighbor (KNN) [87] classifier
to classify the data. 0e KNN classifier uses the data in the
training set to train themodel and then uses themodel to test
the data in the validation set. Finally, the model is used to
classify the test dataset to obtain the final accuracy. In this
paper, the GCLPSO is binary-converted and compared with
other feature selection methods including BGWO [86],
BMFO [88], BPSO [89], and BBA [90] to estimate the
performance of the proposed algorithm.
In this study, feature information is obtained in the

binary form. Each of these search agents is a one-dimen-
sional binary vector whose length relies on the number of
features in the dataset. Each search agent represents a so-
lution where an element value of 0 in the vector indicates
that the feature is not chosen, and a value of 1 implied that
the feature has been chosen. 0en, each solution is evaluated
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Figure 3: Convergence trends of the GCLPSO and other methods.

Table 6: Description of 12 datasets.

No. Name No. of features No. of samples

D1 Breastcancer 10 699
D2 Exactly 14 1000
D3 Heart 14 270
D4 IonosphereEW 35 351
D5 Lymphography 19 148
D6 Vote 17 300
D7 WineEW 14 178
D8 Zoo 17 101
D9 wdbc 31 569
D10 Wielaw 31 240
D11 Australian 15 690
D12 Cleveland_heart 14 303
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by the fitness value acquired. 0e relationship between the
error rate and the fitness value obtained by the classifier
through data set validation is as shown in the following
equation:

fitness � α ×(1 − correctRate) + β ×Ni

N
, (16)

where correctRate represents the accuracy of the KNN
classifier on the validation set,N represents the total number
of features in the dataset, and Ni represents the number of
features obtained by the i-th search agent after feature se-
lection. In addition, α and β are two weights, respectively,
where α � 0.95 and β � 0.05. 0e entire process updates
each search agent by iteration until the maximum iterations.
Table 7 illustrates the average fitness values acquired by the

GCLPSO and BMFO, BGWO, BPSO, and BBA in 12 datasets
and uses bold fonts to represent the best results. It can be
observed that the GCLPSO possesses the best fitness value on
the D2 to D5 datasets and the D9 and D11 datasets. In these
datasets, the number of features in the D4 and D9 datasets is
greater than 30. 0e average fitness value of the GCLPSO is
superior to the BMFO algorithm on all datasets. Except that
the average fitness value of the GCLPSO is inferior than the
BPSO on the D6 dataset, the GCLPSO is greater than the
BPSO on other datasets. In general, the average fitness of the
GCLPSO algorithm on the 12 datasets is the best, which also
shows that the algorithm works best in this kind of problem.
Table 8 demonstrates the average error rate of each al-

gorithm on the verification set whenK-fold cross-validation is
performed for 12 datasets. As can be observed from the table,
the GCLPSO has the lowest average error rate on the D4, D5,
D6, and D9 datasets. At the same time, on the D2, D7, and D8
datasets, the average error rate of the GCLPSO algorithm is 0,
which proves that the classification accuracy of the algorithm
is 100% on these datasets. On the 12 datasets, BGWO has the
lowest average error rate, and GCLPSO ranks second in the
average error rate.0is is because the excellence of the feature
selection result is determined by two factors, namely, the
selected feature number and the error rate. Although the
average error rate of the algorithm in the 12 datasets is higher
than that of the BGWO, the average fitness value of the 12
datasets is superior to the BGWO.
Table 9 shows the average number of features selected for

each dataset after feature selection. In the D1, D4, and D9
datasets, the GCLPSO selects the fewest number of features.
0e GCLPSO averages the least number of selected features
in 12 datasets.
0e GCLPSO was tested on twelve datasets and com-

pared with other feature selection methods to verify the
effectiveness of the algorithm. Although the error rate of the
GCLPSO is higher than that of the BGWO on 12 datasets,
the optimal fitness value is obtained from the two factors that

affect the feature selection effect, which proves the capability
of the algorithm proposed.

