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SUMMARY

In this paper, we propose a new component mode synthesis method by enhancing the Craig–Bampton (CB)
method. To develop the enhanced CB method, the transformation matrix of the CB method is enhanced
considering the effect of residual substructural modes and the unknown eigenvalue in the enhanced transfor-
mation matrix is approximated by using O’Callahan’s approach in Guyan reduction. Using the newly defined
transformation matrix, original finite element models can be more accurately approximated by reduced mod-
els. For this reason, the accuracy of the reduced models is significantly improved with a low additional
computational cost. We here present the formulation details of the enhanced CB method and demonstrate its
performance through several numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reduced-order modeling of large finite element (FE) models is essential in many engineering fields

such as ocean, mechanical, and aerospace engineering. Component mode synthesis (CMS) meth-

ods have been widely used for FE model reductions in structural dynamics. In the CMS methods,

the original large structural FE model is partitioned into smaller substructural FE models con-

nected at interface boundary. A small proportion of substructural modes (dominant substructural

modes) and interface constraint conditions are used to reduce the original structural model. Because,

instead of the original large structural model, we handle the reduced model constructed using the

small substructural models, CMS methods can dramatically reduce the computational cost. The

accurately approximated reduced models are valuable indeed in structural systems design, system

identification, and experimentally verified model development.

In the 1960s, based on Hurty and Guyan’s idea [1, 2], Craig and Bampton proposed a CMS

method referred to as the Craig–Bampton (CB) method [3]. Since then, various related studies have

been performed to develop robust CMS methods [4–11]. However, the CB method is still the most

popular and widely used CMS method because of its simplicity and reliability. Reviews of the CMS

methods can be found in [12–14].

Using the localized Lagrange multipliers at free interface boundary, Park and Park developed

the flexibility-based CMS (F-CMS) method [9], in which the accuracy of reduced models is

improved by effectively retaining the contribution of residual substructural modes. The conceptual

idea has been employed to construct an enhanced transformation matrix used for estimating relative
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eigenvalue errors in the CB method [15]. However, the enhanced transformation matrix contains an

unknown eigenvalue, and thus, it is not possible to use the transformation matrix in its present form

for the improvement of the original CB method.

In order to overcome this difficulty, we borrow O’Callahan’s idea, which was originally pro-

posed to improve Guyan reduction [16]. That is, the unknown eigenvalue is approximated using

O’Callahan’s approach. As a result, a new enhanced transformation matrix is obtained and, using

it, the enhanced CB method is developed. Compared with the original CB method, the enhanced

CB method can provide significantly improved reduced-order models with a low additional

computational cost.

In the following sections, we briefly review the original CB method, derive the enhanced CB

method, and present the performance of the enhanced CB method through various numerical exam-

ples: rectangular plate, hyperboloid shell, stiffened plate, and solid ring problems. The numerical

results of the enhanced CB method are compared with the original CB and F-CMS methods.

2. CRAIG–BAMPTON METHOD

In the CB method, global (original) structure is partitioned by Ns substructures as in Figure 1(b).

The substructures are connected with a fixed interface at the interface boundary � (Figure 1(c)). The

linear dynamics equations can be expressed by

Mg Rug C Kgug D fg ;

Mg D

�

Ms Mc

MT
c Mb

�

; Kg D

�

Ks Kc

KT
c Kb

�

;

ug D

�

us

ub

�

; fg D

�

fs

fb

�

;

(1)

where Mg and Kg are the global mass and stiffness matrices, and ug and fg are global displacement

and force vectors. The subscript g denotes the global structure and .R/ D d 2. /=dt2 with the

time variable t . The subscripts s; b, and c denote substructures, boundary interface, and coupling

matrices, respectively. Note that Ms and Ks are the block diagonal mass and stiffness matrices

of substructures.

The global eigenvalue problem is

Kg.�g/i D �i Mg.�g/i ; i D 1; 2; : : : ; Ng ; (2)

where �i and .�g/i are the eigenvalue and eigenvector calculated in the global structure, respec-

tively, and Ng is the number of DOFs in the global structure. Note that �i and .�g/i are the square

of the i-th natural frequency .!2
i / and the corresponding mode in structural dynamics, respectively.

Using the eigenvectors obtained from Equation (2), the global displacement vector ug is

represented by

ug D ˆgqg ; (3)

where ˆg and qg are the global eigenvector matrix and its generalized coordinate vector,

respectively.

