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Summary. In theory, a single horizontally polarized seismometer can be used 
to find the six independent elements of the seismic moment tensor of a 
buried point source, provided that the instrument is neither longitudinally 
nor transversely polarized. Also, two vertically polarized seismometers can 
be used, provided that the epicentre does not lie on the great circle through 
the two instruments. These results form the theoretical basis for a procedure 
for retrieving the source mechanism from a sparse seismographic network. 

Let the six independent elements of the seismic moment rate spectrum be f(o) = cfi(w), 
. . . and suppose that P seismic spectra (records) u(o) = ( U ~ ( W ) ,  . . . , U P ( G J ) ) ~  

have been observed. The relationship between u(w) and f (o )  is a linear one (Gilbert 1971, 
1973; Dziewonski & Gilbert 1974; Gilbert & Dziewonski 1975, hereafter referenced as M) 

The P x 6 matrix H(w) is a functional of the mechanical structure of the Earth and can be 
regarded as the spectral transfer matrix or system function that relates output u(w) to input 
f(w). Let the p-th row of H(w) be hF(o). 

The six-vector hp(w) can be written as the sum of normal modes (M; 2.1.24, 2.1.28) 

hp (a) = c A k p  c k ( o )  f? k p  (w> (2) 
k 

where A k p  specifies the excitation and amplitude of the k-th mode for the p-th record, ck is 
the resonance function of the k-th mode, and R k p  represents the effect of truncation and 
the response of the p-th instrument. Each element of hp (a) is the spectrum of a seismogram 
caused by a unit element of the moment rate tensor, a delta function in time. The observed 
seismogram at the p-th instrument is a linear combination of the six seismograms hp (0) and 
the six coefficients in the linear combination are the six elements of f(o). 

Suppose that our model of the Earth is good enough to permit us to ignore the difference 
between real and calculated h,(w). Then we can seek to solve equation (1) for f(o). At low 
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frequencies the spectral peaks in hp(w)  are sufficiently well separated to cause spectral 
gaps, frequencies where there is little or no information about f(o). However, it is generally 
believed that f(o) is a smooth function of o at low frequencies, so smooth that it can be 
taken constant over a frequency band embracing many modes. Therefore, define set J of 
discrete frequencies wi 

E Gilbert and R. Buland 

and replace f(w) by f(wJ). There are now I . P equations for the six-vector f 

UJ = HJ . f (oJ)  (4) 

and we solve (4) by applying the classical method of least squares 

HJ". uJ = X J .  f(oJ); ZJ = H Y .  HJ (5) 

where the superscript H denotes Hermitean transpose. 
In forming (5) we cross-correlate up with each element of hp - multiply by h: (0). This 

operation is conventionally termed matched filtering and is an operation to enhance the 
signal being sought. The result is summed over the frequencies in set J to give (5). Solving 
(5) is then the final step in the deconvolution procedure for retrieving f. In order to solve 
(5) for f we require that . X i  have rank-6. Thus I .Pa 6 is necessary condition. For a 
dense network, P s 1, I ,  the number of discrete frequencies in set J ,  can be small. Alterna- 
tively if I 6 it appears that we can have P = 1 and still maintain rank-6 for SfJ.  To explore 
this possibility we examine the eigenvalues of y'. Without loss of generality we take 

Consider a single, vertically polarized accelerometer. In epicentral spherical coordinates 
the location of the receiver is (r, 8,qj). An inspection of (M; 2.1.30) shows that the six vector 
Akp in ( 2 )  for vertical polarization (r-component) can be written 

Rkp(W) = 1 .  

A = ( C P .  S )  U(r)  (6) 

where CP is a 6 x 4 matrix whose non-zero elements are 

@ I ,  = aZ2 = a32 = 1, a23 = -a33 = cos24, @- = C O S ~ ,  aS4 = sin@, 

@63 = 2sin2d 

and S is a 4-vector with components (M; 2.1.30) 

(7 )  

s1 = EPX?, s2 = E;X?, s3 = 24x:, s, = 24X". (8) 

Substituting (6) into (2) gives, 

where P(r, w )  is a 4-vector. For &J we have 

pJ = *.,p.*T (10) 

where 

and the asterisk denotes complex conjugate. In (10) the 4 x 4 Hermitean matrix .Yis limited 
to rank4 and, therefore, so is #J. Consequently, the 6 x 6 Hermitean matrix ZJ is singu- 
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lar, and, not surprisingly, the moment rate tensor cannot be retrieved from the spectrum of 
a single, vertically polarized accelerometer. However, if I ,  the number of discrete frequencies 
in set J ,  is large enough (I 2 4 is necessary) then 9 can have rank4. We shall assume that 
S i s  rank-4. 

Consider two, vertically polarized accelerometers with coordinates (el, 4) and (02, $J~). In 
an obvious notation (10) becomes 

ZJ = 9 1 . 9 1  ‘0F+0)2. 9 2  *@r. 

XJ = 9. ( 9 1  + 9 2 )  ‘aT 

(1 2) 

If @1 = e2 then 0, = O2 and ( 1  1 )  becomes 

(1 3) 

making .&J singular. Also, if I 4 - G2 I = n, *l and a2 are the same except for the sign of 
column 4. If-we change the sign of column 4 and row 4 o f 9 :  we have (13) again. Therefore, 
if the epicentre lies on the great circle through the two vertical instruments, SJ is singular. 
Included liere is the special case el = 0. n or d 2  = 0, n. By a proper choice of coordinates we 
car, always have --$J~ = 4 = Q, in (12). Assuming that g1 and g2 both have rank4 we deal 
with the matrix a(@) .aT(@) +a(--@) 1 &(-@) which has rank-6 unless @ = 0, n/2, n. 
Therefore, if the epicentre does not lie on the great circle through the two instruments, 
XJ is non-singular and (5) can be solved for f ( W J ) .  