4.5. Practical Constraint Modeling Problems. In this part,
GCLPSO was used to solve 3 mathematical models with a
constrained problem: I-beam, welded beam, and pressure
vessel design problems. We need to choose an appropriate
constraint processing method to solve mathematical prob-
lems with constraints. Coello Coello [91] described several
kinds of penalty functions in detail. 0e death penalty is the
most appropriate type of penalty functions. It constructs the
primary target value of the mathematical model to be
processed and uses a heuristic algorithm to eliminate the
infeasible solution automatically. 0erefore, GCLPSO
combined with penalty functions was used in this experi-
ment to solve the three famous mathematical model
problems.

4.5.1. Welded Beam Design Problem. 0e purpose of the
welding beam construction [92] problem is to obtain the
minimum manufacturing cost of the model. Among them,
four factors are influencing the manufacturing cost con-
straints, including the bucking load (Pc), the deflection rate
(δ), the bending stress in the beam (θ), and the shear stress
(τ). We control the manufacturing cost of the model
through four optimization parameters, including the height
of the bar (t), weld thickness (h), bar thickness (b), and bar
length (l). 0e mathematical model description of the
welding beam design problem is shown as follows:

Consider x
→ � x1 x2 x3 x4[ ] � h l t b[ ].

Objective:
f( x→)min � 1.10471x2x21 + 0.04811x3x4(14.0 + x2).
Subject to

g1( x
→) � τ( x→) − τmax ≤ 0,

g2( x
→) � σ( x→) − σmax ≤ 0,

g3( x
→) � δ( x→) − δmax ≤ 0,

g4( x
→) � x1 − x4 ≤ 0,

g5( x
→) � P − PC( x

→)≤ 0,

g6( x
→) � 0.125 − x1 ≤ 0,

g7( x
→) � 1.10471x21 + 0.04811x3x4 14.0 + x2( ) − 5.0≤ 0.

(17)
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Table 7: Average fitness value of the GCLPSO and other feature selection algorithms on the dataset.

BMFO BGWO BPSO BBA GCLPSO

D1 3.25E− 02 3.22E− 02 3.09E− 02 2.96E− 02 2.99E− 02
D2 4.21E− 02 2.31E− 02 2.31E− 02 1.20E− 01 2.31E− 02
D3 9.16E− 02 7.83E− 02 8.15E− 02 7.90E− 02 7.63E− 02
D4 1.19E− 02 1.39E− 02 1.87E− 02 1.16E− 02 8.81E− 03
D5 2.87E− 02 2.57E− 02 2.67E− 02 2.95E− 02 2.18E− 02
D6 2.50E− 02 2.07E− 02 1.93E− 02 2.15E− 02 1.94E− 02
D7 1.22E− 02 1.19E− 02 1.15E− 02 1.02E− 02 1.04E− 02
D8 1.04E− 02 1.01E− 02 1.04E− 02 9.63E− 03 9.72E− 03
D9 1.21E− 02 1.20E− 02 1.46E− 02 1.01E− 02 8.94E− 03
D10 6.17E− 02 5.16E− 02 6.33E− 02 5.81E− 02 5.24E− 02
D11 1.03E− 01 9.86E− 02 9.90E− 02 1.06E− 01 9.83E− 02
D12 9.43E− 02 8.70E− 02 8.80E− 02 9.14E− 02 8.72E− 02
Average 4.3333 2.6667 3.3333 3 1.5

Rank 5 2 4 3 1

Table 8: Average error rate of the GCLPSO and other feature selection algorithms on datasets.

BMFO BGWO BPSO BBA GCLPSO

D1 1.36E− 02 1.36E− 02 1.10E− 02 1.10E− 02 1.15E− 02
D2 2.00E− 02 0.00E + 00 0.00E+ 00 9.71E− 02 0.00E + 00

D3 7.52E− 02 5.78E− 02 6.30E− 02 6.26E− 02 5.89E− 02
D4 4.55E− 03 3.38E− 03 7.13E− 03 3.94E− 03 1.69E− 03
D5 1.84E− 02 1.28E− 02 1.46E− 02 1.86E− 02 1.06E− 02
D6 1.60E− 02 9.99E− 03 9.35E− 03 1.30E− 02 1.06E− 02
D7 5.56E− 04 0.00E + 00 0.00E+ 00 0.00E+ 00 0.00E + 00