In the CB method, the global displacement vector ug can be defined by

ug D

�

us

ub

�

D T0

�

qs

ub

�

; T0 D

�

ˆs �K�1
s Kc

0 Ib

�

; (4)
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Figure 1. Global and partitioned structural models and interface handling in the Craig–Bampton method. (a)
Global (non-partitioned) structure �, (b) substructures �i .i D 1; 2; � � � ; Ns/ and interface boundary � (Ns

denotes the number of substructure and Ns D 2 in this figure), and (c) interface boundary treatment.

in which qs is the generalized coordinate vector for the substructural modes, T0 is the transfor-

mation matrix, Ib is an identity matrix for the interface boundary, and ˆs is a block diagonal

eigenvector matrix calculated by the substructural eigenvalue problems

h

K.k/
s � �

.k/
i M.k/

s

i

.�.k//i D 0; i D 1; 2; : : : ; N .k/
q ; for k D 1; 2; : : : ; Ns; (5)

where N
.k/
q is the number of deformable modes in the k-th substructure, and �

.k/
i and .�.k//i are

the substructural eigenvalue and eigenvector, respectively.

The substructural displacement vector us can be decomposed into the dominant and residual

modes

us D ˆsqs � K�1
s Kcub D

�

ˆd ˆr

�

�

qd

qr

�

� K�1
s Kcub; (6)
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where ˆd and ˆr are the dominant and residual substructural eigenvector matrices, respectively,

and qd and qr are the corresponding generalized coordinate vectors. The subscripts d and r denote

the dominant and residual terms, respectively. In general, a small number of the dominant modes is

used to reduce the global structure. That is, Nd � Nr , in which Nd and Nr are the numbers of the

dominant and residual modes, respectively.

Neglecting the residual modes in Equation (6), the global displacement vector ug is approximated

by the dominant substructural modes

ug � Nug D NT0

�

qd

ub

�

; NT0 D

�

ˆd �K�1
s Kc

0 Ib

�

; (7)

where NT0 is the reduced transformation matrix. Using NT0 in Equation (1), we can obtain the reduced

equations of motion for the partitioned structure

NMp
RNup C NKp Nup D Nfp;

NMp D NTT
0 Mg

NT0; NKp D NTT
0 Kg

NT0;

Nup D

�

qd

ub

�

; Nfp D NTT
0

�

fs

fb

�

;

(8)

where NMp and NKp are the reduced mass and stiffness matrices, respectively, and Nup and Nfp are the

approximated displacement and force vectors, respectively. The subscript p denotes the partitioned

structure and an overbar .N/ denotes the approximated quantities.

From Equation (8), the reduced eigenvalue problem is obtained

NKp. N�p/i D N�i
NMp. N�p/i ; i D 1; 2; : : : ; NNp; (9)

in which N�i and . N�p/i are the eigenvalue and eigenvector calculated in the reduced model,

respectively, and NNp is the number of DOFs in the reduced model.

Using the eigenvectors obtained from Equation (9), the approximated displacement vector Nup is

represented by

Nup D N̂
p Nqp; (10)

where N̂
p and Nqp are the eigenvector matrix in the reduced model and the corresponding generalized

coordinate vector, respectively.

3. ENHANCED CRAIG–BAMPTON METHOD

In the original CB method, to construct the reduced transformation matrix NT0 in Equation (7), the

residual substructural modes are simply truncated without any consideration. However, when the

residual substructural modes are properly considered, the transformation matrix can be constructed

more accurately.

Using Equation (6) in Equation (4), ug can be rewritten as

ug D

�

us

ub

�

D T0

2

4

qd

qr

ub

3

5 ; T0 D

�

ˆd ˆr �K�1
s Kc

0 0 Ib

�

: (11)
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Using Equation (11) in Equation (1), we obtain the equations of motion for the partitioned

structure
�

d 2

dt2
Mp C Kp

�

up D fp; (12a)

Mp DTT
0 MgT0; Kp D TT

0 KgT0; (12b)

d 2

dt2
Mp C Kp D

2

6

4

Oƒd 0 d2

dt2
NMc

0T Oƒr
d2

dt2 D
d2

dt2
NMT

c
d2

dt2 DT OKb C d2

dt2
OMb

3

7

5
; (12c)

up D

2

4

qd

qr

ub

3

5 ; fp D TT
0

�

fs

fb

�

; (12d)

where the component matrices are defined by

Oƒd D ƒd C
d 2

dt2
Id ; ƒd D ˆT

d Ksˆd ; Id D ˆT
d Msˆd ; (13a)