This result is important because it shows that a sparse global network of vertically polar- 
ized instruments can be used to retrieve the seismic moment rate tensor. Buland & Gilbert 
(1976) have shown that using ten WWSSN stations leads to a satisfactory result for mb =7. 

To consider horizontally polarized instruments we must take into account toroidal as 
well as spheroidal modes. We introduce the 6 x 2 matrix Y whose non-zero elements are 

4 1  = - 9 3 1  = sin 2@, \kbl = - 2 cos 24, q4, = sin @, = - cos@ (14) 

Tl = E~X: T2 = ~ E : X / .  (1 5) 

A = - 6 csc e a , ( w  T) ~ ( r )  +&a, ( Y .  T )  W(r) 

and the 2-vector T (M; 2. i .3 1) 

In terms of Y and T ,  the dyadic, A, in (M; 2.1.28) for toroidal modes is 

(1 6 )  
and 

For spheroidal modes h,  and h3 are 

h2(r, 0)  = 0 .  a, D = 9 -  D’; D(r, W )  = 1 s k c k ( W )  vk(r )  
k 

Thus the complete ‘synthetic seismograms’ are 

h2(r,  W )  = 5 1 2 .  R ~ ( w ) ,  51, = a@ -Y’,  Rz = D’ @ Q csc 0 

h&, w )  = Q3.  R 3 ( u ) ,  Q 3  = QI‘ CB Y, R3 = csc0 D @ Q’ 
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where the 6 x 6 matrices nz and Q3 are functions only of and the 6-vectors Rz and R3 
are functions of r, 8 and o. For bothQZ and Q3 the fifth column is proportional to the third 
and the sixth to the fourth. Also, columns 1 and 2 of Q3 are zero. Thus S2z has rank4 and 
S23 has rank-2. When we s u m  over set J to obtain ZJ we use the 6 x 6 matrices 

F. Gilbert and R. Buland 

and we have 9Fr = 9 R r p  We assume 9 p r  to have rank-6. Although this assumption will be 
supported for w-bands that include multiplets for several values of I ,  9Zpr approaches singu- 
larity for large 1. This is a result of I1 D' 11/11 D I1 = O(Z) for large 1. The same is true for Q. This 
means that 9z2 approaches rank-4 as an upper left 4 x 4 block, 3?33 approaches rank-2 as a 
lower right 2 x 2 block, and 923 approaches rank-2 as an upper right 4 x 2 block. Physi- 
cally, this decomposition is a result of spheroidal modes dominating the 8-component and 
of toroidal modes dominating the +component for large 1. 

We now consider a single, horizontally polarized instrument oriented at an angle a with 
respect to the 6-vector. In terms of (19) and (20) &J is 

.W; = c o s ' a ~ l z .  2 2 2  .a,T + cosa sin a ( a .  9 2 3  + ~ 2 3 .  9 3 2 .  ~ $ 1  
+ s i n 2 a n 3 .  933. s ~ T .  (21) 

In general, X i  will be non-singular. However, if a =  0, longitudinal polarization, or n/2, 
transverse polarization, X J  will be singular because sZz and sZ3 are singular. Also, the 
matrices W p r  have rank-2 for 8 = 0, n. This means that a source directly beneath the 
receiver or its antipode cannot be retrieved. Otherwise, the moment rate tensor can be 
retrieved from a single, horizontally polarized instrument. As in the previous example, for 
two vertical instruments, it is necessary to sum over an o-band containing multiplets for 
several values of I ,  in order that 9Zpr have full rank, and it is assumed that f(w) is nearly 
constant in each w-band. This result remains true for large 1 even though 9 p r  becomes 
singular. Since gZ2 becomes an upper left 4 x 4 block we can replace S2z by 0 in (21). 
Similarly, we can replace S23 by Y. Let 

In (23) we assume that I, the number of discrete frequencies in set J, is large enough to make 
d have rank-6. Since det S2 + 0 (actually det S2= 8) we see that %J has rank-6. Thus, even 
at short periods, the moment rate tensor can be retrieved from a single horizontal instrument 
unless a = 0, n/2 or 8 = 0, n. 

In practice, a seismographic station has two horizontal instruments, in which case it is 
clear that the moment rate tensor can be retrieved. Moreover, a standard installation, consist- 
ing of one verticg and two horizontal instruments certainly enables the retrieval of the 
moment rate tensor. Here, the only exclusion is 8 = 0, n. 

The foregoing examples demonstrate theoretically that, except in special circumstances, 
the moment rate tensor of a buried point source can be retrieved from the spectra of two 
vertical accelerometers or from the spectrum of one horizontal accelerometer. From these 
theoretical results we can easily infer that a network of a small number of instruments can 
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be used to retrieve source mechanisms on a routine basis. The ability to achieve such 
retrievals makes possible some interesting research projects. 

The method presented here is an extension of the concept of matched filtering (see, e.g. 
Robinson 1967, pp. 259-264). The matched filters, h(r, w) in (2), are the best linear fiters 
in that they maximize the signal-to-noise ratio. For Gaussian noise they are optimum. 

Although we have obtained the transfer functions h(r, w) in (2) by summing normal 
mode multiplets, it should be emphasized that the method of retrieval is independent of the 
procedure used to obtain them. Any procedure for generating synthetic seismograms can be 
used to obtain h(r, w). Therefore, matched filtering for the seismic moment tensor can be 
done globally, regionally or locally, depending on the magnitude of the seismic source and 
the configuration of the network. 
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