D8 0.00E+ 00 0.00E + 00 0.00E+ 00 0.00E+ 00 0.00E + 00

D9 4.40E− 03 2.63E− 03 3.51E− 03 2.45E− 03 2.29E− 03
D10 5.58E− 02 4.21E− 02 5.33E− 02 5.04E− 02 4.59E− 02
D11 9.20E− 02 8.12E− 02 8.13E− 02 9.63E− 02 8.60E− 02
D12 7.89E− 02 6.80E− 02 6.96E− 02 7.79E− 02 7.18E− 02
Average 4.25 1.75 2.5 3.0833 1.8333
Rank 5 1 3 4 2

Table 9: Average feature length of the GCLPSO and other feature selection algorithms on the dataset.

BMFO BGWO BPSO BBA GCLPSO

D1 3.52 3.47 3.67 3.45 3.43

D2 5.88 6.01 6 6.06 6
D3 5.25 6.09 5.64 5.08 5.3
D4 5.18 7.27 8.11 5.37 4.9

D5 4.07 4.88 4.63 4.29 4.22
D6 3.13 3.57 3.34 2.94 2.98
D7 3.04 3.09 2.99 2.66 2.7
D8 3.33 3.23 3.33 3.08 3.11
D9 4.73 5.7 6.73 4.68 4.06

D10 5.26 6.99 7.59 6.1 5.27
D11 4.39 6.02 6.1 4.09 4.63
D12 5.02 5.83 5.69 4.51 4.92
Average 2.5 4.25 4.1667 2 1.9167

Rank 3 5 4 2 1
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Variable ranges:

0.1≤ x1 ≤ 2,
0.1≤ x2 ≤ 10,
0.1≤ x3 ≤ 10,
0.1≤ x4 ≤ 2,

(18)

where

τ( x→) �
�������������������
τ′( )2 + 2τ′τ″x2

2R
+ τ″( )2√

,

τ′ � P�
2

√
x1x2

,

τ″ �MR
J
,

M � P L + x2
2

( ),
R �

�������������
x22
4
+ x1 + x3

2
( )2

√
,

J � 2
�
2

√
x1x2

x22
4
+ x1 + x3

2
( )2[ ]{ },

σ( x→) � 6PL
x4x

2
3

,

δ( x→) � 6PL
3

Ex23x4
,

PC( x
→) �

4.013E
�������
x23x

6
4/36

√
L2

1 − x3
2L

���
E

4G

√
( ),

P � 60001b,

L � 14in,

δmax � 0.25 in, . . . ,

E � 30 × 16 psi,

G � 12 × 106 psi,

τmax � 13600 psi,

σmax � 30000 psi.

(19)

0is engineering design model has attracted the attention
of many researchers. Kaveh and Khayatazad used RO [93] to
process this mathematical model. Lee and Geem [94] used HS
to optimize the mathematical model. As shown in Table 10, the
model was optimized by the HS method, and the optimal

manufacturing cost was 2.3807. 0e improved HS (IHS) [95]
also optimized the model, and the optimal manufacturing cost
was 1.7248. Radgsdell and Phillips [96] used mathematical
methods such as Davidon–Fletcher–Powell and simplex
method to solve the optimal cost.
0e mathematical model is optimized with the solution of

the GCLPSO, and the results are compared with those of other
methods. As shown in Table 10, the minimum manufacturing
cost optimized by the GCLPSO is 1.715355, indicating that
when the four parameter values are set to 0.20799, 3.25802,
9.02820, and 0.208064, respectively, the manufacturing cost of
this model can reach 1.715355, and the minimum cost is less
than the results obtained by other methods. It is shown that the
proposed GCLPSO algorithm can optimize the mathematical
model and obtain the minimum design and manufacturing
cost of the welded beam.