NMc D ˆT
d

�

Mc � MsK�1
s Kc

�

; (13b)

Oƒr D ƒr C
d 2

dt2
Ir ; ƒr D ˆT

r Ksˆr ; Ir D ˆT
r Msˆr ; (13c)

D D ˆT
r

�

�MsK�1
s Kc C Mc

�

; (13d)

OMb D Mb C KT
c K�1

s MsK�1
s Kc � MT

c K�1
s Kc � KT

c K�1
s Mc ; (13e)

OKb D Kb � KT
c K�1

s Kc : (13f)

Note that Equation (12) is the original equations of motion that contain all the substructural modes.

Substituting Equation (12c) into Equation (12a) with fp D 0 and considering the second row in

the resulting matrix equation, we obtain

qr D � Oƒ
�1

r

�

d 2

dt2
Dub

�

: (14)

Substituting Equation (14) into Equation (11), us can be represented by

us D ˆd qd � K�1
s Kcub �

d 2

dt2
OFr

�

�MsK�1
s Kc C Mc

�

ub; (15)

Table I. Comparison between the CB and enhanced CB methods.

CB Enhanced CB

Transformation matrix NT0
NT0 C NTr

Reduced mass matrix NMp

NMp C NTT
r Mg

NT0

C NTT
0 Mg

NTr C NTT
r Mg

NTr

Reduced stiffness matrix NKp

NKp C NTT
r Kg

NT0

C NTT
0 Kg

NTr C NTT
r Kg

NTr

Size of the reduced matrices NNp NNp
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with

OFr D ˆr
Oƒ

�1

r ˆT
r D ˆr

�

ƒr C
d 2

dt2
Ir

�

�1

ˆT
r ; (16)

where OFr represents the residual flexibility of the substructures.

We here invoke harmonic response .d 2=dt2 D ��/, and then OFr can be approximated as

OFr D ˆr Œƒr � �Ir ��1 ˆT
r

� ˆrƒ�1
r ˆT

r C �ˆrƒ�2
r ˆT

r D Frs C �Frm;
(17)

where Frs and Frm are the static and dynamic parts of the residual flexibility, respectively.

Using Equation (17) in Equation (15) and truncating terms higher than the order of �; us can be

approximated as

us � Nus D ˆd qd � K�1
s Kcub C �Frs

�

�MsK�1
s Kc C Mc

�

ub; (18)

in which Frs is indirectly calculated by subtracting the dominant flexibility matrix from the full

flexibility matrix as

Frs D K�1
s � ˆd ƒ�1

d ˆT
d : (19)

Using Nus defined in Equation (18) instead of us in Equation (4), we finally obtain

ug � Nug D NT1 Nup; NT1 D NT0 C NTr ; (20)

Figure 2. Rectangular plate problem.

Table II. Retained substructural mode numbers N
.k/

d
in the rectangular plate problem.

CMS Case N
.1/
d

N
.2/
d

Nd

CB and enhanced CB 1 7 3 10
2 13 7 20
3 26 14 40
4 52 28 80

F-CMS 1 7 3 10
2 13 7 20
3 25 15 40
4 50 30 80
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with

NTr D

�

0 �Frs

�

�MsK�1
s Kc C Mc

�

0 0

�

; (21)

where NT1 is the transformation matrix enhanced by NTr . Note that, because NTr contains the eigen-

value �, it is regarded as a transformation matrix related to the dynamic effect. In the previous study

[15], the enhanced transformation matrix NT1 in Equation (20) is employed to develop an accurate

error estimator for the CB method.

Here, a difficulty arises. Because the eigenvalue � in NTr is unknown, the enhanced transformation

matrix NT1 cannot be used to improve the original CB method in its present form. To handle the

unknown eigenvalue � in NTr , we employ O’Callahan’s approach, which was proposed to improve

Figure 3. Relative eigenvalue errors in the rectangular plate problem. (a) Nd D 10 and (b) Nd D 20.
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Guyan reduction [16]. The excellent performance of O’Callahan’s approach in Guyan reduction has

been well known [17, 18]. From Equation (8) with Nfp D 0 and RNup D �� Nup , the following relation

is obtained:

� Nup D NM�1
p

NKp Nup: (22)

Using Equation (22) in Equation (20), NTr is newly defined by

NTr D

�

0 Frs

�

�MsK�1
s Kc C Mc

�

0 0

�

NM�1
p

NKp: (23)

Using the redefined NTr in Equation (20), NT1 can be expressed without the unknown eigenvalue

�. Using the enhanced transformation matrix NT1 redefined by NTr in Equation (20), the new reduced

mass and stiffness matrices denoted by tilde .Q/ are defined

Figure 4. Relative eigenvalue errors in the rectangular plate problem. (c) Nd D 40 and (d) Nd D 80.
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QMp D NTT
1 Mg

NT1 D NMp C NTT
r Mg

NT0 C NTT
0 Mg

NTr C NTT
r Mg

NTr ; (24a)

QKp D NTT
1 Kg

NT1 D NKp C NTT
r Kg

NT0 C NTT
0 Kg

NTr C NTT
r Kg

NTr : (24b)

Because of the compensation of the residual substructural modes in NT1, the reduced mass and

stiffness matrices in Equation (24) are more precisely constructed than the original reduced matrices

in Equation (8). For this reason, when the newly defined QMp and QKp are used in Equation (9), the

solution accuracy of the reduced eigenvalue problem can be improved.

Table I shows the comparison of the original and enhanced CB methods. It is important to note

that both methods (original and enhanced) produce reduced models of the same size. Compared

with the original CB method, the residual flexibility Frs and the inverse of the reduced mass matrix
NM�1

p are additionally computed to construct the enhanced transformation matrix NT1 in the enhanced

CB method.

However, Frs can be simply calculated by reusing K�1
s in Equation (4) and the dominant sub-

structural eigensolutions in Equation (7) (Equation (19)). Also, the size of the reduced mass matrix
NMp is small because it consists of a small number of dominant substructural modes and interface

DOFs. For these reasons, we can easily identify the fact that the additional computational cost of

the enhanced CB method is not high.

Note that the concept of the residual flexibility OFr in Equation (16) is essential for CMS methods

with free interface boundary [9–11, 19], but the concept has not been employed for the improve-

ment of CMS methods with fixed interface boundary (like the CB and Automated Multi-Level

Substructuring (AMLS) methods) [3, 8].

Figure 5. Hyperboloid shell problem.
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4. NUMERICAL EXAMPLES

In this section, we test the performance of the enhanced CB method compared with the original CB

and F-CMS methods. It should be noted that, because of the use of localized Lagrange multipliers

[9, 19], the F-CMS method generally requires more DOFs in reduced models (larger size of reduced

matrices) than the original and enhanced CB methods for the same number of retained dominant

substructural modes.

Four different structural problems are considered: rectangular plate, hyperboloid shell, stiffened

plate, and solid ring problems. These are modeled by four-node Mixed Interpolation of Tensorial

Components (MITC) shell (e.g., [20–23]) and eight-node brick elements. We here use the frequency

cutoff mode selection method [24] to select the dominant substructural modes.

Table III. Retained substructural mode numbers N
.k/

d
in the hyper-

boloid shell problem.

CMS Case N
.1/
d

N
.2/
d

N
.3/
d

N
.4/
d

Nd

CB and enhanced CB 1 17 3 17 3 40
2 33 7 33 7 80

F-CMS 1 15 5 15 5 40
2 29 11 29 11 80

Figure 6. Relative eigenvalue errors in the hyperboloid shell problem. (a) Nd D 40 and (b) Nd D 80.
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The following relative eigenvalue error is used to evaluate the performance of the enhanced

CB method:

�i D
N�i � �i

�i

; (25)

in which �i denotes the relative eigenvalue error for the i-th mode, and �i and N�i are the exact and

approximated eigenvalues, respectively. These eigenvalues are calculated from the global (original)

and reduced eigenvalue problems (Equations (2) and (9)).

4.1. Rectangular plate problem

Let us consider a rectangular plate with free boundary as shown in Figure 2. Length L is 0.6096 m,

width B is 0.3048 m, and thickness h is 3:175 � 10�3 m. Young’s modulus E is 72G Pa, Poisson’s

ratio � is 0.33, and density �s is 2796 kg/m3. The plate is modeled by a 12�6 mesh of the four-node

MITC shell FEs, and the structural model is partitioned into two substructures .Ns D 2/.

We consider four numerical cases with 10, 20, 40, and 80 dominant substructural modes selected.