4.5.2. Pressure Vessel Design Problem. 0e purpose of this
mathematical model is to minimize the cost of cylindrical
pressure vessels [97]. Among them, the manufacturing cost
of the model is closely associated with welding, material, and
structure. 0e end of the model is covered, and the head part
is a hemispherical figure. We reduce the manufacturing cost
of the model by optimizing the variable internal radius (R),
head thickness (Th), shell thickness (Ts), and cross-section
range minus head (L). 0e mathematical expression of the
model is shown as follows:

Consider x
→ � x1 x2 x3 x4[ ] � Ts Th R L[ ].

Objective: f( x→)min � 0.6224x1x3x4 + 1.7781x3x21+
3.1661x4x

2
1 + 19.84x3x21.

Subject to

g1( x
→) � −x1 + 0.0193x3 ≤ 0,

g2( x
→) � −x3 + 0.00954x3 ≤ 0,

g3( x
→) � −πx4x

2
3 −
4

3
πx33 + 1296000≤ 0,

g4( x
→) � x4 − 240≤ 0.

(20)

Variable ranges:

0≤x1 ≤ 99,

0≤x2 ≤ 99,

10≤x3 ≤ 200,

10≤x4 ≤ 200.

(21)

0is mathematical model has been tried by many re-
searchers to find the optimal value. As shown in Table 11, He
and Wang [98] used a particle swarm optimization algo-
rithm to optimize the model, and the optimized
manufacturing cost was 6061.0777. Deb [99] optimized the
model by the genetic algorithm, and the manufacturing cost
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was 6410.3811. Also, some scholars used IHS [95], ES [100],
and mathematical methods [97, 101] to solve the optimal
solution.
0e optimal value obtained by optimizing the mathematical

model through the GCLPSO is 5989.654, indicating that when
the parameter values of Ts, Th, R, and L are set to 0.784508,
0.387656, 40.6289, and 195.8892, respectively, the total cost of
cylindrical pressure vessels is theminimum. GCLPSO algorithm
and other methods utilized to find the optimal design scheme
are shown inTable 11. It can be seen that theGCLPSOalgorithm
provides a better solution for this model.

4.5.3. I-Beam Design Problem. 0e mathematical model
aims to optimize the structure of the I-beam. 0e design of
the I-beam is improved to achieve the minimum vertical
deflection. 0e optimal parameters of the model are the
length, height, and two thicknesses. 0e mathematical
formula of this model can be described as follows:

Consider x
→ � x1 x2 x3 x4[ ] � b h tw tf[ ].

Objective: f( x→)min � (5000/(tw(h − 2tf)3/12) + (bt3f/
6) + 2btf(h − tf/2)2).

Subject to

g( x→) � 2btw + tw h − 2tf( )≤ 0. (22)

Variable ranges:

10≤x1 ≤ 50,

10≤x2 ≤ 80,

0.9≤x3 ≤ 5,

0.9≤x4 ≤ 5.

(23)

Some scholars use different methods to optimize the
model. Wang used ARSM [102] to optimize the model to
obtain the minimum vertical deflection and also used the
improved IARSM [102] to optimize the model. Gandomi
et al. used CS [103] to solve the minimum vertical deflection
of the model. Cheng and Prayogo used SOS [104] to opti-
mize this problem.
As shown in Table 12, the optimization results of the

GCLPSO algorithm were compared with those of other

Table 10: Comparison of the GCLPSO with other methods for the welding beam design problem.

Technique
Best variables

Best cost
H l t b

GCLPSO 0.20799 3.25802 9.02820 0.208064 1.715355
WOA [24] 0.205396 3.484293 9.037426 0.206276 1.730499
RO [93] 0.203687 3.528467 9.004233 0.207241 1.735344
HS [94] 0.2442 6.2231 8.2915 0.2433 2.3807
IHS [95] 0.20573 3.47049 9.03662 0.20573 1.7248
Random [96] 0.4575 4.7313 5.0853 0.6600 4.1185
Simple [96] 0.2792 5.6256 7.7512 0.2796 2.5307
David [96] 0.2434 6.2552 8.2915 0.2444 2.3841

Table 11: Comparison of the GCLPSO with other methods for the pressure vessel design problem.