The numbers of retained substructural modes N
.k/

d
are listed in Table II. Figures 3 and 4 present

the relative eigenvalue errors obtained by the original CB, F-CMS, and enhanced CB methods. The

results show that the enhanced CB method outperforms the other two methods regardless of the

number of retained substructural modes.

Figure 7. Stiffened plate problem.
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Table IV. Retained substructural mode numbers N
.k/

d
in the stiffened plate problem.

CMS Case N
.1/
d

N
.2/
d

N
.3/
d

N
.4/
d

N
.5/
d

N
.6/
d

Nd

CB and enhanced CB 1 20 8 3 3 8 8 50
2 29 17 6 6 11 11 80

F-CMS 1 11 11 7 7 7 7 50
2 18 18 11 11 11 11 80

Figure 8. Relative eigenvalue errors in the stiffened plate problem. (a) Nd D 50 and (b) Nd D 80.

4.2. Hyperboloid shell problem

We here consider a hyperboloid shell structure of height H D 4:0 m and thickness h D 0:05 m.

Young’s modulus E is 69 GPa, Poisson’s ratio � is 0.35, and density �s is 2700 kg/m3. The mid-

surface of this shell structure is described by

x2 C y2 D 2 C ´2I ´ 2 Œ�2; 2�: (26)

We use a mesh of 20 (axial) � 40 (circumferential) MITC4 shell elements (Figure 5). The FE

model of the hyperboloid shell is partitioned into four substructures .Ns D 4/.
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Figure 9. Solid ring problem.

We use 40 and 80 dominant substructural modes selected for two numerical cases (Nd D 40

and Nd D 80). The numbers of dominant substructural modes N
.k/

d
are listed in Table III.

Figure 6 shows that the enhanced CB method gives much better solution accuracy than the other

two methods.

4.3. Stiffened plate problem

We here consider a stiffened plate with free boundary (Figure 7). Length L is 4.8 m, width B is

3.2 m, and thickness h is 0.03 m. The flat plate has two longitudinal and four transverse stiffeners,

and height H is 0.5 m. Young’s modulus E is 210 GPa, Poisson’s ratio � is 0.3, and density �s

is 7850 kg/m3. The bottom plate is modeled by a mesh of 24 � 16 shell FEs, and the longitudinal

and transverse stiffeners are modeled by meshes of 24 � 2 and 16 � 2 shell FEs, respectively. This

stiffened plate is partitioned into six substructures .Ns D 6/.

We use 50 and 80 dominant substructural modes selected in two numerical cases (Nd D 50 and

Nd D 80), and the numbers of dominant substructural modes N
.k/

d
are listed in Table IV. The

relative eigenvalue errors are plotted in Figure 8. The results show the robustness of the enhanced

CB method.
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Figure 10. Relative eigenvalue errors in the solid ring problem. (a) Nd D 80 and (b) Nd D 160.

4.4. Solid ring problem

Let us consider a solid ring problem (Figure 9). Height H is 0.05 m, and the radii R1 and R2 are

0.13 m and 0.1 m, respectively. Young’s modulus E is 72 GPa, Poisson’s ratio � is 0.33, and density

�s is 2796 kg/m3. The solid ring structure is modeled by a mesh of 40 (circumferential) �3 (radial)

� 5 (axial) brick elements and is partitioned into four identical substructures .Ns D 4/.

From each substructure, 20 and 40 dominant substructural modes are selected for two numerical

cases (Nd D 80 and Nd D 160). Figure 10 consistently demonstrates the excellent performance of

the enhanced CB method.

We finally note that, when we obtain Equation (18), it is possible to contain terms of higher

than order �, and thus, the enhanced transformation matrix can be more accurate. However, we

could not obtain meaningful improvement in the solution accuracy with the higher-order enhanced

transformation matrix.

5. CONCLUSIONS

In this paper, we developed a new CMS method by improving the well-known CB method. Unlike

the original CB method, the residual substructural modes are considered to construct the transfor-

mation matrix. As a result, the original CB transformation matrix is enhanced by the additional

dynamic term, in which the unknown eigenvalue is approximated using O’Callahan’s approach.

Using the enhanced transformation matrix, global (original) structural models can be more

precisely reduced and then the accuracy of reduced models is dramatically improved with a

low additional computational cost. The excellent performance of the enhanced CB method was

demonstrated through various numerical examples.
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To practically use the enhanced CB method, mode selection and error estimation techniques are

essential [15, 19, 25], and also, the conceptual idea of the enhanced CB method would be used to

improve other CMS methods.
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