Algorithm
Optimum variables

Optimum cost
Ts Th R L

GCLPSO 0.784508 0.387656 40.6289 195.8892 5989.654
IHS [95] 1.125000 0.625000 58.29015 43.69268 7197.7300
PSO [98] 0.812500 0.437500 42.091266 176.746500 6061.0777
GA [99] 0.937500 0.500000 48.329000 112.679000 6410.3811
ES [100] 0.812500 0.437500 42.098087 176.640518 6059.7456
Lagrangian multiplier [97] 1.125000 0.625000 58.291000 43.690000 7198.0428
Branch and bound [101] 1.125000 0.625000 47.700000 117.71000 8129.1036

Table 12: Comparison of the GCLPSO with other methods for the I-beam design problem.

Algorithm
Best variables

Optimum vertical
b h tw tf

GCLPSO 50 80 1.764669 5 0.00662596
MFO [29] 50 80 1.7647 5 0.0066259
ARSM [102] 48.42 79.99 0.90 2.40 0.0157
IARSM [102] 0.2442 6.2231 8.2915 0.2433 0.131
CS [103] 50 80 0.9 2.321675 0.0130747
SOS [104] 50 80 0.9 2.32179 0.0130741
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methods before, and the minimum vertical deflection ob-
tained by the GCLPSO was 0.00662596. 0is observation
indicates that when the parameters are set to 50, 80,
1.764669, and 5, respectively, the vertical deflection of the
I-beam is 0.00662596. As can be seen from the table,
GCLPSO can also provide a good solution for this model.

5. Conclusion and Future Directions

0is paper presents an improved algorithm named
GCLPSO. 0is algorithm introduces the GWO into CLPSO
to improve the local search capability of the CLPSO. 0e
GCLPSO achieves a more stable status between global search
and local search, which boosts the ability to search for the
optimal solution. 0e improved algorithm was compared
with seven classical MAs and eight advanced metaheuristic
algorithms on the CEC2017 benchmark functions. Experi-
ments were carried out in the same experimental environ-
ment, and the experimental results have shown that the
algorithm proposed had distinct advantages over other
comparison algorithms in terms of CEC2017 benchmark
functions with four different types. It was proved that
GCLPSO has the strong searching ability on the benchmark
functions. In this paper, the improved algorithm was binary-
transformed and compared with other algorithms when
coping with feature selection on 12 datasets, which proves
that the algorithm has a good effect on feature selection.
Moreover, the algorithm was also applied to three practical
engineering design problems: pressure vessel, I-beam, and
welded beam design problems. 0e results of algorithm
optimization were compared with the results obtained by
other methods. GCLPSO has achieved good optimization
results in all three engineering problems. It shows that this
algorithm can deal with the constraint problem effectively at
the same time.
In the future research work, the algorithm can be used in

many aspects. For instance, the algorithm can be used to
optimize the machine learning models such as neural net-
works [105–110]. On the contrary, the performance of the
algorithm can be improved further and can also be extended
to multiobjective directions [111]. It is also possible to ex-
plore a parallel computing framework based on the algo-
rithm of this paper, which is applied to more complex
optimization problems. At the same time, it can also be
combined with finance, agriculture, and other applications
[109, 112, 113] to explore the best practical application
scenarios of the algorithm. 0erefore, there are still many
aspects for us to explore and discover as a further study to be
implemented.
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whale optimization algorithm for global optimization,” IEEE
Access, vol. 5, pp. 6168–6186, 2017.

[78] M. Tubishat, M. A. M. Abushariah, N. Idris, and I. Aljarah,
“Improved whale optimization algorithm for feature selec-
tion in Arabic sentiment analysis,” Applied Intelligence,
vol. 49, no. 5, pp. 1688–1707, 2019.

22 Complexity



[79] X. Chen, H. Tianfield, C. Mei, W. Du, and G. Liu, “Bioge-
ography-based learning particle swarm optimization,” Soft
Computing, vol. 21, no. 24, pp. 7519–7541, 2017.
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